請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99434完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻 | zh_TW |
| dc.contributor.advisor | Tai-Horng Young | en |
| dc.contributor.author | 張景涵 | zh_TW |
| dc.contributor.author | Ching-Han Chang | en |
| dc.date.accessioned | 2025-09-10T16:16:36Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | Godoy, Patricio, et al. "Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME." Archives of toxicology 87 (2013): 1315-1530.
Michalopoulos, George K., and Bharat Bhushan. "Liver regeneration: biological and pathological mechanisms and implications." Nature reviews Gastroenterology & hepatology 18.1 (2021): 40-55. Michalopoulos, George K. "Liver regeneration." Journal of cellular physiology 213.2 (2007): 286-300. Bangru, Sushant, and Auinash Kalsotra. "Cellular and molecular basis of liver regeneration." Seminars in Cell & Developmental Biology. Vol. 100. Academic Press, 2020. Bhushan, Bharat, et al. "Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model." The American journal of pathology 184.11 (2014): 3013-3025. Cordero-Espinoza, Lucía, and Meritxell Huch. "The balancing act of the liver: tissue regeneration versus fibrosis." The Journal of clinical investigation 128.1 (2018): 85-96. Veteläinen, Reeta, et al. "Steatosis as a risk factor in liver surgery." Annals of surgery 245.1 (2007): 20-30. Chu, Michael JJ, et al. "Donor hepatic steatosis and outcome after liver transplantation: a systematic review." Journal of Gastrointestinal Surgery 19.9 (2015): 1713-1724. Veteläinen, Reeta, Arlène K. van Vliet, and Thomas M. van Gulik. "Severe steatosis increases hepatocellular injury and impairs liver regeneration in a rat model of partial hepatectomy." Annals of surgery 245.1 (2007): 44-50. Gao, Bin, et al. "Inflammatory pathways in alcoholic steatohepatitis." Journal of hepatology 70.2 (2019): 249-259. Lackner, Carolin, and Dina Tiniakos. "Fibrosis and alcohol-related liver disease." Journal of hepatology 70.2 (2019): 294-304. Yagi, Shintaro, et al. "Liver regeneration after hepatectomy and partial liver transplantation." International journal of molecular sciences 21.21 (2020): 8414. Yagi, Shintaro, et al. "Impact of portal venous pressure on regeneration and graft damage after living‐donor liver transplantation." Liver transplantation 11.1 (2005): 68-75. Dar, Wasim A., et al. "Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms." Liver International 39.5 (2019): 788-801. Gilgenkrantz, Hélène, and Alexandra Collin de l'Hortet. "Understanding liver regeneration: from mechanisms to regenerative medicine." The American journal of pathology 188.6 (2018): 1316-1327. Fouraschen, Suomi MG, et al. "mTOR signaling in liver regeneration: Rapamycin combined with growth factor treatment." World journal of transplantation 3.3 (2013): 36. Shi, Ji‐Hua, and Pål‐Dag Line. "Hallmarks of postoperative liver regeneration: An updated insight on the regulatory mechanisms." Journal of gastroenterology and hepatology 35.6 (2020): 960-966. Cressman, Drew E., et al. "Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice." Science 274.5291 (1996): 1379-1383. Liu, Qi, et al. "Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations." Clinical and Translational Medicine 14.8 (2024): e1812. Gaudio, Eugenio, et al. "New insights into liver stem cells." Digestive and Liver Disease 41.7 (2009): 455-462. Fabregat, Isabel, et al. "TGF‐β signalling and liver disease." The FEBS journal 283.12 (2016): 2219-2232. Pellicoro, Antonella, et al. "Liver fibrosis and repair: immune regulation of wound healing in a solid organ." Nature Reviews Immunology 14.3 (2014): 181-194. Caldez, Matias J., et al. "Metabolic remodeling during liver regeneration." Developmental cell 47.4 (2018): 425-438. Chen, Ji-An, et al. "Angiogenesis: multiple masks in hepatocellular carcinoma and liver regeneration." Hepatology international 4 (2010): 537-547. Jin, Yun, et al. "Vascular endothelial growth factor protein and gene delivery by novel nanomaterials for promoting liver regeneration after partial hepatectomy." World Journal of Gastroenterology 29.24 (2023): 3748. Lu, Juan, et al. "The vascular endothelial growth factor signaling pathway regulates liver sinusoidal endothelial cells during liver regeneration after partial hepatectomy." Expert Review of Gastroenterology & Hepatology 15.2 (2021): 139-147. DeLeve, Laurie D. "Liver sinusoidal endothelial cells and liver regeneration." The Journal of clinical investigation 123.5 (2013): 1861-1866. Li, Zuhong, et al. "Biomimetic hybrid hydrogel for hemostasis, adhesion prevention and promoting regeneration after partial liver resection." Bioactive Materials 11 (2022): 41-51. Chen, Lu, et al. "Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure." Stem Cell Research & Therapy 8 (2017): 1-15. Zheng, Qiuxia, et al. "Carboxymethyl chitosan/oxidized hyaluronic acid hydrogel-encapsulated hucMSC-derived exosomes for enhanced hepatic regeneration and post-hepatectomy applications." Carbohydrate Polymers 353 (2025): 123248. Fercana, George R., et al. "Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor." Biomaterials 123 (2017): 142-154. Seif-Naraghi, Sonya B., et al. "Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor." Acta biomaterialia 8.10 (2012): 3695-3703. Conconi, Maria Teresa, et al. "Angiogenic response induced by acellular aortic matrix in vivo." The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists 281.2 (2004): 1303-1307. Hosseinabadi, Mahara, Zohreh Abdolmaleki, and Seyed Hamed Shirazi Beheshtiha. "Cardiac aorta-derived extracellular matrix scaffold enhances critical mediators of angiogenesis in isoproterenol-induced myocardial infarction mice." Journal of Materials Science: Materials in Medicine 32 (2021): 1-10. Rafii, Shahin, Jason M. Butler, and Bi-Sen Ding. "Angiocrine functions of organ-specific endothelial cells." Nature 529.7586 (2016): 316-325. Martinod, Emmanuel, et al. "Feasibility of bioengineered tracheal and bronchial reconstruction using stented aortic matrices." Jama 319.21 (2018): 2212-2222. Martinod, Emmanuel, et al. "Airway transplantation: a challenge for regenerative medicine." European Journal of Medical Research 18 (2013): 1-5. Martinod, Emmanuel, et al. "In vivo tissue engineering of human airways." The Annals of Thoracic Surgery 103.5 (2017): 1631-1640. Giovanniello, Francesco, et al. "Development and mechanical characterization of decellularized scaffolds for an active aortic graft." Acta Biomaterialia 160 (2023): 59-72. Tsou, Kuan-Chuan, et al. "Application of aortic allograft in trachea transplantation." Journal of the Formosan Medical Association 122.9 (2023): 940-946. Heidari, Neda, et al. "Resveralogues protect HepG2 cells against cellular senescence induced by hepatotoxic metabolites." Mechanisms of Ageing and Development 219 (2024): 111938. Jian, Honglei, et al. "In vitro construction of liver organoids with biomimetic lobule structure by a multicellular 3D bioprinting strategy." Cell Proliferation 56.5 (2023): e13465. Wenger, Roland H., et al. "Hypoxia, a novel inducer of acute phase gene expression in a human hepatoma cell line." Journal of Biological Chemistry 270.46 (1995): 27865-27870. Du, Wenjing, et al. "The adverse effects of hypoxia on hiHep functions via HIF-1α/PGC-1α axis are alleviated by PFDC emulsion." Biochemical Engineering Journal 176 (2021): 108152. Nadi, Akram, et al. "Stem cells and hydrogels for liver tissue engineering: synergistic cure for liver regeneration." Stem cell reviews and reports 16 (2020): 1092-1104. Zheng, Qiuxia, et al. "Hydrogels as carriers deliver stem cells/exosomes for liver injury." Materials Advances 5.9 (2024): 3587-3601. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99434 | - |
| dc.description.abstract | 肝臟具有強大的再生能力,但受到外科手術副作用或慢性疾病等因素影響時,其再生功能可能受到抑制。為了在肝臟受損後迅速恢復人體代謝功能,促進肝臟再生具有重要臨床意義。在此過程中,微環境調控與血管新生扮演關鍵角色。主動脈作為富含血管相關細胞與胞外基質(extracellular matrix, ECM)之組織,其衍生之條件培養基(conditioned medium, CM)可能含有多種促進再生潛力的生物活性因子,具有應用於肝臟再生相關研究之潛力。本研究利用人類與豬主動脈製備CM,並以HepG2肝癌細胞作為體外模型,評估CM對細胞存活力、尿素合成與白蛋白分泌等肝功能指標之影響。實驗結果顯示,豬主動脈CM在低血清環境下可有效增進細胞活性與尿素生成,而白蛋白分泌則無顯著影響。人類主動脈CM則在低濃度時可支持細胞功能,但高濃度條件下可能產生細胞毒性。另將HepG2細胞直接接種於冷凍保存之人類與豬主動脈組織上,結果證實兩者皆能支持細胞附著與基本功能。這項研究顯示豬主動脈CM在提升細胞活性與代謝功能方面具有潛力,並且取得容易,為未來開發肝臟再生相關生醫材料提供一項具應用前景的替代選擇。 | zh_TW |
| dc.description.abstract | The liver possesses a remarkable regenerative capacity; however, this function may be impaired by factors such as surgical trauma or chronic liver disease. Promoting liver regeneration is therefore of great clinical importance to rapidly restore metabolic function following hepatic injury. During the regenerative process, microenvironmental modulation and angiogenesis play pivotal roles. The aorta, a tissue rich in vascular-related cells and extracellular matrix (ECM) components, may serve as a source of regenerative cues through its conditioned medium (CM), which contains various bioactive molecules with pro-regenerative potential. In this study, CM was prepared from human and porcine aortic tissues, and its effects on cell viability, urea synthesis, and albumin secretion were evaluated using the HepG2 hepatocellular carcinoma cell line as an in vitro model. The results demonstrated that porcine aorta-CM significantly enhanced cell viability and urea production under low-serum conditions, although no significant effect on albumin secretion was observed. Human aorta-CM supported cellular functions at low concentrations, while high concentrations induced cytotoxicity. Furthermore, HepG2 cells were directly seeded onto cryopreserved human and porcine aortic tissues, both of which were shown to support cell attachment and basic hepatic functions. Overall, this study indicates that porcine aorta-CM holds promise in enhancing cellular activity and metabolic function. Its ready accessibility and favorable bioactivity suggest porcine aorta-CM is a feasible alternative biomaterial for future liver regeneration strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:16:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:16:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii Chapter 1 Introduction 1 1.1 Liver regeneration 1 1.1.1 Limitations of liver regeneration 1 1.1.2 Therapeutic strategies for postoperative liver regeneration 2 1.2 The role of angiogenesis in liver regeneration 5 1.3 Aorta-derived conditioned medium (CM) 9 1.4 Selection and substitutability of human and porcine aortas 10 1.5 Motivation and aims 11 Chapter 2 Materials and methods 13 2.1 Chemicals and materials 13 2.2 Experimental instruments 14 2.3 Analysis software 15 2.4 Methods 15 2.4.1 Cell culture 15 2.4.2 Preparation of cryopreserved porcine aortic segments 15 2.4.3 Preparation of porcine aorta-derived conditioned medium 15 2.4.4 Preparation of cryopreserved human aortic segments 16 2.4.5 Preparation of human aorta-derived conditioned medium 17 2.4.6 Cell viability assay 17 2.4.7 Cell seeding on aortic patches 17 2.4.8 Urea synthesis assay 18 2.4.9 Albumin secretion assay 19 Chapter 3 Results 21 3.1 Effect of porcine aorta conditioned medium under low serum conditions 21 3.2 Cell viability analysis of porcine aorta conditioned medium 26 3.3 Hepatic functions analysis of porcine aorta conditioned medium 28 3.4 Cell viability analysis of human aorta conditioned medium 30 3.5 Hepatic functions analysis of human aorta conditioned medium 32 3.6 Cells cultured on human and porcine aorta patches 34 Chapter 4 Discussion 37 4.1 Aorta conditioned medium in low-serum environments 37 4.2 Porcine aorta conditioned medium 38 4.3 Human aorta conditioned medium 39 4.4 In vitro study of aortic patches as scaffolds 39 Chapter 5 Conclusion 41 REFERENCE 42 | - |
| dc.language.iso | en | - |
| dc.subject | 豬主動脈 | zh_TW |
| dc.subject | 冷凍保存 | zh_TW |
| dc.subject | 肝臟再生 | zh_TW |
| dc.subject | HepG2 細胞 | zh_TW |
| dc.subject | 條件培養基 | zh_TW |
| dc.subject | conditioned medium | en |
| dc.subject | HepG2 cells | en |
| dc.subject | liver regeneration | en |
| dc.subject | porcine aorta | en |
| dc.subject | Cryopreservation | en |
| dc.title | 人類及豬主動脈之條件培養基應用於肝臟再生的可行性評估 | zh_TW |
| dc.title | Application of Human and Porcine Aorta-Conditioned Medium in Liver Regeneration | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳晉興;徐紹勛 | zh_TW |
| dc.contributor.oralexamcommittee | Jin-Shing Chen;Hsao-Hsun Hsu | en |
| dc.subject.keyword | 冷凍保存,豬主動脈,條件培養基,HepG2 細胞,肝臟再生, | zh_TW |
| dc.subject.keyword | Cryopreservation,porcine aorta,conditioned medium,HepG2 cells,liver regeneration, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202502364 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
