Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99439
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳政鴻zh_TW
dc.contributor.advisorCheng-Hung Wuen
dc.contributor.author黃嬿慈zh_TW
dc.contributor.authorYen-Tzu Huangen
dc.date.accessioned2025-09-10T16:17:31Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citationAli, A. R., & Kamal, H. (2025). Time-to-Fault Prediction Framework for Automated Manufacturing in Humanoid Robotics Using Deep Learning. Technologies, 13(2), 42.
Baras, J., Ma, D.-J., & Makowski, A. (1985). K competing queues with geometric service requirements and linear costs: The μc-rule is always optimal. Systems & control letters, 6(3), 173-180.
Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503-515.
Belouadah, H., Posner, M. E., & Potts, C. N. (1992). Scheduling with release dates on a single machine to minimize total weighted completion time. Discrete applied mathematics, 36(3), 213-231.
Chen, Y.-T., Wu, C.-H., Tien, Y.-J., et al. (2016). PRODUCTION CONTROL UNDER PROCESS QUEUE TIME CONSTRAINTS IN SYSTEMS WITH A COMMON DOWNSTREAM WORKSTATION. International Journal of Industrial Engineering, 23(5).
Chien, W.-C., Chou, Y.-L., & Wu, C.-H. (2023). Stochastic Scheduling for Batch Processes With Downstream Queue Time Constraints. IEEE Transactions on Semiconductor Manufacturing.
Ðurasević, M., & Jakobović, D. (2021). Automatic design of dispatching rules for static scheduling conditions. Neural Computing and Applications, 33(10), 5043-5068.
Fang, W., Guo, Y., Liao, W., et al. (2020). Big data driven jobs remaining time prediction in discrete manufacturing system: a deep learning-based approach. International Journal of Production Research, 58(9), 2751-2766.
Fu, X., & Modiano, E. (2023). Joint learning and control in stochastic queueing networks with unknown utilities. ACM SIGMETRICS Performance Evaluation Review, 51(1), 77-78.
Garey Michael, R., & Johnson David, S. (1979). Computers and Intractability: A guide to the theory of NP-completeness. In: WH Freeman Co., San Francisco, USA.
Graves, S. C. (1981). A review of production scheduling. Operations research, 29(4), 646-675.
Huang, K., Wei, K., Li, F., et al. (2022). LSTM-MPC: A deep learning based predictive control method for multimode process control. IEEE Transactions on Industrial Electronics, 70(11), 11544-11554.
Kopp, D., Hassoun, M., Kalir, A., & Mönch, L. (2020). SMT2020—A semiconductor manufacturing testbed. IEEE Transactions on Semiconductor Manufacturing, 33(4), 522-531.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
Lee, J.-H., Zhao, C., Li, J., et al. (2018). Analysis, design, and control of Bernoulli production lines with waiting time constraints. Journal of Manufacturing Systems, 46, 208-220.
Lee, S., Kim, H. J., & Kim, S. B. (2020). Dynamic dispatching system using a deep denoising autoencoder for semiconductor manufacturing. Applied Soft Computing, 86, 105904.
Lima, A., Borodin, V., Dauzère-Pérès, S., et al. (2021). A sampling-based approach for managing lot release in time constraint tunnels in semiconductor manufacturing. International Journal of Production Research, 59(3), 860-884.
Min, L., & Cheng, W. (1999). A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines. Artificial Intelligence in Engineering, 13(4), 399-403.
Nattaf, M., Dauzère-Pérès, S., Yugma, C., et al. (2019). Parallel machine scheduling with time constraints on machine qualifications. Computers & Operations Research, 107, 61-76.
Nikolaev, E., Zakharova, N., & Zakharov, V. (2021). Smart manufacturing control system based on deep reinforcement learning. IOP conference series: Materials science and engineering,
Powell, W. B. (2019). A unified framework for stochastic optimization. European journal of operational research, 275(3), 795-821.
Qin, M., Wang, R., Shi, Z., et al. (2019). A genetic programming-based scheduling approach for hybrid flow shop with a batch processor and waiting time constraint. IEEE Transactions on Automation Science and Engineering, 18(1), 94-105.
Sadeghi, R., Dauzère-Pérès, S., Yugma, C., et al. (2015). Production control in semiconductor manufacturing with time constraints. 2015 26th annual SEMI advanced semiconductor manufacturing conference (ASMC),
Sharma, P., & Jain, A. (2014). Analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times. Frontiers of Mechanical Engineering, 9, 380-389.
Wang, H.-K., Chien, C.-F., & Gen, M. (2015). An algorithm of multi-subpopulation parameters with hybrid estimation of distribution for semiconductor scheduling with constrained waiting time. IEEE Transactions on Semiconductor Manufacturing, 28(3), 353-366.
Wang, M., Srivathsan, S., Huang, E., et al. (2018). Job dispatch control for production lines with overlapped time window constraints. IEEE Transactions on Semiconductor Manufacturing, 31(2), 206-214.
Wang, S., Guo, B., Ding, Y., et al. (2023). Time-constrained actor-critic reinforcement learning for concurrent order dispatch in on-demand delivery. IEEE Transactions on Mobile Computing, 23(8), 8175-8192.
Wang, S., Liu, M., & Chu, C. (2015). A branch-and-bound algorithm for two-stage no-wait hybrid flow-shop scheduling. International Journal of Production Research, 53(4), 1143-1167.
Wang, Y., Zhao, Y., & Addepalli, S. (2020). Remaining useful life prediction using deep learning approaches: A review. Procedia manufacturing, 49, 81-88.
Wu, C.-H., Lin, J. T., & Chien, W.-C. (2010). Dynamic production control in a serial line with process queue time constraint. International Journal of Production Research, 48(13), 3823-3843.
Wu, C.-H., Yao, Y.-C., Dauzère-Pérès, S., et al. (2020). Dynamic dispatching and preventive maintenance for parallel machines with dispatching-dependent deterioration. Computers & Operations Research, 113, 104779.
Wu, C.-H., Zhou, F.-Y., Tsai, C.-K., et al. (2020). A deep learning approach for the dynamic dispatching of unreliable machines in re-entrant production systems. International Journal of Production Research, 58(9), 2822-2840.
Zhang, L., Yang, C., Yan, Y., et al. (2024). Automated guided vehicle dispatching and routing integration via digital twin with deep reinforcement learning. Journal of Manufacturing Systems, 72, 492-503.
Zonta, T., Da Costa, C. A., Zeiser, F. A., et al. (2022). A predictive maintenance model for optimizing production schedule using deep neural networks. Journal of Manufacturing Systems, 62, 450-462.
沈子傑. (2024). 等候時長限制下串聯生產系統之動態派工與保養方法. 臺灣大學工業工程學研究所學位論文, 1-99.
蔡沂芯. (2019). 應用多智能體分解與合成之動態派工與預防保養方法
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99439-
dc.description.abstract本研究針對串聯式生產系統中具等候時長限制的動態環境,開發基於深度學習的允入控制機制。在半導體產業中,產品在工序間等候時長過長可能導致品質劣化或報廢,造成巨大損失,因此精確的允入控制決策對維持生產效率與降低總成本至關重要。研究首先利用線性規劃分解方法,將高維度優化問題分解為可處理的子問題,克服傳統動態規劃的局限性,並運用動態規劃技術對系統中的隨機事件建模,制定最優的派工和預防保養計劃。設計深度神經網絡模型,以捕捉動態製造系統中的複雜非線性關係,並預測產品於上下游工作站間的等候時長,作為允入決策的核心依據。此方法有效處理生產系統中的動態變化與不確定性,降低產品違反等候時長限制的風險並減少報廢數量,從而提升整體生產效率並最小化總成本。zh_TW
dc.description.abstractThis research develops a deep learning-based admission control mechanism for serial manufacturing systems with time constraints in dynamic environments. In the semiconductor industry, prolonged inter-process waiting times can lead to quality deterioration or scrapping, resulting in substantial losses. Therefore, precise admission control decisions are crucial for maintaining production efficiency and minimizing total costs. The research first employs linear programming decomposition to break down high-dimensional optimization problems into manageable sub-problems, overcoming the limitations of traditional dynamic programming, and utilizes dynamic programming techniques to model random events in the system for optimal dispatching and preventive maintenance planning. Building upon this foundation, a deep neural network model is designed to capture complex nonlinear relationships in dynamic manufacturing systems, predicting waiting times between upstream and downstream workstations as the core basis for admission decisions. This method effectively handles dynamic changes and uncertainties in the production system, reducing the risk of time constraint violations and minimizing scrap rates, thereby enhancing overall production efficiency and minimizing total costs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:17:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:17:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 iv
圖次 vi
表次 vii
第 1 章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究方法 3
1.4 研究流程 4
第 2 章 文獻回顧 5
2.1 靜態派工方法 5
2.1.1 靜態派工理論與方法 5
2.1.2 等候時長限制下的靜態派工方法 6
2.2 動態派工理論與方法 8
2.2.1 動態派工方法 8
2.2.2 等候時長限制下的動態派工 9
2.3 深度學習於生產決策上的應用 11
2.3.1 深度學習於製造系統之發展 11
2.3.2 深度學習於系統狀態預測 12
2.3.3 深度學習於製造決策支援 13
2.4 文獻回顧小結 13
第 3 章 研究問題與方法 15
3.1 問題描述與假設 15
3.2 研究模型與架構 16
3.3 動態派工與預防保養模型 18
3.3.1 多產品多機台動態派工與預防保養模型 19
3.3.2 線性規劃分解模型 25
3.4 基於深度學習的允入控制方法 27
3.4.1 深度學習預測模型 28
3.4.2 動態允入控制與優先隊列架構 38
3.4.3 數位孿生系統整合與應用 42
第 4 章 模擬結果與數值分析 46
4.1 實驗設計 46
4.2 四產品三機台系統案例分析 49
4.3 統計顯著性分析 55
第 5 章 結論與未來研究方向 58
5.1 結論 58
5.2 未來研究方向 59
參考文獻 61
附錄 64
-
dc.language.isozh_TW-
dc.subject允入控制zh_TW
dc.subject深層神經網路zh_TW
dc.subject馬可夫決策過程zh_TW
dc.subject動態派工zh_TW
dc.subject等候時長限制zh_TW
dc.subjectdynamic dispatchen
dc.subjectqueue time constrainten
dc.subjectMarkov decision processen
dc.subjectadmission controlen
dc.subjectdeep neural networken
dc.title考慮等候時長限制之深度學習動態允入方法zh_TW
dc.titleA Deep Learning Approach for Dynamic Admission Control Under Queue Time Constraintsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳文智;黃道宏zh_TW
dc.contributor.oralexamcommitteeWen-Chih CHEN;Dow-hon Huangen
dc.subject.keyword深層神經網路,允入控制,等候時長限制,動態派工,馬可夫決策過程,zh_TW
dc.subject.keyworddeep neural network,admission control,dynamic dispatch,queue time constraint,Markov decision process,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202501323-
dc.rights.note未授權-
dc.date.accepted2025-08-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-liftN/A-
Appears in Collections:工業工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
2.88 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved