Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99436Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 施博仁 | zh_TW |
| dc.contributor.advisor | Po-Jen Shih | en |
| dc.contributor.author | 洪御家 | zh_TW |
| dc.contributor.author | Yu-Jia Hung | en |
| dc.date.accessioned | 2025-09-10T16:16:57Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 1. FINA Swimming World Cup 2021,. 2018 - 2023 World Aquatics; Available from: https://www.worldaquatics.com/competitions/1381/fina-swimming-world-cup-2021/rankings?scoringId=3af19871-08a2-49a4-95a7-c4b161d366ed.
2. Miron, S., et al., Quaternions in Signal and Image Processing: A comprehensive and objective overview. IEEE Signal Processing Magazine, 2023. 40(6): p. 26-40. 3. Toussaint, H.M. and P.J. Beek, Biomechanics of competitive front crawl swimming. Sports Med, 1992. 13(1): p. 8-24. 4. Vilas-Boas, J.P. and R. Sanders, Swimming biomechanics: an editorial. Sports Biomech, 2023. 22(12): p. 1529-1531. 5. De Souza Castro, F., et al., Editorial: Physiological and biomechanical determinants of swimming performance-volume 2. Front Sports Act Living, 2023. 5: p. 1142336. 6. 黃谷臣, 以慣性感測器分析不同層級游泳者 動作差異之研究. 2017. 7. 胡程鈞, 蕭., 湯文慈 身體滾轉對自由式游泳運動表現之影響. 2011. 8. Link, D., et al., Can Positioning Systems Replace Timing Gates for Measuring Sprint Time in Ice Hockey? Front Physiol, 2018. 9: p. 1882. 9. Hamidi Rad, M., et al., Swimming Phase-Based Performance Evaluation Using a Single IMU in Main Swimming Techniques. Front Bioeng Biotechnol, 2021. 9: p. 793302. 10. Lopes, T.J., et al., Using Wearables to Monitor Swimmers’ Propulsive Force to Get Real-Time Feedback and Understand Its Relationship to Swimming Velocity. Applied Sciences, 2023. 13(6). 11. Kadi, T., et al., Novel Method for Estimating Propulsive Force Generated by Swimmers' Hands Using Inertial Measurement Units and Pressure Sensors. Sensors (Basel), 2022. 22(17). 12. Seifert, L., D. Chollet, and B.G. Bardy, Effect of swimming velocity on arm coordination in the front crawl: a dynamic analysis. J Sports Sci, 2004. 22(7): p. 651-60. 13. Morais, J.E., et al., Upper-limb kinematics and kinetics imbalances in the determinants of front-crawl swimming at maximal speed in young international level swimmers. Sci Rep, 2020. 10(1): p. 11683. 14. Dadashi, F., et al., Front-crawl instantaneous velocity estimation using a wearable inertial measurement unit. Sensors (Basel), 2012. 12(10): p. 12927-39. 15. Dadashi, F., et al., Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. J Sports Sci, 2013. 31(11): p. 1251-60. 16. Chollet, D., S. Chalies, and J.C. Chatard, A new index of coordination for the crawl: description and usefulness. Int J Sports Med, 2000. 21(1): p. 54-9. 17. Cortesi, M., et al., Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory. J Sports Sci Med, 2019. 18(3): p. 438-447. 18. Cortesi, M., Giovanardi, A., Gatta, G., Mangia, A. L., Bartolomei, S., & Fantozzi, S., Inertial sensors in swimming: Detection of stroke phases through 3D wrist trajectory. . Journal of Sports Science & Medicine, 2019. 18(3): p. 438. 19. Dadashi, F., et al., Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. Journal of sports sciences, 2013. 31(11): p. 1251-1260. 20. <Three-dimensional analysis of the men‘s 100-m freestyle during the 1992 Olympic Games.pdf>. 21. Seifert, L., et al., Arm coordination, power, and swim efficiency in national and regional front crawl swimmers. Hum Mov Sci, 2010. 29(3): p. 426-39. 22. Cortesi, M., et al., Arm-Stroke Descriptor Variability during 200-m Front Crawl Swimming. Sensors (Basel), 2021. 21(2). 23. admin. Swimming Technology Research Center. [cited 2025 June 23]; Available from: swimmingtechnology.com. 24. Nikodelis, T., I. Kollias, and V. Hatzitaki, Bilateral inter-arm coordination in freestyle swimming: effect of skill level and swimming speed. J Sports Sci, 2005. 23(7): p. 737-45. 25. Vennell, R., D. Pease, and B. Wilson, Wave drag on human swimmers. J Biomech, 2006. 39(4): p. 664-71. 26. Koga, D., et al., Relationship Between Hand Kinematics, Hand Hydrodynamic Pressure Distribution and Hand Propulsive Force in Sprint Front Crawl Swimming. Front Sports Act Living, 2022. 4: p. 786459. 27. Koga, D., et al., Effects of exceeding stroke frequency of maximal effort on hand kinematics and hand propulsive force in front crawl. Sports Biomech, 2024. 23(1): p. 15-27. 28. Clary, C.W., et al., The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study. J Biomech, 2013. 46(7): p. 1351-7. 29. Hyodo, H., et al., Relationship between Swimming Velocity and Trunk Twist Motion in Short-Distance Crawl Swimming. Biomechanics, 2023. 3(2): p. 193-203. 30. Nikodelis, T., et al., Front Crawl and Backstroke Sprint Swimming have Distinct Differences along with Similar Patterns Regarding Trunk Rotations. International Journal of Kinesiology and Sports Science, 2023. 11(3): p. 1-7. 31. Kudo, S., et al., Contribution of upper trunk rotation to hand forward-backward movement and propulsion in front crawl strokes. Hum Mov Sci, 2019. 66: p. 467-476. 32. Toussaint, H.M., et al., Effect of a Fast-skin 'body' suit on drag during front crawl swimming. Sports Biomech, 2002. 1(1): p. 1-10. 33. David, S., et al., Improving tumble turn performance in swimming-the impact of wall contact time and tuck index. Front Sports Act Living, 2022. 4: p. 936695. 34. Capture.U. Vicon Motion Systems; Available from: https://www.vicon.com/software/captureu/. 35. Wang, C., et al., Design of a Capacitive MEMS Accelerometer with Softened Beams. Micromachines (Basel), 2022. 13(3). 36. Kwon, H.J., S. Seok, and G. Lim, System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation. Sensors (Basel), 2017. 17(11). 37. Wu, C.H., et al., Design and Measurement of Microelectromechanical Three-Axis Magnetic Field Sensors Based on the CMOS Technique. Micromachines (Basel), 2023. 14(5). 38. Wilson, S., et al., Formulation of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation. Mechanical Systems and Signal Processing, 2019. 130: p. 183-200. 39. Madgwick, S.O., A.J. Harrison, and A. Vaidyanathan, Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot, 2011. 2011: p. 5975346. 40. Fan, B., et al., An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances. Sensors (Basel), 2017. 17(5). 41. silverwind. [MEMS] 陀螺儀的原理與分類. 2014, August 30; Available from: https://silverwind1982.pixnet.net/blog/post/258069682. 42. Hamilton, W.R., On Quaternions. Proceedings of the Royal Irish Academy, 3, 1–16. 1847. 43. Wetzstein, G. Orientation Tracking with IMUs. 44. Toussaint, H.M., Biomechanics of Competitive Front Crawl Swimming. 45. 台灣艾華電子股份有限公司. Available from: https://www.taiwanalpha.com/tw. 46. Knyszynska, A., A. Radecka, and A. Lubkowska, Thermal Imaging of Exercise-Associated Skin Temperature Changes in Swimmers Subjected to 2-min Intensive Exercise on a VASA Swim Bench Ergometer. Int J Environ Res Public Health, 2021. 18(12). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99436 | - |
| dc.description.abstract | 隨著運動科學日益數據化與科技化,頂尖運動員除長期訓練外,也依賴生物力學與高科技設備進行技術與體能分析。然而,目前游泳運動科技領域仍缺乏可於低干擾條件下,持續量測從起跳至觸牆之速度與動作的完整系統。本研究旨在建構一套高解析、易操作之量測架構,結合慣性測量單元(IMU)、高速攝影與自製水中位置偵測系統,解決游泳複雜動作之多面向分析。透過座標轉換與速度演算法處理 IMU大量數據。萃取及有效量化五大指標:(1) 游泳間段時間與瞬時速度、(2)划手協調指數(IdC)、(3) 手部推進力、(4) 軀幹旋轉與划手週期之時序關係、(5) Vasa陸上檢測系統與游泳運動的關聯。結果顯示,自製分段計時系統能準確記錄全程位移與速度變化,IMU可量化每次划手週期,並計算前進瞬時速度與游泳時脊椎三維的尤拉角變化,也可運用加速度訊號分析不同的划手階段所產生的推進效益。總結而言,本研究系統提供水中技術動作量化新途徑,未來希望應用於各層級選手的游泳表現評估,及比較選手姿勢差異、效益差異,並提升選手在競技過程自我動作要求的敏銳度。 | zh_TW |
| dc.description.abstract | As sports science becomes increasingly data-driven and technology-based, elite athletes now depend not only on intensive training but also on biomechanical tools and advanced systems for performance analysis. However, current swimming technologies still lack a minimally intrusive system capable of continuously measuring speed and movement from dive start to wall touch.This study presents a high-resolution and user-friendly measurement framework that integrates inertial measurement units (IMUs), high-speed cameras, and a custom underwater positioning system to analyze complex swimming motions. Through coordinate transformation and velocity algorithms, IMU data were processed to extract five key indicators: (1) sectional time and instantaneous velocity, (2) index of coordination (IdC), (3) hand propulsion force, (4) timing between trunk rotation and stroke cycle, and (5) the relationship between Vasa dry-land testing and swimming performance.Results show that the system accurately tracks displacement and velocity, quantifies stroke cycles, estimates instantaneous speed, and captures spinal 3D Euler angle variations. Acceleration signals were also used to assess propulsion effectiveness during different stroke phases. Overall, this system offers a new approach to quantifying underwater technique and has the potential to support performance evaluation across swimmer levels, enabling comparisons of stroke efficiency and enhancing athletes’ awareness of technical execution. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:16:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:16:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝誌 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 ix 表次 xxi 第一章 緒論 1 1.1 研究背景 1 1.1.1 運動科學實務運用 1 1.1.2 國外游泳科學研究 2 1.1.3 臺灣游泳科學研究現況 2 1.2 研究動機 3 1.3 文獻回顧 5 1.3.1 游泳運動生物力學 5 1.3.2 運動分段計時系統 6 1.3.3 划手協調指數(index of coordination) 8 1.3.4 阻力與推進力 12 1.3.5 游泳軀幹轉動 16 1.3.6 游泳表現評估系統 20 1.4 IMU組成與功能 23 1.4.1 加速度規 24 1.4.2 陀螺儀 26 1.4.3 磁場感測器 27 1.4.4 IMU特性與局限 29 1.5 空間座標轉換演算法介紹 30 1.5.1 尤拉角介紹 30 1.5.2 四元素法介紹 32 第二章 研究方法 34 2.1 空間座標定義 34 2.2 水中位置偵測系統開發 36 2.2.1 水中分段計時系統開發 36 2.2.2 瞬間速度之滑車實驗 42 2.2.3 影像處理 43 2.3 50公尺自由式速度與動作技術分析 44 2.3.1 受試者、測試地點及項目 45 2.3.2 划手週期自動化辨識 51 2.3.3 划手推進力分析方法 53 2.3.4 軀幹轉動與划手週期分析方法 54 2.4 高速攝影機應用於游泳轉身研究 55 2.4.1 受試者、測試地點及項目 55 2.4.2 實驗設備 55 2.4.3 實驗流程 56 2.4.4 圖像處理 57 2.5 Vasa陸上檢測系統實驗 57 2.5.1 受試者、測試地點及項目 57 2.5.2 實驗設備 58 2.5.3 感測系統開發與校正 58 2.5.4 實驗流程 61 第三章 結果 63 3.1 慣性測量單元應用於游泳效益分析結果 63 3.1.1 間段時間與瞬時速度評估: 63 3.1.2 划手協調指數(IdC): 68 3.1.3 慣性測量單元於划手推進力與速度效益分析: 73 3.1.4 慣性測量單元於軀幹轉動與划手週期研究: 75 3.2 高速攝影機配合程式設計於捕捉游泳轉身 86 3.2.1 實驗結果 86 3.3 Vasa陸上檢測系統 90 3.3.1 實驗結果 90 第四章 討論 95 4.1 IMU應用於游泳效益分析討論 95 4.1.1 間段時間與瞬時速度評估 95 4.1.2 划手協調指數(IdC) 96 4.1.3 划手推進力與速度效益分析 97 4.1.4 軀幹轉動與划手週期研究 97 4.2 高速攝影機應用於游泳轉身研究 99 4.3 Vasa陸上檢測系統實驗 99 4.4 選手回饋 100 4.5 本研究的限制 101 第五章 結論與未來展望 102 5.1 結論 102 5.2 未來展望 105 參考資料 110 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 慣性測量單元 | zh_TW |
| dc.subject | 自由式 | zh_TW |
| dc.subject | 划手分析 | zh_TW |
| dc.subject | 角速度感測器 | zh_TW |
| dc.subject | 游泳生物力學 | zh_TW |
| dc.subject | Freestyle | en |
| dc.subject | Swimming biomechanics | en |
| dc.subject | Inertial Measurement Unit (IMU) | en |
| dc.subject | Gyroscope | en |
| dc.subject | Stroke analysis | en |
| dc.title | 應用慣性測量單元與間段計時系統於競技游泳之效益分析 | zh_TW |
| dc.title | Evaluating the Benefits of Inertial Measurement Units and Sectional Timing Systems in Competitive Swimming | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 相子元;林謙如 | zh_TW |
| dc.contributor.oralexamcommittee | Tzyy-Yuang Shiang;Chien-Ju Lin | en |
| dc.subject.keyword | 游泳生物力學,慣性測量單元,自由式,划手分析,角速度感測器, | zh_TW |
| dc.subject.keyword | Swimming biomechanics,Inertial Measurement Unit (IMU),Freestyle,Stroke analysis,Gyroscope, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202502056 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2027-07-23 | - |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 7.15 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
