Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99445
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑怡zh_TW
dc.contributor.advisorShu-I Linen
dc.contributor.author簡翊軒zh_TW
dc.contributor.authorYi-Hsuan Chienen
dc.date.accessioned2025-09-10T16:18:36Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation行政院農業委員會農糧署. 2022. 蔬果品質分級標準暨包裝規格手冊─蔬菜篇.長城製版出版公司. 臺北. 臺灣
李國基. 2021. 農業資源循環再利用,點廢成金產業創新. 農政與農情. 346:30-36.
林鈺荏. 2021. 畜牧糞尿水再利用減肥又節水. 苗栗區農技報導. 93:17-20.
馬振瀚. 2022. 黃瓜的秘密. 14 June 2025. < https://www.newsmarket.com.tw/blog/171220/>
高德錚. 2017. 液肥配方在設施蔬菜栽培之調配與應用實務. 臺中區農業改良場特刊. 133:189-205.
郭猛德、蕭庭訓、王政騰. 2008. 養猪三段式廢水與污泥處理技術 畜牧半月刊. 81:29-38.
陳枳吟. 2024. 以沼液栽培冰花與萵苣之可行性研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
陳俊位、鄧雅靜、蔡宜峯. 2018. 農業剩餘物質再利用產品開發及在友善耕作上之應用技術. 臺中區農業改良場特刊. 135:51-69.
黃俊杉. 2010. 胡瓜新品種「種苗2號─青寶」簡介. 種苗科技專訊. 68:2-4.
農友種苗股份有限公司. 2025. 胡瓜商品介紹. 14 June 2025. <https://www.knownyou.com/tw/product/58/143/>
農產品批發市場交易行情站. 2025. 產品行情比較. 14 June 2025. <https://amis.afa.gov.tw/main/Main.aspx>
農業部. 2023. 農業生產. 112年農業統計年報. 1 July 2025. <https://agrstat.moa.gov.tw/sdweb/public/book/Book.aspx>
農業部. 2024. 農業統計資料查詢. 固體廢棄物排放帳─農業廢棄物. 1 July 2025. <https://agrstat.moa.gov.tw/sdweb/public/common/Download.aspx>
趙筱晴、林慧玲. 2010. 高溫處理對‘台農二號’番木瓜果實乙烯生合成之影響. 興大園藝. 34:7-21.
臺北市法規查詢系統網站. 2007. 水汙染防治法. 14 June 2025. < https://www.laws.taipei.gov.tw/Law>
劉敏莉. 2008. 高屏地區小胡瓜生產管理技術. 高雄區農技報導 90:3.
劉興隆、白桂芳. 2016. 花胡瓜健康管理技術. 195:2-13.
衛生福利部食品藥物管理署整合查詢服務. 2025. 食品營養成分資料庫. 14 June 2025. <https://consumer.fda.gov.tw/Pages/List.aspx?nodeID=6>
環境部主管法規查詢系統. 2017. 水污染防治措施及檢測申報管理辦法. 14 June 2025. <https://www.ema.gov.tw/information-service/laws-and-regulations/ema-laws/1775.html>
環境部全國畜牧糞尿資源化網站. 2025. 畜牧資源化推動成果. 14 June 2025. < https://epafarm.moenv.gov.tw/>
鍾不惑. 2022. 沼液作為肥料應用於溫室小果番茄'玉女'之水耕及介質耕栽培. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
鍾承訓. 2020. 畜牧場廢水處理及操作管理. 科學發展. 565:6-11.
Acebu, P.I.G., M.D.G. de Luna, C.-Y. Chen, R.R.M. Abarca, J.-H. Chen, and J.-S. Chang. 2022. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. Bioresource Techol. 352:127086.
Alcántara, C., J.M. Domínguez, D. García, S. Blanco, R. Pérez, P.A. García-Encina, and R. Muñoz. 2015. Evaluation of wastewater treatment in a novel anoxic–aerobic algal–bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances. Bioresour. Technol. 191:173-186.
Awasthi, M.K., R. Sindhu, R. Sirohi, V. Kumar, V. Ahluwalia, P. Binod, A. Juneja, D. Kumar, B. Yan, and S. Sarsaiya. 2022. Agricultural waste biorefinery development towards circular bioeconomy. Renew. Sustain. Energy Rev. 158:112122.
Azarmi, R. and B. Esmaeilpour. 2010. Ratio on growth, yield and element composition of cucumber (Cucumis sativus L.). J. Agric. Food Environ. 8:607-610.
Badger, M.R. and G.D. Price. 1992. The CO2 concentrating mechanism in cyanobactiria and microalgae. Physiol. Plant. 84:606-615.
Bharti, A., R. Prasanna, G. Kumar, A. Kumar, and L. Nain. 2019. Co-cultivation of cyanobacteria for raising nursery of chrysanthemum using a hydroponic system. J. Appl. Phycol. 31:3625-3635.
Botheju, D., O. Svalheim, and R. Bakke. 2010. Digestate nitrification for nutrient recovery. Waste Manag. 3:1-12.
Bruckner, C.G., C. Rehm, H.P. Grossart, and P.G. Kroth. 2011. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ. Microbiol. 13:1052-1063.
Bux, F. and Y. Chisti. 2016. Algae biotechnology: products and processes. Springer, Cham, Switzerland.
Chapman, S.C. and H.J. Barreto. 1997. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron. J. 89:557-562.
Chen, G., G. Zhao, H. Zhang, Y. Shen, H. Fei, and W. Cheng. 2017. Biogas slurry use as N fertilizer for two-season Zizania aquatica Turcz. in China. Nutr. Cycl. Agroecosyst. 107:303-320.
Chiaiese, P., G. Corrado, G. Colla, M.C. Kyriacou, and Y. Rouphael. 2018. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 9:1782.
Choi, E.-Y., K.-Y. Choi, J.-M. Kim, and Y.-B. Lee. 2023. Growth and yield of cucumber in a high-wire growing system with different training methods. J. Korean Soc. Hort. Sci. Technol. 41:666-673.
Cui, Y., S. Li, Y. Dong, H. Wu, Y. Gao, Z. Feng, X. Zhao, L. Shan, Z. Zhang, and Z. Liu. 2023. Genetic regulation and molecular mechanism of immature cucumber peel color: A review. Veg. Res. 3:1-6.
Deng, L. and B.R. Dhar. 2023. Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. Chemosphere 330:138685.
Do, T.C.V., D.T. Tran, T.G. Le, and Q.T. Nguyen. 2020. Characterization of endogenous auxins and gibberellins produced by Chlorella sorokiniana TH01 under phototrophic and mixtrophic cultivation modes toward applications in microalgal biorefinery and crop research. J. Chem. 2020:4910621.
El-Nemr, M., M. El-Desuki, A. El-Bassiony, and Z. Fawzy. 2012. Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar applications of humic acid and bio-stimulators. Aust. J. Basic Appl. Sci. 6:630-637.
Esteban, R., I. Ariz, C. Cruz, and J.F. Moran. 2016. Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 248:92-101.
Falkowski, P.G. and J.A. Raven. 2013. Aquatic photosynthesis. Princeton University Press, Princeton, NJ.
Fernández-Nava, Y., E. Maranon, J. Soons, and L. Castrillón. 2008. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour. Technol. 99:7976-7981.
Foysal, M., R. Fotedar, S. Gupta, and M. Chaklader. 2019. Biological ball filters regulate bacterial communities in marron (Cherax cainii) culture system. Lett. Appl. Microbiol. 68:455-463.
Food and Agriculture Organization of the United Nations. 2023. FAOSTAT: Crops and livestock products. 14 June 2025.
Golueke, C.G., W.J. Oswald, and H.B. Gotaas. 1957. Anaerobic digestion of algae. Appl. Microbiol. 5:47-55.
Gonçalves, A.L. 2021. The use of microalgae and cyanobacteria in the improvement of agricultural practices: a review on their biofertilising, biostimulating and biopesticide roles. Appl. Sci. 11:871.
González-Pérez, B.K., A.M. Rivas-Castillo, A. Valdez-Calderón, and M.A. Gayosso-Morales. 2022. Microalgae as biostimulants: a new approach in agriculture. World J. Microbiol. Biotechnol. 38:4.
Griffiths, M., S.T.L. Harrison, M. Smit, and D. Maharajh. 2016. Major commercial products from micro- and macroalgae, p. 269-300. In: F. Bux, and Y. Chisti (eds.). Algae biotechnology: Products and processes. Springer, Durban, South Africa.
Grumet, R., Y.-C. Lin, S. Rett-Cadman, and A. Malik. 2022. Morphological and genetic diversity of cucumber (Cucumis sativus L.) fruit development. Plants 12:23.
Han, X., H. Zeng, P. Bartocci, F. Fantozzi, and Y. Yan. 2018. Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25.
Hu, J., C. Li, Y. Wen, X. Gao, F. Shi, and L. Han. 2018. Spatial distribution of SPAD value and determination of the suitable leaf for N diagnosis in cucumber. IOP Conf. Ser.: Earth Environ. Sci. 108:022001.
Itakura, A.K., K.X. Chan, N. Atkinson, L. Pallesen, L. Wang, G. Reeves, W. Patena, O. Caspari, R. Roth, and U. Goodenough. 2019. A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 116:18445–18454.
Jankauskienė, J., K. Laužikė, and S. Kaupaitė. 2024. The Use use of anaerobic digestate for greenhouse horticulture. Agron. 14:2437.
Jiang, C., M. Johkan, M. Hohjo, S. Tsukagoshi, and T. Maruo. 2017. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch. 71:37-42.
Kampschreur, M.J., N.C. Tan, R. Kleerebezem, C. Picioreanu, M.S. Jetten, and M.C.v. Loosdrecht. 2008. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environ. Sci. Technol. 42:429-435.
Ke, L., X. Liu, B. Du, Y. Wang, Y. Zheng, and Q. Li. 2022. Component analysis and risk assessment of biogas slurry from biogas plants. Chin. J. Chem. Eng. 44:182-191.
Koyande, A.K., K.W. Chew, K. Rambabu, Y. Tao, D.-T. Chu, and P.-L. Show. 2019. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 8:16-24.
Krichen, E., A. Rapaport, E. Le Floc’h, and E. Fouilland. 2019. Demonstration of facilitation between microalgae to face environmental stress. Sci. Rep. 9:16076.
Kuenen, J.G. and L.A. Robertson. 1994. Combined nitrification-denitrification processes. FEMS Microbiol. Rev. 15:109-117.
Kumar, S., L.C. Malav, M.K. Malav, and S.A. Khan. 2015. Biogas slurry: source of nutrients for eco-friendly agriculture. Int. J. Extensive Res. 2:42-46
Lee, E., P.R. Rout, and J. Bae. 2021. The applicability of anaerobically treated domestic wastewater as a nutrient medium in hydroponic lettuce cultivation: Nitrogen toxicity and health risk assessment. Sci. Total Environ. 780:146482.
Lester, G.E., J.L. Jifon, and G. Rogers. 2005. Supplemental foliar potassium applications during muskmelon fruit development can improve fruit quality, ascorbic acid, and beta-carotene contents. J. Amer. Soc. Hort. Sci. 130:649-653.
Liang, F., Z. Shi, S. Wei, and S. Yan. 2023. Biogas slurry purification-lettuce growth nexus: Nutrients absorption and pollutants removal. Sci. Total Environ. 890:164383.
Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, p. 350-382. Methods Enzymol. Vol. 148, Elsevier.
Liu, W.K., Q.-C. Yang, and L. Du. 2009. Soilless cultivation for high-quality vegetables with biogas manure in China: feasibility and benefit analysis. Renew. Agric. Food Syst. 24:300-307.
Mandal, S.M., D. Chakraborty, and S. Dey. 2010. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 5:359-368.
Mapson, L. and C. Mawson. 1943. Stability of ascorbic acid in metaphosphoric acid extracts. Nature 151:222-223.
Marcelis, L.F. and L.R.B. Hofman‐Eijer. 1993. Effect of temperature on the growth of individual cucumber fruits. Physiol Plant. 87:321-328.
Meyer, M.T., C. Whittaker, and H. Griffiths. 2017. The algal pyrenoid: key unanswered questions. J. Exp. Bot. 68:3739-3749.
Milledge, J.J., B.V. Nielsen, S. Maneein, and P.J. Harvey. 2019. A brief review of anaerobic digestion of algae for bioenergy. Energies 12:1166.
Mohsenpour, S.F., S. Hennige, N. Willoughby, A. Adeloye, and T. Gutierrez. 2021. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 752:142168.
Möller, K. and T. Müller. 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 12:242-257.
Mutale-Joan, C., B. Redouane, E. Najib, K. Yassine, K. Lyamlouli, S. Laila, Y. Zeroual, and E.A. Hicham. 2020. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci. Rep. 10:2820.
Nardi, S., P. Carletti, D. Pizzeghello, and A. Muscolo. 2009. Biological activities of humic substances. p.305-339. In: N. Senesi. B. Xing and P.M. Huang (eds.) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems.. John Wiley & Sons, Hoboken, NJ.
Náthia-Neves, G., M. Berni, G. Dragone, S. Mussatto, and T. Forster-Carneiro. 2018. Anaerobic digestion process: technological aspects and recent developments. Int. J. Environ. Sci. Technol. 15:2033-2046.
Nawarathna, K., W. Dandeniya, R. Dharmakeerthi, and P. Weerasinghe. 2021. Vegetable crops prefer different ratios of ammonium-N and Nitrate-N in the growth media. Trop. Agr. Res. 32:95-104.
Ntinas, G.K., F. Bantis, A. Koukounaras, and P.G. Kougias. 2021. Exploitation of liquid digestate as the sole nutrient source for floating hydroponic cultivation of baby lettuce (Lactuca sativa) in greenhouses. Energies 14:7199.
Oswald, W.J. and H.B. Gotaas. 1957. Photosynthesis in sewage treatment. Trans. Amer. Soc. Civil Eng. 122:73-97.
Pan, J., J. Shen, Z. Zhou, Y. Xin, Z. Huang, J. Xiong, Y. Liu, X. Cui, and Y. Liu. 2025. Sustainable management of biogas slurry discharge in biogas engineering: As a chemical fertilizer substitute for garlic cultivation. BioResources 20.
Pathom-aree, W., S. Sensupa, A. Wichaphian, N. Sriket, B. Kitwetch, J. Pekkoh, P. Sattayawat, S. Lomakool, Y. Chromkaew, and S. Srinuanpan. 2024. An innovative co-cultivation of microalgae and actinomycete-inoculated lettuce in a hydroponic deep-water culture System for the sustainable development of a food–agriculture–energy nexus. Hortic. 10:70.
Plappally, A. 2012. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 16:4818-4848.
Renuka, N., A. Guldhe, R. Prasanna, P. Singh, and F. Bux. 2018. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol. Adv. 36:1255-1273.
Sakata, Y., H. Horie, Y. Yoshioka, and M. Sugiyama. 2011. Fruit textures of Beit Alpha, greenhouse, Japanese, pickling, and slicer-type cucumbers. J. Jpn. Soc. Hort. Sci. 80:420-425.
Setién, I., T. Fuertes-Mendizabal, A. González, P.M. Aparicio-Tejo, C. González-Murua, M.B. González-Moro, and J.M. Estavillo. 2013. High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation. J. Plant Physiol. 170:758-771.
Shammas, N.K. 1986. Interactions of temperature, pH, and biomass on the nitrification process. J. Water Pollut. Control Fed. :52-59.
Shete, B.S. and N. Shinkar. 2013. Dairy industry wastewater sources, characteristics & its effects on environment. Int. J. Curr. Eng. Technol. 3:1611-1615.
Shetty, N.V. and T.C. Wehner. 1998. Evaluation of oriental trellis cucumbers for production in North Carolina. HortScience 33:891-896.
Shimomura, K., H. Horie, M. Sugiyama, Y. Kawazu, and Y. Yoshioka. 2016. Quantitative evaluation of cucumber fruit texture and shape traits reveals extensive diversity and differentiation. Sci. Hortic. 199:133-141.
Singh, H., B. Dunn, and M. Payton. 2019. Hydroponic pH modifiers affect plant growth and nutrient content in leafy greens. J. Hort. Res. 27:31-36.
Singh, J. 1988. A rapid method for determination of nitrate in soil and plant extracts. Plant Soil 110:137-139.
Steiner, A.A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15:134-154.
Stirk, W.A., V. Ördög, O. Novák, J. Rolčík, M. Strnad, P. Bálint, and J. van Staden. 2013. Auxin and cytokinin relationships in 24 microalgal strains1. J. Phycol. 49:459-467.
Supraja, K.V., B. Behera, and P. Balasubramanian. 2020. Performance evaluation of hydroponic system for co-cultivation of microalgae and tomato plant. J. Clean. Prod. 272:122823.
Tejera, N., R. Campos, J. Sanjuan, and C. Lluch. 2005. Effect of sodium chloride on growth, nutrient accumulation, and nitrogen fixation of common bean plants in symbiosis with isogenic strains. J. Plant Nutr. 28:1907-1921.
Toyokawa, C., T. Yamano, and H. Fukuzawa. 2020. Pyrenoid starch sheath is required for LCIB localization and the CO2-concentrating mechanism in green algae. Plant Physiol. 182:1883-1893.
Trapp, S., D. Feificova, N.F. Rasmussen, and P. Bauer-Gottwein. 2008. Plant uptake of NaCl in relation to enzyme kinetics and toxic effects. Environ. Expt. Bot. 64:1-7.
Vaneeckhaute, C., V. Lebuf, E. Michels, E. Belia, P.A. Vanrolleghem, F.M. Tack, and E. Meers. 2017. Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass valor. 8:21-40.
Vega-Mas, I., D. Marino, J. Sanchez-Zabala, C. Gonzalez-Murua, J.M. Estavillo, and M.B. González-Moro. 2015. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance. Plant Sci. 241:32-44.
Verkleij, F.N. and L.B. Hofman-Eijer. 1988. Diurnal export of carbon and fruit growth in cucumber. J. Plant Physiol. 133:345-348.
Vildanova, G.I., R.Z. Allaguvatova, D.F. Kunsbaeva, N.V. Sukhanova, and L.A. Gaysina. 2023. Application of Chlorella vulgaris Beijerinck as a biostimulant for growing cucumber seedlings in Hydroponics. BioTech 12:42.
Wang, L. and M.C. Jonikas. 2020. The pyrenoid. Curr. Biol. 30:456-458.
Wang, M., L. Chen, Z. Liang, X. He, W. Liu, B. Jiang, J. Yan, P. Sun, Z. Cao, and Q. Peng. 2020. Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color. BMC Plant Biol. 20:1-13.
Welbaum, G.E. 2018. 蔬菜學. 五南圖書出版公司. 臺北. 臺灣.
Wu, Y., X. Jin, W. Liao, L. Hu, M.M. Dawuda, X. Zhao, Z. Tang, T. Gong, and J. Yu. 2018. 5-Aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Front. Plant Sci. 9:635.
Wuang, S.C., M.C. Khin, P.Q.D. Chua, and Y.D. Luo. 2016. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 15:59-64.
Xu, G., X. Fan, and A.J. Miller. 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63:153-182.
Ye, L., X. Wu, X. Tan, X. Shi, D. Li, Y. Yu, M. Zhang, and F. Kong. 2010. Cell lysis of cyanobacteria and its implications for nutrient dynamics. Int. Rev. Hydrobiol. 95:235-245.
Yu, H., Y. Yang, T. Yang, Q. Shi, and L.-L. Zhuang. 2021. Enhanced transpiration by attached microalgae-simulated plants for zero-discharge of reverse osmosis concentrated water (WROC). Water 13:2058.
Zhang, J., X. Wang, and Q. Zhou. 2017. Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass Bioenergy 97:132-138.
Zhu, S., S. Feng, Z. Xu, L. Qin, C. Shang, P. Feng, Z. Wang, and Z. Yuan. 2019. Cultivation of Chlorella vulgaris on unsterilized dairy-derived liquid digestate for simultaneous biofuels feedstock production and pollutant removal. Bioresour. Technol. 285:121353.
Žunić, V., T.H. Jafari, J. Grabić, S. Đurić, and D. Stamenov. 2022. Hydroponic systems: exploring the balance between co-cultivation of Chlorella vulgaris and Swiss chard (Beta vulgaris L. subsp. cicla). J. Appl. Phycol. 34:903-913.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99445-
dc.description.abstract近年來隨著資源循環與減碳議題興起,厭氧消化技術(anaerobic digestion)逐漸成為農業廢棄物處理的重要手段。其中,畜牧業產生的大量糞尿經厭氧發酵後形成之沼液(liquid digestate),富含植物所需養分,具養分再利用潛力。然而其產生過程之溫室氣體與殘留養分仍多,近年研究多結合微藻培養進行沼液硝化,以淨化水質並同步產出可加工利用之微藻。本研究嘗試利用沼液作為部分肥分來源,結合微藻共培養技術,應用於花胡瓜‘順燕’栽培,探討作物、沼液與微藻三者之間之交互作用與共同栽培之可行性。結果表明,預試驗中沼液混合比例提高雖未對植株生長指標造成顯著差異,但在高比例處理葉片出現缺素症狀,因此後續選用5%沼液混合95%化學養液(Mix5)與10%沼液混合90%化學養液(Mix10)做為試驗濃度。試驗一中,Mix10雖未提升植株營養生長顯著性,但能有效縮短果實生育期並提升抗壞血酸與總可溶性固形物含量。試驗二顯示,不同濃度微藻共培養處理對植株形態無明顯影響。每公升養液中添加0.02 g微藻的處理組(CK+A2),其SPAD值及部分生長指標顯著下降;而每公升添加0.05 g微藻的處理(CK+A5)則表現較穩定,惟整體而言未能顯著提升植株生長或果實產量,然仍具同時產出微藻之潛力。試驗三進一步整合沼液與微藻處理,結果顯示各處理間植株形態與生理指標無顯著差異,Mix10可顯著縮短生育期並提高果實產量,每公升添加0.05 g微藻的沼液處理(Mix10+A5)則呈現胡瓜與微藻產量都顯著增加,顯示沼液與微藻共培養具協同效應,可兼顧作物生長與微藻生質提升,具農業資源化應用潛力。因此,結合沼液與微藻於花胡瓜水耕栽培中,不僅可作為部分化學肥料與水源之替代,實現廢棄資材的資源化再利用,更可透過微藻共培養同步產出生質資源,兼顧作物生產與永續發展,有望作為一種具備生態效益與經濟潛力的循環農業應用模式。zh_TW
dc.description.abstractIn recent years, the rise of resource recycling and carbon reduction issues has brought increasing attention to anaerobic digestion as a key approach for managing agricultural waste. Among these wastes, large volumes of livestock manure are treated through anaerobic fermentation to produce liquid digestate, which is rich in nutrients essential for plant growth and thus holds significant potential for nutrient recycling. However, the process is still associated with considerable greenhouse gas emissions and residual nutrients. To address these concerns, recent studies have increasingly integrated microalgae cultivation into digestate nitrification processes to purify wastewater while producing harvestable algal biomass. This study explores the use of liquid digestate as a partial nutrient source combined with microalgae co-cultivation technology, applied to the hydroponic cultivation of cucumber (Cucumis sativus 'Shun-Yen'), aiming to investigate the interactions among the crop, digestate, and microalgae, and to evaluate the feasibility of co-cultivation. Preliminary experiments indicated that increasing the proportion of liquid digestate in the nutrient solution did not significantly affect plant growth parameters; however, nutrient deficiency symptoms were observed in the leaves under higher digestate concentrations. Therefore, subsequent experiments adopted 5% digestate mixed with 95% chemical nutrient solutions (Mix5) and 10% with 90% chemical nutrient solutions (Mix10). In Experiment I, the Mix10 treatment did not significantly enhance vegetative growth. However, it effectively shortened the fruit development period and improved both ascorbic acid content and total soluble solids content in the fruit. Experiment II showed that different concentrations of microalgae co-cultivation had no obvious effect on plant morphology. However, in the treatment group with 0.02 g of microalgae per liter of nutrient solution (CK+A2), SPAD values and several growth indices significantly declined. Conversely, the group receiving 0.05 g per liter (CK+A5) exhibited relatively stable performance, though overall it did not significantly improve plant growth or fruit yield. Nevertheless, the potential for simultaneous algal biomass production remained. Experiment III further integrated both liquid digestate and microalgae treatments. Results showed no significant differences in plant morphology or physiological traits among the treatments. The Mix10 treatment significantly shortened the fruit development period and increased fruit yield. Notably, the Mix10+A5 treatment, in which 0.05 g·L⁻¹ of microalgae was added to the Mix10 solution, resulted in significantly higher yields of both cucumber and microalgal biomass. These results suggest a synergistic effect of co-cultivating liquid digestate and microalgae, supporting both crop growth and microalgal biomass production, and demonstrating great potential for agricultural resource recycling. In conclusion, integrating liquid digestate and microalgae into hydroponic cucumber cultivation is a partial substitute for chemical fertilizers and water, enabling the recycling and reuse of agricultural waste resources and allowing for the simultaneous production of algal biomass through co-cultivation. This approach supports both crop production and sustainable development and presents a promising circular agriculture model with ecological benefits and economic potential.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:18:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:18:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iv
表次 vii
圖次 ix
前言 1
前人研究 2
一、胡瓜與花胡瓜於世界農業經濟之重要性 2
二、花胡瓜於臺灣栽培歷史及現況 2
三、胡瓜與花胡瓜之分類與營養價值 3
四、農業廢棄物在永續循環經濟中的發展與價值化 4
五、畜牧業副資材轉換與資源化概況 5
六、沼液作為肥分資材之營養潛力與硝化作用之重要性 6
七、沼液於國內外農業生產之實際應用 8
八、微藻之生物特性與營養潛能探討 9
九、微藻技術於污水處理之應用及利用沼液作為養分來源之潛力 11
十、微藻於作物栽培之應用及與作物共培養的潛力 12
材料與方法 15
一、播種、育苗及栽培管理 15
(一) 種子消毒與育苗 15
(二) 水耕栽培系統 16
(三) 栽培管理 17
(四) 果實採收與分級 17
二、沼液來源與預處理 18
三、微藻培養與收集 18
四、試驗設計與處理方法 19
五、調查項目 21
(一) 化學養液與沼液成分分析 21
(二) 養液性質分析 21
(三) 植株生長調查項目 21
(四) 果實產量及品質分析 23
(五) 果實色澤與色素分析 24
六、統計分析 25
結果 26
預試驗、不同比例沼液混合化學養液對花胡瓜苗期生長之影響 26
(一) 花胡瓜苗期生長之最佳沼液混合化學養液濃度篩選 26
(二) 養液分析 26
試驗一、不同比例沼液混合化學養液對花胡瓜成株生長及果實生產之影響 27
(一) 花胡瓜植株營養生長、生理調查與果實生育時期 27
(二) 果實產量、分級與品質 27
(三) 果實色澤與色素 27
(四) 養液分析 28
試驗二、微藻共培養對花胡瓜植株生長及果實生產之影響 29
(一) 花胡瓜植株營養生長、生理調查與果實生育時期 29
(二) 果實產量、分級與品質 29
(三) 果實色澤與色素 30
(四) 微藻單獨培養或與作物共培養之微藻產量及單獨培養之養液分析 30
(五) 微藻與作物共培養之養液分析 31
試驗三、沼液與微藻於花胡瓜水耕栽培之應用 32
(一) 花胡瓜植株營養生長、生理調查與果實生育時期 32
(二) 果實產量、分級與品質 32
(三) 果實色澤與色素 33
(四) 共培養處理下之微藻產量 33
(五) 養液分析 34
討論 92
一、硝化資材與沼液水體對硝化作用的影響 92
二、花胡瓜苗期生長之最佳沼液混合化學養液濃度篩選 94
三、不同比例沼液混合化學養液對花胡瓜成株生長及果實生產之影響 95
(一) 花胡瓜植株生長、生理調查與水分利用情形 95
(二) 果實生育表現及礦物元素吸收情形 95
(三) 果實色澤與色素含量 97
四、微藻共培養對花胡瓜植株生長及果實生產之影響 98
(一) 花胡瓜植株生長、生理調查與水分利用情形 98
(二) 果實生育表現及礦物元素吸收情形 99
(三) 果實色澤與色素含量 99
(四) 微藻單獨培養或與作物共培養之產量及營養元素吸收情形 100
五、沼液與微藻於花胡瓜水耕栽培之應用 101
(一) 花胡瓜植株生長、生理調查與水分利用情形 101
(二) 果實生育表現及礦物元素吸收情形 102
(三) 果實色澤與色素含量 103
結論 104
參考文獻 105
附錄 113
-
dc.language.isozh_TW-
dc.subject沼液zh_TW
dc.subject硝化作用zh_TW
dc.subject微藻zh_TW
dc.subject共培養zh_TW
dc.subject花胡瓜zh_TW
dc.subjectmicroalgaeen
dc.subjectliquid digestateen
dc.subjectcucumberen
dc.subjectco-cultivationen
dc.subjectnitrificationen
dc.title沼液與微藻於花胡瓜水耕栽培之應用zh_TW
dc.titleApplication of Liquid Digestate and Microalgae in the Hydroponic Cultivation of Cucumberen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李金龍;劉啟德zh_TW
dc.contributor.oralexamcommitteeChing-Lung Lee;Chi-Te Liuen
dc.subject.keyword沼液,硝化作用,微藻,共培養,花胡瓜,zh_TW
dc.subject.keywordliquid digestate,nitrification,microalgae,co-cultivation,cucumber,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202502977-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved