請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99438完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 俞靜穎 | zh_TW |
| dc.contributor.author | Jing-Ying Yu | en |
| dc.date.accessioned | 2025-09-10T16:17:19Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Amani, S., Prabhakaran, A., & Bhattacharya, S. (2022). Design of monopiles for offshore and nearshore wind turbines in seismically liquefiable soils: Methodology and validation. Soil Dynamics and Earthquake Engineering, 157.
Bhattacharya, S. (2019). Considerations for Foundation Design and the Necessary Calculations. In Design of Foundations for Offshore Wind Turbines, 103-146. Boulanger, R. W., & Idriss, I. M. (2006). Liquefaction susceptibility criteria for silts and clays. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413-1426. Esfeh, P. K., & Kaynia, A. M. (2019). Numerical modeling of liquefaction and its impact on anchor piles for floating offshore structures. Soil Dynamics and Earthquake Engineering, 127. Esfeh, P. K., & Kaynia, A. M. (2020). Earthquake response of monopiles and caissons for Offshore Wind Turbines founded in liquefiable soil. Soil Dynamics and Earthquake Engineering, 136. Eslami, A., & Ghorbani, A. (2023). Assessment of near-field strong ground motion effects on offshore wind turbines resting on liquefiable soils using fully coupled nonlinear dynamic analysis [Article]. Journal of Geotechnical and Geoenvironmental Engineering, 149(11), Article 04023095. Español-Espinel, C., Haigh, S. K., Madabhushi, G. S. P., Abadie, C. N., Go, J. E., & Morrison, P. R. J. (2024). Evolution of excess pore water pressures around monopiles subjected to moderate seismic loading. Soil Dynamics and Earthquake Engineering, 176. Gao, B., Zhu, W., Zhang, Q., & Ye, G. (2022). Response of suction bucket foundation subjected to wind and earthquake loads on liquefiable sandy seabed. Soil Dynamics and Earthquake Engineering, 160. Griffiths, D. (1985). Numerical modelling of interfaces using conventional finite elements. at Fifth International Conference on Numerical Methods in Geomechanics, Nagoya, 1-5 April 1985. Ha, S. J., Seo, H., & Kim, B. (2023). Effects of pulse-like ground motions and wavelet asymmetry on responses of cantilever retaining wall. Soil Dynamics and Earthquake Engineering, 166. He, W., & Takahashi, A. (2025). Dynamic response analysis of monopile-supported offshore wind turbine on sandy ground under seismic and environmental loads. Soil Dynamics and Earthquake Engineering, 189. Hwang, Y.-W., & Tiznado, J. C. (2024). Influence of pulse-like motions and extreme environmental loads on the seismic foundation response of offshore wind turbines on layered liquefiable soils. Ocean Engineering, 302, 117662. Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Kementzetzidis, E., Corciulo, S., Versteijlen, W. G., & Pisanò, F. (2019). Geotechnical aspects of offshore wind turbine dynamics from 3D non-linear soil-structure simulations. Soil Dynamics and Earthquake Engineering, 120, 181-199. Kulhawy, F H, & Mayne, P W (1990). Manual on estimating soil properties for foundation design. Report EL-6800, Electric Power Research Institute, Palo Alto, Ca, 1990. Khosravifar, A., Elgamal, A., Lu, J., & Li, J. (2018). A 3D model for earthquake-induced liquefaction triggering and post-liquefaction response. Soil Dynamics and Earthquake Engineering, 110, 43-52. Lombardi, D., Bhattacharya, S., & Muir Wood, D. (2013). Dynamic soil–structure interaction of monopile supported wind turbines in cohesive soil. Soil Dynamics and Earthquake Engineering, 49, 165-180. McGann, C. R., Arduino, P., & Mackenzie-Helnwein, P. (2012). Stabilized single-point 4-node quadrilateral element for dynamic analysis of fluid saturated porous media. Acta Geotechnica, 7(4), 297-311. Pisanò, F. (2019). Input of advanced geotechnical modelling to the design of offshore wind turbine foundations. 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2019 - Proceedings, Ramirez, J., Barrero, A. R., Chen, L., Dashti, S., Ghofrani, A., Taiebat, M., & Arduino, P. (2018). Site response in a layered liquefiable deposit: evaluation of different numerical tools and methodologies with centrifuge experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 144(10). Robertson, P. K. (2009). Interpretation of cone penetration tests — a unified approach. Canadian Geotechnical Journal, 46(11), 1337-1355. Terzaghi, A. (1996). Soil Management for Improvement of Soil Physical Characteristics Related to Erosion in Uruguay (Order No. 28226992). Available from ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. (2465425710). Wang, P., Wang, B., Cheng, X., Zhao, M., & Du, X. (2025). Seismic response of monopile offshore wind turbines in liquefiable sand considering vertical ground motion. Soil Dynamics and Earthquake Engineering, 189. Wilson, D. W., Boulanger, R. W., & Kutter, B. L. (2000). Observed seismic lateral resistance of liquefying sand. Journal of Geotechnical and Geoenvironmental Engineering, 126(10), 898-906. 台灣電力公司 (2018):「離岸風力發電第二期計畫—可行性研究」。 經濟部標準檢驗局 (2023):「離岸風力發電場址調查及設計技術指引」。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99438 | - |
| dc.description.abstract | 淨零碳排為全球發展趨勢,離岸風力發電因具備穩定提供永續及綠色能源的優勢而快速發展。然而,台灣離岸風場多位於砂土與黏土互層的複雜沉積地層環境,且地震活動頻繁,使砂土液化成為離岸風機設計必須面對的重要課題,對離岸風機系統之長期穩定性與使用性構成潛在威脅。
本研究利用三維、全耦合、非線性有限元素軟體OpenSees,模擬NREL-5MW離岸風機搭配單樁基礎於可液化砂土層中,受到地震與環境載重共同作用下之系統動態反應。分析模型根據彰化濱海產業園區外海CPT鑽探資料,並採用PDMY03組成律模式模擬飽和顆粒材料之動態行為。本研究考量三種載重情形:(a) 單獨地震載重;(b) 地震與極端常時風力載重;(c) 地震與諧和波風力載重,風載均施加於風機塔架頂端。地震訊號則選用無脈衝型地震與具速度脈衝之脈衝型地震,以模擬近場地震效應對離岸風機系統之影響。 分析結果顯示,脈衝型地震為觸發鬆砂層液化的主要因素,液化導致土壤有效應力下降與勁度弱化,進而降低基礎側向承載力,影響系統穩定性。常時風載亦顯著影響基礎行為,在風載單獨作用下即造成明顯傾斜,其傾角反應超出使用限度的參考標準,顯示即便非地震情境亦須審慎評估風載影響。在本案場條件下,基礎總沉陷量皆較小,推測由於部分地層在地震作用下未出現明顯勁度弱化,仍可提供基礎承載力,顯示沉陷量並非本案例的主要使用性判斷依據。針對基礎穩定性問題,本研究亦探討增大單樁直徑作為提升系統穩定性之對策,結果顯示合理增大單樁直徑有助於提升基礎抗彎矩與側推能力,並抑制彎矩變形產生。 | zh_TW |
| dc.description.abstract | Achieving net-zero emissions has become a global development trend. Offshore wind power is rapidly expanding due to its ability to provide stable and renewable energy. However, offshore wind farms in Taiwan are typically located in sites with interbedded sand and clay layers and high seismic activity, which present complex geotechnical conditions. Under such conditions, soil liquefaction can pose a risk to the long-term safety and functionality of the wind turbine system. Therefore, this study aims to establish a robust model of an offshore wind turbine (OWT) with a monopile foundation on a liquefiable soil site, specifically considering layers of sandy and clayey soil. It also investigates the effects of soil-structure interaction during earthquake shaking combined with various environmental loading scenarios.
This study employs OpenSees, a three-dimensional, fully-coupled, nonlinear finite element analysis platform, to simulate the dynamic response of a hypothetical NREL-5MW OWT with a monopile foundation installed in stratified liquefiable soil layers under the combined seismic and environmental loading. The soil profile is derived from the Cone Penetration Test (CPT) data from the offshore area near the Changhua Coastal Industrial Park, and the PDMY03 (Pressure Dependent Multi Yield surface version 03) constitutive model parameters are adopted to simulate the highly nonlinear dynamic behavior of saturated granular soil. Three loading scenarios are considered in this study: (a) seismic loading alone; (b) seismic loading coupled with extreme constant wind loading; and (c) seismic loading coupled with sinusoidal wind loading at 1 Hz and 0.1 Hz frequecies. Both static and cyclic wind loads are applied at the rotor nacelle assembly (RNA). Both non-pulse-like (NP) and pulse-like (P) ground motions are used to assess the near-fault effects on the OWT system. The simulation results indicate that the pulse-like ground motion is the primary cause of liquefaction in loose sand layers, leading to reduced effective stress and soil stiffness degradation, and consequently decreasing the lateral capacity of the foundation. In addition, constant wind loading can cause significant tilting of the monopile, exceeding the serviceability limit state, indicating that wind effects should be considered in OWT design. Under the site-specific condition, the total foundation settlement was minor, likely due to the presence of soil layers that still retained strength during seismic loading. To enhance foundation stability, increasing the monopile diameter proves to be an effective mitigation strategy to reduce the foundation deflection. Based on these observations, this study identifies key considerations for OWT foundation design on stratified liquefiable soil layers and highlights the critical influence of soil-structure interaction on system performance under post-liquefaction conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:17:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:17:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iv ABSTRACT v 目次 vii 圖次 xii 表次 xviii Chapter 1 緒論 1 1.1 研究背景與目的 1 1.2 研究方法與流程 2 1.3 論文架構與主要內容 2 Chapter 2 文獻回顧 4 2.1 離岸風機介紹 4 2.1.1 風機性能要求 5 2.1.2 影響因素 6 2.1.3 離岸風機之自然頻率 7 2.1.4 5 MW 風機模型設計 8 2.1.5 地盤與基礎模型 9 2.2 外部載重條件對離岸風機性能影響之探討 11 2.2.1 風力載重 11 2.2.2 近場地面運動與其造成之影響 12 2.3 可模擬土壤液化行為之組成律模式 16 Chapter 3 離岸風機系統之三維數值模型 20 3.1 OpenSees 概述 22 3.2 場址案例 — 彰化濱海產業園區外海 22 3.3 模型材料性質 (Material properties) 與元素 (Element properties) 設定 24 3.3.1 PDMY03組成律參數設定 24 3.3.2 PIMY組成律參數設定 25 3.3.3 單樁基礎及風機上部結構之材料參數設定 26 3.3.4 選定模型元素 (Element) 及網格 (Mesh) 28 3.4 輸入運動 29 3.4.1 離岸風機自重 30 3.4.2 風載重及其形式 30 3.4.3 地震訊號 31 3.5 模型分析流程 32 3.6 模型設定驗證 35 3.6.1 PDMY03組成律參數設定驗證 35 3.6.2 模型分析流程設定驗證 38 3.7 小結 41 Chapter 4 近場地震效應對OWT系統之影響 42 4.1 地盤受震行為 44 4.1.1 地盤變形 44 4.1.2 應力路徑 47 4.1.3 超額孔隙水壓與土壤液化 49 4.2 基礎運動與上部結構相對位移反應 54 4.2.1 RNA與基礎的相對位移比 54 4.2.2 基礎沉陷與傾斜 55 4.3 OWT系統之反應譜與時頻分析 59 4.4 小結 64 Chapter 5 極端氣候載重對OWT系統之影響 66 5.1 地盤受震行為 67 5.1.1 地盤變形 67 5.1.2 應力路徑 69 5.1.3 超額孔隙水壓與土壤液化 73 5.2 基礎運動與上部結構相對位移反應 80 5.2.1 RNA與基礎的相對位移比 80 5.2.2 基礎沉陷與傾斜 81 5.3 OWT系統之反應譜與時頻分析 85 5.4 小結 89 Chapter 6 諧和波風載對OWT系統之影響 91 6.1 地盤受震行為 92 6.1.1 地盤變形 92 6.1.2 應力路徑 99 6.1.3 超額孔隙水壓與土壤液化 102 6.2 基礎運動與上部結構相對位移反應 111 6.2.1 RNA與基礎的相對位移比 111 6.2.2 基礎沉陷與傾斜 114 6.3 OWT系統之反應譜與時頻分析 119 6.4 小結 127 Chapter 7 單樁擴柱對OWT系統之影響 130 7.1 地盤受震行為 131 7.1.1 地盤變形 131 7.1.2 應力路徑 134 7.1.3 超額孔隙水壓與土壤液化 135 7.2 基礎運動與上部結構相對位移反應 139 7.2.1 RNA與基礎的相對位移比 139 7.2.2 基礎沉陷與傾斜 140 7.3 OWT系統之反應譜與時頻分析 143 7.4 小結 147 Chapter 8 結論與建議 149 8.1 結論 149 8.1.1 地盤變形行為 149 8.1.2 基礎沉陷與傾斜行為 150 8.1.3 土壤液化行為 151 8.1.4 土壤加速度行為 152 8.1.5 單樁擴柱之影響 152 8.2 建議 153 參考文獻 154 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 離岸風機 | zh_TW |
| dc.subject | 單樁基礎 | zh_TW |
| dc.subject | 土壤結構互制 | zh_TW |
| dc.subject | 土壤液化 | zh_TW |
| dc.subject | OpenSees | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | PDMY03模型 | zh_TW |
| dc.subject | soil liquefaction | en |
| dc.subject | monopiles | en |
| dc.subject | soil-structure interaction | en |
| dc.subject | PDMY03 model | en |
| dc.subject | finite element analysis | en |
| dc.subject | OpenSees | en |
| dc.subject | Offshore wind turbines | en |
| dc.title | 單樁基礎之離岸風機系統於層狀土壤中的動態反應分析 | zh_TW |
| dc.title | Seismic Response of Offshore Wind Turbine System with Monopile Foundation in Stratified Soil | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 黃郁惟 | zh_TW |
| dc.contributor.coadvisor | Yu-Wei Hwang | en |
| dc.contributor.oralexamcommittee | 譚志豪 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Hao Tan | en |
| dc.subject.keyword | 離岸風機,單樁基礎,土壤結構互制,土壤液化,OpenSees,有限元素分析,PDMY03模型, | zh_TW |
| dc.subject.keyword | Offshore wind turbines,monopiles,soil-structure interaction,soil liquefaction,OpenSees,finite element analysis,PDMY03 model, | en |
| dc.relation.page | 157 | - |
| dc.identifier.doi | 10.6342/NTU202502979 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-30 | 16.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
