請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99437完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯嘉洪 | zh_TW |
| dc.contributor.advisor | Chia-Hung Hou | en |
| dc.contributor.author | 李飛龍 | zh_TW |
| dc.contributor.author | Joshua Nathan | en |
| dc.date.accessioned | 2025-09-10T16:17:09Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | Ahdab, Y. D., Schücking, G., Rehman, D., & Lienhard, J. H. (2021). Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses. Applied Energy, 301. https://doi.org/10.1016/j.apenergy.2021.117425
Al-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., & Hasan, H. A. (2020). Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380. https://doi.org/10.1016/j.cej.2019.122231 Bayeh, A. W., Kabtamu, D. M., Chang, Y.-C., Wondimu, T. H., Huang, H.-C., & Wang, C.-H. (2021). Carbon and metal-based catalysts for vanadium redox flow batteries: a perspective and review of recent progress. Sustainable Energy and Fuels, 5(6), 1668-1707. https://doi.org/10.1039/d0se01723j Bredar, A. R. C., Chown, A. L., Burton, A. R., & Farnum, B. H. (2020). Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials, 3(1), 66-98. https://doi.org/10.1021/acsaem.9b01965 Cai, Y., Zhao, X., Wang, Y., Ma, D., & Xu, S. (2020). Enhanced desalination performance utilizing sulfonated carbon nanotube in the flow-electrode capacitive deionization process. Separation and Purification Technology, 237. https://doi.org/10.1016/j.seppur.2019.116381 Chen, F., Huang, Y., Guo, L., Sun, L., Wang, Y., & Yang, H. Y. (2017). Dual-ions electrochemical deionization: a desalination generator. Energy and Environmental Science, 10(10), 2081-2089. https://doi.org/10.1039/c7ee00855d Chen, F., Wang, J., Feng, C., Ma, J., & David Waite, T. (2020). Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal, 401. https://doi.org/10.1016/j.cej.2020.126111 Chen, K.-Y., Shen, Y.-Y., Wang, D.-M., & Hou, C.-H. (2022). Carbon nanotubes/activated carbon hybrid as a high-performance suspension electrode for the electrochemical desalination of wastewater. Desalination, 522. https://doi.org/10.1016/j.desal.2021.115440 Chen, T.-H., Tsai, S.-K., Chang, J.-Y., Chung, E., & Hou, C.-H. (2023). Achieving an efficient redox-flow battery with high-conductivity electrospun carbon fiber for wastewater reclamation and seawater desalination. Desalination, 558. https://doi.org/10.1016/j.desal.2023.116616 Chen, T.-H., Yeh, K.-H., Lin, C.-F., Lee, M., & Hou, C.-H. (2022). Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: From tap water purification to wastewater reclamation for water sustainability. Resources, Conservation and Recycling, 177, 106012. Chen, W., Grimberg, S., Rogers, S., & Kim, T. (2021). Ammonia Recovery from Domestic Wastewater Using a Proton-Mediated Redox Couple. ACS Sustainable Chemistry and Engineering, 9(37), 12699-12707. https://doi.org/10.1021/acssuschemeng.1c05144 Cheng, C.-Y., Chen, T.-H., Chen, K.-Y., Ma, J., & Hou, C.-H. (2022). Redox-flow battery with four-channel architecture for continuous and efficient desalination over a wide salinity working range. Desalination, 534. https://doi.org/10.1016/j.desal.2022.115783 Cheng, H., Li, M. L., Su, C. Y., Li, N., & Liu, Z. Q. (2017). Cu Co Bimetallic Oxide Quantum Dot Decorated Nitrogen‐Doped Carbon Nanotubes: A High‐Efficiency Bifunctional Oxygen Electrode for Zn–Air Batteries. Advanced Functional Materials, 27(30). https://doi.org/10.1002/adfm.201701833 Chou, Y. S., Devi, N., Lin, Y. T., Arpornwichanop, A., & Chen, Y. S. (2024). CVD Grown CNTs-Modified Electrodes for Vanadium Redox Flow Batteries. Materials (Basel), 17(13). https://doi.org/10.3390/ma17133232 Desai, D., Beh, E. S., Sahu, S., Vedharathinam, V., van Overmeere, Q., de Lannoy, C. F., Jose, A. P., Völkel, A. R., & Rivest, J. B. (2018). Electrochemical Desalination of Seawater and Hypersaline Brines with Coupled Electricity Storage. ACS Energy Letters, 3(2), 375-379. https://doi.org/10.1021/acsenergylett.7b01220 Doornbusch, G., van der Wal, M., Tedesco, M., Post, J., Nijmeijer, K., & Borneman, Z. (2021). Multistage electrodialysis for desalination of natural seawater. Desalination, 505. https://doi.org/10.1016/j.desal.2021.114973 Dorji, P., Kim, D. I., Hong, S., Phuntsho, S., & Shon, H. K. (2020). Pilot-scale membrane capacitive deionisation for effective bromide removal and high water recovery in seawater desalination. Desalination, 479. https://doi.org/10.1016/j.desal.2020.114309 Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2017). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361 Ersozoglu, M. G., Gursu, H., Gencten, M., Sarac, A. S., & Sahin, Y. (2022). A new approach to prepare N‐/S‐doped free‐standing graphene oxides for vanadium redox flow battery. International Journal of Energy Research, 46(14), 19992-20003. https://doi.org/10.1002/er.8091 Esser, M., Rohde, G., & Rehtanz, C. (2022). Electrochemical Impedance Spectroscopy Setup based on Standard Measurement Equipment. Journal of Power Sources, 544. https://doi.org/10.1016/j.jpowsour.2022.231869 Fang, Y., Li, X., Hu, Y., Li, F., Lin, X., Tian, M., An, X., Fu, Y., Jin, J., & Ma, J. (2015). Ultrasonication-assisted ultrafast preparation of multiwalled carbon nanotubes/Au/Co3O4 tubular hybrids as superior anode materials for oxygen evolution reaction. Journal of Power Sources, 300, 285-293. https://doi.org/10.1016/j.jpowsour.2015.09.049 Feria-Díaz, J., López-Méndez, M., Rodríguez-Miranda, J., Sandoval-Herazo, L., & Correa-Mahecha, F. (2021). Commercial Thermal Technologies for Desalination of Water from Renewable Energies: A State of the Art Review. Processes, 9(2). https://doi.org/10.3390/pr9020262 Gao, M., & Chen, W. (2024). Engineering strategies toward electrodes stabilization in capacitive deionization. Coordination Chemistry Reviews, 505. https://doi.org/10.1016/j.ccr.2024.215695 González, Z., Flox, C., Blanco, C., Granda, M., Morante, J. R., Menéndez, R., & Santamaría, R. (2017). Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. Journal of Power Sources, 338, 155-162. https://doi.org/10.1016/j.jpowsour.2016.10.069 Han, P., Yue, Y., Liu, Z., Xu, W., Zhang, L., Xu, H., Dong, S., & Cui, G. (2011). Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energy and Environmental Science, 4(11). https://doi.org/10.1039/c1ee01776d Han, Y., Zhou, J., Wang, L., Xing, L., Xue, Z., Jiao, Y., & Pang, Y. (2021). Redox-active nanostructure electrode of Mn/Ni bimetal organic frameworks anchoring on multi-walled carbon nanotubes for advanced supercapacitor. Journal of Electroanalytical Chemistry, 882. https://doi.org/10.1016/j.jelechem.2021.114993 Igor, S. (1993). World fresh water resources. Water in crisis: a guide to the world’s. Oxford University Press, Inc, Oxford. Jiang, Q., Ren, Y., Yang, Y., Wang, L., Dai, L., & He, Z. (2022). Recent advances in carbon-based electrocatalysts for vanadium redox flow battery: Mechanisms, properties, and perspectives. Composites Part B: Engineering, 242. https://doi.org/10.1016/j.compositesb.2022.110094 Khodadousti, S., & Kolliopoulos, G. (2024). Batteries in desalination: A review of emerging electrochemical desalination technologies. Desalination, 573. https://doi.org/10.1016/j.desal.2023.117202 Kim, N., Aguda, A., Kim, C., & Su, X. (2024). Redox-Mediated Electrodialysis for Desalination, Environmental Remediation, and Resource Recovery. ACS Energy Letters, 9(8), 3887-3912. https://doi.org/10.1021/acsenergylett.4c00913 Kim, N., Elbert, J., Kim, C., & Su, X. (2023). Redox-Copolymers for Nanofiltration-Enabled Electrodialysis. ACS Energy Letters, 8(5), 2097-2105. https://doi.org/10.1021/acsenergylett.3c00482 Kim, N., Jeon, J., Elbert, J., Kim, C., & Su, X. (2022). Redox-mediated electrochemical desalination for waste valorization in dairy production. Chemical Engineering Journal, 428. https://doi.org/10.1016/j.cej.2021.131082 Lavagna, L., Bartoli, M., Suarez-Riera, D., Cagliero, D., Musso, S., & Pavese, M. (2022). Oxidation of Carbon Nanotubes for Improving the Mechanical and Electrical Properties of Oil-Well Cement-Based Composites. ACS Applied Nano Materials, 5(5), 6671-6678. https://doi.org/10.1021/acsanm.2c00706 Lee, W., Kwon, B. W., & Kwon, Y. (2018). Effect of Carboxylic Acid-Doped Carbon Nanotube Catalyst on the Performance of Aqueous Organic Redox Flow Battery Using the Modified Alloxazine and Ferrocyanide Redox Couple. ACS Applied Material Interfaces, 10(43), 36882-36891. https://doi.org/10.1021/acsami.8b10952 Li, H., Li, Z., Wu, Z., Sun, M., Han, S., Cai, C., Shen, W., Liu, X., & Fu, Y. (2019). Enhanced electrochemical performance of CuCo(2)S(4)/carbon nanotubes composite as electrode material for supercapacitors. Journal of Colloid Interface Science, 549, 105-113. https://doi.org/10.1016/j.jcis.2019.04.056 Li, Y., Ma, J., Yu, M., Niu, J., Gu, J., Chen, M., Zhang, P., Zhang, J., & Liu, C. (2024). Carbon felt (CF) acted as an “ionic capacitor” to enhance flow electrode capacitive deionization (FCDI) desalination performance. Desalination, 575. https://doi.org/10.1016/j.desal.2024.117341 Lin, P., Yang, T., Li, Z., Xia, W., Xuan, X., Sun, X., Alshehri, S. M., Ahamad, T., Yamauchi, Y., Xu, X., & Bando, Y. (2022). Ion transport channels in redox flow deionization enable ultra-high desalination performance. Nano Energy, 102. https://doi.org/10.1016/j.nanoen.2022.107652 Lin, S., Zhao, H., Zhu, L., He, T., Chen, S., Gao, C., & Zhang, L. (2021). Seawater desalination technology and engineering in China: A review. Desalination, 498. https://doi.org/10.1016/j.desal.2020.114728 Liu, Y., Chang, X., Wang, M., Guo, H., Li, W., & Wang, Y. (2021). Hierarchical CuCo2O4/CuO nanoflowers crosslinked with carbon nanotubes as an advanced electrode for supercapacitors. Journal of Alloys and Compounds, 871. https://doi.org/10.1016/j.jallcom.2021.159555 Liu, Z., Liu, K., & Xiang, X. (2025). Fabrication of customizable specific capacitance supercapacitor electrodes via in-situ oxidation of nickel foam by cyclic voltammetry process. Journal of Power Sources, 641. https://doi.org/10.1016/j.jpowsour.2025.236833 Ma, S., Jiang, C., Bai, J., Sun, L., Tan, H., Liu, L., Zeng, X., Zhao, X., & Xiong, D. (2024). The interaction of carbon nanotubes (CNTs) with CuCoO2 nanosheets promotes structural modification and enhances their OER performance. Inorganic Chemistry Frontiers, 11(12), 3482-3493. https://doi.org/10.1039/d4qi00742e Magar, H. S., Hassan, R. Y. A., & Abbas, M. N. (2023). Non-enzymatic disposable electrochemical sensors based on CuO/Co(3)O(4)@MWCNTs nanocomposite modified screen-printed electrode for the direct determination of urea. Science Report, 13(1), 2034. https://doi.org/10.1038/s41598-023-28930-4 Mezher, T., Fath, H., Abbas, Z., & Khaled, A. (2011). Techno-economic assessment and environmental impacts of desalination technologies. Desalination, 266(1-3), 263-273. https://doi.org/10.1016/j.desal.2010.08.035 Mustafa, I., Lopez, I., Younes, H., Susantyoko, R. A., Al-Rub, R. A., & Almheiri, S. (2017). Fabrication of Freestanding Sheets of Multiwalled Carbon Nanotubes (Buckypapers) for Vanadium Redox Flow Batteries and Effects of Fabrication Variables on Electrochemical Performance. Electrochimica Acta, 230, 222-235. https://doi.org/10.1016/j.electacta.2017.01.186 Nia, P. M., Abouzari-Lotf, E., Woi, P. M., Alias, Y., Ting, T. M., Ahmad, A., & Che Jusoh, N. W. (2019). Electrodeposited reduced graphene oxide as a highly efficient and low-cost electrocatalyst for vanadium redox flow batteries. Electrochimica Acta, 297, 31-39. https://doi.org/10.1016/j.electacta.2018.11.109 Nolly, C., Ikpo, C. O., Ndipingwi, M. M., Ekwere, P., & Iwuoha, E. I. (2022). Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide. Nanomaterials (Basel), 12(19). https://doi.org/10.3390/nano12193514 Omar, A., Nashed, A., Li, Q., Leslie, G., & Taylor, R. A. (2020). Pathways for integrated concentrated solar power - Desalination: A critical review. Renewable and Sustainable Energy Reviews, 119. https://doi.org/10.1016/j.rser.2019.109609 Peters, C. D., Li, D., Mo, Z., Hankins, N. P., & She, Q. (2022). Exploring the Limitations of Osmotically Assisted Reverse Osmosis: Membrane Fouling and the Limiting Flux. Environmental Science and Technology, 56(10), 6678-6688. https://doi.org/10.1021/acs.est.2c00839 Pierożyński, B., Kuczyński, M., & Mikołajczyk, T. (2024). Simple Nickel Foam Modification Procedures for Enhanced Ni Foam Supercapacitor Applications. Crystals, 14(9). https://doi.org/10.3390/cryst14090777 Qin, M., Deshmukh, A., Epsztein, R., Patel, S. K., Owoseni, O. M., Walker, W. S., & Elimelech, M. (2019). Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 455, 100-114. https://doi.org/10.1016/j.desal.2019.01.003 Ramalingam, K., Wei, Q., Chen, F., Shen, K., Liang, M., Dai, J., Hou, X., Ru, Q., Babu, G., He, Q., & Ajayan, P. M. (2021). Achieving High-Quality Freshwater from a Self-Sustainable Integrated Solar Redox-Flow Desalination Device. Small, 17(30), e2100490. https://doi.org/10.1002/smll.202100490 Rojas, J. J. H., Bonifacio, R. F. A., Baldeon, E. U. L., & Molina, D. L. (2024). Development of a Treatment System for the Production and Distribution of Purified Water for Water-Scarce Communities in Southern Peru 2024 28th International Conference on Methods and Models in Automation and Robotics (MMAR), Seo, H., Nitzsche, M. P., & Hatton, T. A. (2023). Redox-Mediated pH Swing Systems for Electrochemical Carbon Capture. Accounts of Chemical Research, 56(22), 3153-3164. https://doi.org/10.1021/acs.accounts.3c00430 Sezer, N., & Koç, M. (2019). Oxidative acid treatment of carbon nanotubes. Surfaces and Interfaces, 14, 1-8. https://doi.org/10.1016/j.surfin.2018.11.001 Sharon, H., & Reddy, K. S. (2015). A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews, 41, 1080-1118. https://doi.org/10.1016/j.rser.2014.09.002 Shatat, M., Worall, M., & Riffat, S. (2013). Opportunities for solar water desalination worldwide: Review. Sustainable Cities and Society, 9, 67-80. https://doi.org/10.1016/j.scs.2013.03.004 Skuse, C., Gallego-Schmid, A., Azapagic, A., & Gorgojo, P. (2021). Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination, 500. https://doi.org/10.1016/j.desal.2020.114844 Snoussi, A., Chekir, N., & Ben Brahim, A. (2020). Entropy generation in multi-stage flash desalination plants. International Journal of Energy and Environmental Engineering, 11(3), 327-339. https://doi.org/10.1007/s40095-020-00337-1 Tang, K., Kim, Y.-h., Chang, J., Mayes, R. T., Gabitto, J., Yiacoumi, S., & Tsouris, C. (2019). Seawater desalination by over-potential membrane capacitive deionization: Opportunities and hurdles. Chemical Engineering Journal, 357, 103-111. https://doi.org/10.1016/j.cej.2018.09.121 Tsai, S.-K., Chen, T.-H., Ma, J., & Hou, C.-H. (2024). Achieving high water recovery in a redox-flow battery with graphite felt electrodes for brine concentration. Desalination, 574. https://doi.org/10.1016/j.desal.2023.117289 Tu, W. H., Zhao, Y., Chan, W. P., & Lisak, G. (2024). Reclaimed seawater discharge - Desalination brine treatment and resource recovery system. Water Research, 251, 121096. https://doi.org/10.1016/j.watres.2023.121096 Uddin, M. K., Shammi, M., Islam, M. S., Saadat, A. H. M., Sultana, A., & Islam, M. S. (2018). Desalination Technologies for Developing Countries: A Review. Journal of Scientific Research, 10(1), 77-97. https://doi.org/10.3329/jsr.v10i1.33179 Wang, B. Q., Gong, S. H., Sun, Q. S., Liu, F., Wang, X. C., & Cheng, J. P. (2022). Carbon nanotubes refined mesoporous NiCoO2 nanoparticles for high−performance supercapacitors. Electrochimica Acta, 402. https://doi.org/10.1016/j.electacta.2021.139575 Wang, Z., Feng, D., Chen, Y., He, D., & Elimelech, M. (2021). Comparison of Energy Consumption of Osmotically Assisted Reverse Osmosis and Low-Salt-Rejection Reverse Osmosis for Brine Management. Environmental Science and Technology, 55(15), 10714-10723. https://doi.org/10.1021/acs.est.1c01638 Wei, G., Fan, X., Liu, J., & Yan, C. (2015). Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery. Journal of Power Sources, 281, 1-6. https://doi.org/10.1016/j.jpowsour.2015.01.161 Xiao, Y., Chen, H., Li, M., He, Q., Oo, T. Z., Zaw, M., Lwin, N. W., Hui, K. N., Luo, M., Tang, D., Ying, G., & Chen, F. (2024). Ionic liquid redox flow desalination of seawater. Desalination, 574. https://doi.org/10.1016/j.desal.2023.117284 Yang, F., He, Y., Rosentsvit, L., Suss, M. E., Zhang, X., Gao, T., & Liang, P. (2021). Flow-electrode capacitive deionization: A review and new perspectives. Water Research, 200, 117222. https://doi.org/10.1016/j.watres.2021.117222 Yu, H., Fisher, A., Cheng, D., & Cao, D. (2016). Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Material Interfaces, 8(33), 21431-21439. https://doi.org/10.1021/acsami.6b04189 Zhang, J., Zi, Y., Shan, W., Songsiriritthigul, P., Luo, M., Oo, T. Z., Zaw, M., Lwin, N. W., Aung, S. H., Ying, G., & Chen, F. (2023). The solar-driven redox seawater desalination based on the stable and environmentally friendly WO3/BiVO4 photoanode. Desalination, 566. https://doi.org/10.1016/j.desal.2023.116939 Zhang, X., Jiang, J., Yuan, F., Song, W., Li, J., Xing, D., Zhao, L., Dong, W., Pan, X., & Gao, X. (2022). Estimation of water footprint in seawater desalination with reverse osmosis process. Environmental Research, 204(Pt D), 112374. https://doi.org/10.1016/j.envres.2021.112374 Zhang, X., Zhou, H., He, Z., Zhang, H., & Zhao, H. (2022). Flow-electrode capacitive deionization utilizing three-dimensional foam current collector for real seawater desalination. Water Research, 220, 118642. https://doi.org/10.1016/j.watres.2022.118642 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99437 | - |
| dc.description.abstract | 海水蘊含豐富的淡水潛力,促使各類海水淡化技術迅速發展。儘管反滲透(RO)、多級閃蒸(MSF)與電滲析(ED)等傳統技術已被廣泛應用,近年來亦興起諸如電容式去離子法(CDI)、膜電容式去離子法(MCDI)以及流動電極電容去離子法(FCDI)等創新電化學技術。融合ED與CDI原理的氧化還原中介電滲析(Redox-ED)被視為一種具高能效潛力的新興淡化技術,然而Redox-ED 在實際海水環境中的效能仍受限制。本研究旨在透過引入CuO/Co₃O₄功能化碳奈米管(CNT),以提升Redox-ED系統的整體性能,進而增強淡化效率並降低能耗。研究首先以酸氧化法對CNT進行官能化處理,隨後經由水熱法合成CuO/Co₃O₄。SEM、EDS、XRD與XPS的結果證實該複合材料成功形成,而循環伏安(CV)與電化學阻抗(EIS)測試亦顯示其具優異的電化學特性(ΔEp = 0.26 V,Rct = 2.96 Ω)。改良後的Redox-ED系統展現出優異的脫鹽性能,其平均鹽去除速率(ASRR)達404.76 μg/min·cm²,電荷效率高於99%,且能量消耗低(摩爾能耗 Em = 61.24 kJ/mol,體積能耗 Ev = 1.44 kWh/m³)。在模擬海水(導電度43.21 mS/cm)條件下測試時,系統仍可達成333.70 μg/min·cm²的ASRR、91.74%的電荷效率、穩定的五循環操作表現,同時有效去除超過99.9%的二價陽離子。研究結果證實CuO/Co₃O₄-FCNT為推動Redox-ED邁向具規模性與永續性的海水淡化應用之有效添加材料。 | zh_TW |
| dc.description.abstract | Seawater holds immense potential as a freshwater source, prompting the development of various desalination technologies. While conventional methods such as reverse osmosis (RO), multistage flash (MSF), and electrodialysis (ED) are widely used, innovative electrochemical methods like capacitive deionization (CDI), membrane CDI (MCDI), and flow-electrode CDI (FCDI) have emerged. Combining ED and CDI principles, redox-mediated electrodialysis (Redox-ED) is a promising new technology for energy-efficient desalination. However, Redox-ED performance remains limited especially for real seawater conditions. This study aims to enhance Redox-ED performance by incorporating CuO/Co₃O₄-functionalized carbon nanotubes, thereby increasing desalination efficiency and reducing energy consumption. CNT were first functionalized via acid oxidation, followed by CuO/Co₃O₄ synthesis through hydrothermal treatment. SEM, EDS, XRD, and XPS confirmed successful material formation, while CV and EIS showed improved electrochemical properties (ΔEp = 0.26 V, Rct = 2.96 Ω). The modified Redox-ED system achieved high salt removal rates with ASRR (404.76 µg/min·cm²), high charge efficiency (>99%), and low energy consumptions (Em = 61.24 kJ/mol, Ev = 1.44 kWh/m³). In practical tests using synthetic seawater (43.21 mS/cm), Redox-ED with CuO/Co₃O₄-FCNT achieved 333.70 µg/min·cm² ASRR, 91.74% charge efficiency, stable operation over five cycles, and above 99.9% removal of divalent cations. These findings confirm CuO/Co₃O₄-FCNT as an effective additive for advancing Redox-ED toward scalable and sustainable seawater desalination. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:17:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:17:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT i
摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1. Background 1 1.2. Motivation and objectives 3 Chapter 2 Literature Review 5 2.1. Desalination technologies 5 2.1.1. Conventional approaches 5 2.1.2. Electrochemical desalination technologies 9 2.2. Redox-mediated electrodialysis (Redox-ED) 14 2.2.1. Principles and advantages of Redox-ED 14 2.2.2. Application of Redox-ED in desalination 16 2.3. Advanced materials for enhancing Redox-ED performance 18 2.3.1. Carbon-based materials in Redox-ED 18 2.3.2. Advanced nanocomposites for enhanced performance 21 Chapter 3 Materials and Methods 25 3.1. Materials and instruments 25 3.2. Research design 29 3.3. Synthesis and characterization of CuO/Co3O4-FCNT 30 3.3.1. Functionalization of CNT 30 3.3.2. Synthesis of CuO/Co3O4-FCNT 31 3.3.3. Physicochemical and electrochemical characterization 32 3.4. Redox-ED experiments 34 3.4.1. Redox-ED module setup and operation 34 3.4.2. Key performance indicators 37 Chapter 4 Results and Discussions 38 4.1. Material characteristics of CuO/Co3O4-FCNT 38 4.1.1. Physicochemical characterization 38 4.1.2. Electrochemical characterization 43 4.2. Redox-ED performance with CuO/Co3O₄-FCNT 46 4.2.1. Effect of applied voltages on Redox-ED performance 46 4.2.2. Effect of feed concentrations on Redox-ED performance 53 4.3. Practical seawater desalination performance 60 Chapter 5 Conclusions and Suggestions 67 5.1. Conclusions 67 5.2. Suggestions 68 REFERENCE 69 | - |
| dc.language.iso | en | - |
| dc.subject | 氧化銅鈷 | zh_TW |
| dc.subject | 功能化碳奈米管 | zh_TW |
| dc.subject | 氧化還原中介電滲析 | zh_TW |
| dc.subject | 海水淡化 | zh_TW |
| dc.subject | functionalized carbon nanotube | en |
| dc.subject | redox-mediated electrodialysis | en |
| dc.subject | Copper cobalt oxide | en |
| dc.subject | seawater desalination | en |
| dc.title | 以銅鈷氧化物/功能化奈米碳管提升氧化還原介導電透析性能於海水淡化之應用 | zh_TW |
| dc.title | CuO/Co3O4-Functionalized Carbon Nanotubes for Enhanced Performance of Redox-Mediated Electrodialysis in Seawater Desalination | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉于榕;林伯勳 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Jung Liu;Po-Hsun Lin | en |
| dc.subject.keyword | 氧化銅鈷,功能化碳奈米管,氧化還原中介電滲析,海水淡化, | zh_TW |
| dc.subject.keyword | Copper cobalt oxide,functionalized carbon nanotube,redox-mediated electrodialysis,seawater desalination, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202502756 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
