Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99430
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗zh_TW
dc.contributor.advisorLi Xuen
dc.contributor.author林于傑zh_TW
dc.contributor.authorYu-Chieh Linen
dc.date.accessioned2025-09-10T16:15:53Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation[1] L. Miró, J. Gasia, and L. F. Cabeza, "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, vol. 179, pp. 284-301, 2016/10/01/ 2016, doi: https://doi.org/10.1016/j.apenergy.2016.06.147.
[2] M. Papapetrou, G. Kosmadakis, A. Cipollina, U. La Commare, and G. Micale, "Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country," Applied Thermal Engineering, vol. 138, pp. 207-216, 2018/06/25/ 2018, doi: https://doi.org/10.1016/j.applthermaleng.2018.04.043.
[3] J. Theerthagiri et al., "A review on ZnO nanostructured materials: energy, environmental and biological applications," Nanotechnology, vol. 30, no. 39, p. 392001, 2019.
[4] J. Huang, Z. Yin, and Q. Zheng, "Applications of ZnO in organic and hybrid solar cells," Energy & Environmental Science, vol. 4, no. 10, pp. 3861-3877, 2011.
[5] A. Wibowo et al., "ZnO nanostructured materials for emerging solar cell applications," RSC advances, vol. 10, no. 70, pp. 42838-42859, 2020.
[6] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, "Recent advances in ZnO nanostructures and thin films for biosensor applications: Review," Analytica Chimica Acta, vol. 737, pp. 1-21, 2012/08/06/ 2012, doi: https://doi.org/10.1016/j.aca.2012.05.048.
[7] X. Huang, X. Zheng, Z. Xu, and C. Yi, "ZnO-based nanocarriers for drug delivery application: From passive to smart strategies," International journal of pharmaceutics, vol. 534, no. 1-2, pp. 190-194, 2017.
[8] V. Kalpana and V. Devi Rajeswari, "A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs," Bioinorganic chemistry and applications, vol. 2018, no. 1, p. 3569758, 2018.
[9] P. Zhu et al., "Biomedical applications of functionalized ZnO nanomaterials: from biosensors to bioimaging," Advanced Materials Interfaces, vol. 3, no. 1, p. 1500494, 2016.
[10] S. Mustapha et al., "Application of TiO 2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review," Applied Water Science, vol. 10, pp. 1-36, 2020.
[11] M. Sheikh et al., "Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review," Chemical Engineering Journal, vol. 391, p. 123475, 2020.
[12] M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, "Direct selective laser sintering of metals," Rapid Prototyping Journal, vol. 1, no. 1, pp. 26-36, 1995.
[13] S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, "All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperaturehigh-resolution selective laser sintering of metal nanoparticles," Nanotechnology, vol. 18, no. 34, p. 345202, 2007.
[14] L. V. García, M. I. Mendivil, T. K. D. Roy, G. A. Castillo, and S. Shaji, "Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide," Applied Surface Science, vol. 336, pp. 59-66, 2015/05/01/ 2015, doi: https://doi.org/10.1016/j.apsusc.2014.09.140.
[15] J. T. Harrison, E. Pantoja, M.-H. Jang, and M. C. Gupta, "Laser sintered PbSe semiconductor thin films for Mid-IR applications using nanocrystals," Journal of Alloys and Compounds, vol. 849, p. 156537, 2020/12/30/ 2020, doi: https://doi.org/10.1016/j.jallcom.2020.156537.
[16] M. C. Gupta and D. E. Carlson, "Laser processing of materials for renewable energy applications," MRS Energy & Sustainability, vol. 2, p. E2, 2015.
[17] D. Enescu and E. O. Virjoghe, "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, vol. 38, pp. 903-916, 2014/10/01/ 2014, doi: https://doi.org/10.1016/j.rser.2014.07.045.
[18] J. Mao, G. Chen, and Z. Ren, "Thermoelectric cooling materials," Nature Materials, vol. 20, no. 4, pp. 454-461, 2021.
[19] J. Mao et al., "High thermoelectric cooling performance of n-type Mg3Bi2-based materials," Science, vol. 365, no. 6452, pp. 495-498, 2019.
[20] M. Mukherjee, A. Srivastava, and A. K. Singh, "Recent advances in designing thermoelectric materials," Journal of Materials Chemistry C, vol. 10, no. 35, pp. 12524-12555, 2022.
[21] H. Scherrer et al., "Thermoelectrics Handbook: Macro to Nano," 2018.
[22] A. Shakouri, "Recent developments in semiconductor thermoelectric physics and materials," Annual review of materials research, vol. 41, no. 1, pp. 399-431, 2011.
[23] J. He and T. M. Tritt, "Advances in thermoelectric materials research: Looking back and moving forward," Science, vol. 357, no. 6358, p. eaak9997, 2017.
[24] L. Yang, Z. G. Chen, M. S. Dargusch, and J. Zou, "High performance thermoelectric materials: progress and their applications," Advanced Energy Materials, vol. 8, no. 6, p. 1701797, 2018.
[25] Z. Ma et al., "Review of experimental approaches for improving zT of thermoelectric materials," Materials Science in Semiconductor Processing, vol. 121, p. 105303, 2021.
[26] Y. Sun, Y. Liu, R. Li, Y. Li, and S. Bai, "Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials," Frontiers in Chemistry, vol. 10, p. 865281, 2022.
[27] M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," Journal of physics D: Applied physics, vol. 47, no. 2, p. 025501, 2013.
[28] F. Zacharatos et al., "Selective laser sintering of laser printed Ag nanoparticle micropatterns at high repetition rates," Materials, vol. 11, no. 11, p. 2142, 2018.
[29] X. Chen, J. Zhu, Z. Tao, and L. Qiu, "Effect of Laser Sintering Parameters on Semiconductor Nanoparticle Coarsening," in 2024 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 2024: IEEE, pp. 697-700.
[30] E. T. Seid and F. B. Dejene, "Controlled synthesis of In-doped ZnO: the effect of indium doping concentration," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 11833-11842, 2019.
[31] A. S. Lemine et al., "Synergistic effect of concentration and annealing on structural, mechanical, and room-temperature thermoelectric properties of n-type Ga-doped ZnO films," Ceramics International, vol. 50, no. 22, pp. 47741-47753, 2024.
[32] A. K. Ambedkar et al., "Structural, optical and thermoelectric properties of Al-doped ZnO thin films prepared by spray pyrolysis," Surfaces and Interfaces, vol. 19, p. 100504, 2020/06/01/ 2020, doi: https://doi.org/10.1016/j.surfin.2020.100504.
[33] M. Ohtaki, K. Araki, and K. Yamamoto, "High thermoelectric performance of dually doped ZnO ceramics," Journal of Electronic Materials, vol. 38, pp. 1234-1238, 2009.
[34] L. Fang et al., "Thermoelectric and Magnetothermoelectric Properties of In-doped Nano-ZnO Thin Films Prepared by RF Magnetron Sputtering," Journal of Superconductivity and Novel Magnetism, vol. 23, no. 6, pp. 889-892, 2010/08/01 2010, doi: 10.1007/s10948-010-0706-z.
[35] I. Serhiienko et al., "Microstructure and thermoelectric properties of pristine and Al-doped ZnO ceramics fabricated by cost-effective and eco-friendly wet chemistry methods," Journal of Alloys and Compounds, vol. 976, p. 173106, 2024/03/05/ 2024, doi: https://doi.org/10.1016/j.jallcom.2023.173106.
[36] P. Jood et al., "Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties," Nano Letters, vol. 11, no. 10, pp. 4337-4342, 2011/10/12 2011, doi: 10.1021/nl202439h.
[37] C. Soumya and P. P. Pradyumnan, "Enhancement of thermoelectric power factor of zinc oxide by nickel and indium dual doping," International Journal of Energy Research, vol. 46, no. 14, pp. 19574-19584, 2022.
[38] N. H. Tran Nguyen et al., "Thermoelectric properties of indium and gallium dually doped ZnO thin films," ACS applied materials & interfaces, vol. 8, no. 49, pp. 33916-33923, 2016.
[39] B. Swatowska et al., "Application properties of ZnO and AZO thin films obtained by the ALD method," Energies, vol. 14, no. 19, p. 6271, 2021.
[40] M. Isram et al., "Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios," Coatings, vol. 13, no. 4, p. 691, 2023.
[41] Q. Sun et al., "Controllable microstructure tailoring for regulating conductivity in Al-doped ZnO ceramics," Journal of the European Ceramic Society, vol. 40, no. 2, pp. 349-354, 2020/02/01/ 2020, doi: https://doi.org/10.1016/j.jeurceramsoc.2019.10.011.
[42] 廖育德, "選擇性雷射燒結鋁摻雜氧化鋅奈米顆粒及其熱電方面的應用," 國立臺灣大學機械工程學系, 2023.
[43] 黃品超, "選擇性雷射燒結摻雜鋁的氧化鋅奈米顆粒及其熱電元件應用 ", 國立臺灣大學機械工程學系, 2023.
[44] 陳于壹, "噴射式大氣電漿系統之設計架設與多次沉積氧化鋅鎵薄膜性質之量測與模擬," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/2djj7b
[45] C.-Y. Wu, L.-C. Chiu, and J.-Y. Juang, "High haze Ga and Zr co-doped zinc oxide transparent electrodes for photovoltaic applications," Journal of Alloys and Compounds, vol. 901, p. 163678, 2022.
[46] M. Ohyama, H. Kozuka, and T. Yoko, "Sol‐gel preparation of transparent and conductive aluminum‐doped zinc oxide films with highly preferential crystal orientation," Journal of the American Ceramic Society, vol. 81, no. 6, pp. 1622-1632, 1998.
[47] K. Thongsuriwong, P. Amornpitoksuk, and S. Suwanboon, "The effect of aminoalcohols (MEA, DEA and TEA) on morphological control of nanocrystalline ZnO powders and its optical properties," Journal of Physics and Chemistry of Solids, vol. 71, no. 5, pp. 730-734, 2010.
[48] Q. Chen, G. Guillemot, C.-A. Gandin, and M. Bellet, "Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material," Additive Manufacturing, vol. 21, pp. 713-723, 2018.
[49] X. Chen, J. Zhu, and L. Qiu, "Homo-Thermocouple Fabricated by Selective Laser Sintering and Melting of Semiconductor Nanoparticles," in 2024 IEEE SENSORS, 2024: IEEE, pp. 1-4.
[50] B. Zhou et al., "Significant enhancement in the thermoelectric performance of aluminum-doped ZnO tuned by pore structure," ACS Applied Materials & Interfaces, vol. 12, no. 46, pp. 51669-51678, 2020.
[51] P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, "Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films," Journal of Applied Physics, vol. 108, no. 4, 2010.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99430-
dc.description.abstract鋁摻雜氧化鋅(Aluminum-doped Zinc Oxide, AZO)奈米顆粒薄膜具備良好導電性與穩定性,為熱電元件之潛力材料。本研究利用選擇性雷射燒結(Selective Laser Sintering, SLS)技術,調控雷射能量密度與掃描速度,系統性探討不同摻雜濃度(0.5、1、2 wt%)AZO 薄膜之微觀形貌、導電性與熱電性質的關聯性。
透過微觀型態分析,提出了不同形貌影響載子濃度、遷移率之機制,並且搭配霍爾量測儀結果顯示,載子濃度為導電率的主要控制因子,遷移率則隨摻雜濃度上升而下降。隨著雷射強度上升,席貝克係數絕對值呈現先上升後下降之趨勢,反映薄膜在進入燒蝕階段後限制熱電性能表現,而最佳席貝克係數於溫差為40 K時為108.33 μV/K。
進一步計算功率因數(Power Factor)發現,其最佳表現皆對應於薄膜燒結最為緻密之條件,最佳PF於溫差為40 K時為5.79 μW/mK^2。穩定性評估方面,初步結果指出 AZO 薄膜在空氣中具備良好之熱電性穩定性,顯示其應用潛力。
總體而言,透過本研究所使用之選擇性雷射燒結,可有效調控 AZO 薄膜之微觀結構、載子濃度與熱電性質,並成功於基板上製備具差異化熱電表現的導電薄膜。此結果證明雷射燒結技術在熱電薄膜製程中具有高度潛力,未來可應用於微型熱電元件或感測材料之製備上。
zh_TW
dc.description.abstractAluminum-doped zinc oxide (AZO) nanoparticle thin films exhibit excellent electrical conductivity and stability, making them promising candidates for thermoelectric devices. In this study, selective laser sintering (SLS) was employed to regulate laser energy density and scanning speed, enabling a systematic investigation of the correlations among microstructure, electrical conductivity, and thermoelectric properties of AZO films with different doping concentrations (0.5, 1, and 2 wt%).
Through microstructural analysis, mechanisms describing how morphology influences carrier concentration and mobility were proposed. Combined with Hall measurement results, it was found that carrier concentration is the dominant factor governing electrical conductivity, while mobility decreases with increasing doping concentration due to impurity scattering. As laser intensity increases, the absolute value of the Seebeck coefficient initially rises and then declines, indicating performance degradation in the ablation stage. The highest measured Seebeck coefficient was −108.33 μV/K at a temperature difference of 40 K.
Further calculation of the power factor (PF) showed that the optimal performance was consistently associated with the most densely sintered films. The highest PF achieved was 5.79 μW/mK² at a temperature difference of 40 K. Preliminary stability evaluations showed that AZO films retained good thermoelectric performance under ambient air exposure, demonstrating their potential for practical application.
Overall, the selective laser sintering method effectively modulates the microstructure, carrier concentration, and thermoelectric properties of AZO films, enabling the fabrication of conductive films with distinct thermoelectric characteristics directly on substrates. These results confirm the high potential of laser sintering in thermoelectric thin-film fabrication, with future applicability in microscale thermoelectric devices and sensing materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:15:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:15:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目次 vi
圖次 x
表次 xv
Chapter 1 緒論 1
1.1 前言 1
1.2 熱電原理介紹 3
1.2.1 席貝克效應 ( Seebeck Effect ) 3
1.2.2 帕爾帖效應 ( Peltier Effect ) 4
1.2.3 湯姆森效應 ( Thomson Effect ) 5
1.2.4 無因次熱電參數 6
Chapter 2 文獻回顧與研究動機 11
2.1 加法雷射燒結之應用 11
2.1.1 金屬奈米材料燒結 11
2.1.2 金屬氧化物奈米材料燒結 14
2.1.3 半導體材料燒結 16
2.2 摻雜氧化鋅材料 18
2.2.1 銦摻雜氧化鋅 ( Indium-doped ZnO, IZO ) 18
2.2.2 鎵摻雜氧化鋅 ( Gallium-doped ZnO, GZO ) 21
2.2.3 鋁摻雜氧化鋅 ( Aluminum-doped ZnO, AZO ) 22
2.2.4 雙摻雜氧化鋅 23
2.2.5 不同摻雜之氧化鋅 25
2.3 鋁摻雜濃度對氧化鋅之影響 26
2.3.1 過多摻雜之增生相 26
2.3.2 缺陷累積 27
2.3.3 微觀形貌產生之差異 30
2.4 研究動機與目的 32
Chapter 3 實驗流程與方法介紹 33
3.1 鋁摻雜氧化鋅奈米顆粒之塗層製備 33
3.2 鎵摻雜氧化鋅薄膜製備 36
3.2.1 GZO溶液製備 36
3.2.2 大氣電漿系統介紹與薄膜製備 36
3.3 選擇性雷射燒結製程 41
3.3.1 雷射燒結實驗 41
3.3.2 脈衝雷射光路架構 42
Chapter 4 結果與討論 45
4.1 脈衝雷射系統參數 45
4.1.1 光斑大小 45
4.1.2 脈衝雷射功率 46
4.1.3 點重疊率與線段重疊率 46
4.2 鋁摻雜氧化鋅奈米顆粒塗層分析 48
4.2.1 塗層初始厚度 48
4.2.2 分散劑加入之影響 49
4.3 雷射燒結機制探討 51
4.4 雷射燒結AZO奈米顆粒線段 53
4.5 AZO薄膜表面分析 55
4.5.1 最佳線段重疊率區間 55
4.5.2 薄膜型態分析 56
4.5.3 薄膜SEM分析 59
4.5.4 XRD分析 63
4.6 AZO薄膜電性分析 65
4.6.1 不同掃描速度、雷射強度下薄膜電性分析 65
4.6.2 不同摻雜濃度下薄膜電性分析 68
4.7 熱電性質量測 71
4.7.1 席貝克係數 71
4.7.2 功率因數 72
4.7.3 穩定性評估 74
Chapter 5 結論與未來展望 76
5.1 結論 76
5.2 未來展望 77
參考文獻 78
附錄 84
-
dc.language.isozh_TW-
dc.subject鋁摻雜氧化鋅奈米顆粒zh_TW
dc.subject選擇性雷射燒結zh_TW
dc.subject熱電材料zh_TW
dc.subject席貝克係數zh_TW
dc.subject功率因數zh_TW
dc.subjectThermoelectric materialsen
dc.subjectAluminum-doped zinc oxide nanoparticlesen
dc.subjectPower factoren
dc.subjectSeebeck coefficienten
dc.subjectSelective laser sinteringen
dc.title選擇性雷射燒結對鋁摻雜氧化鋅奈米顆粒微結構與熱電性質之影響zh_TW
dc.titleEffects of Selective Laser Sintering on the Microstructure and Thermoelectric Properties of Aluminum-Doped Zinc Oxide Nanoparticlesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee孫珍理;黃振康zh_TW
dc.contributor.oralexamcommitteeChen-Li Sun;Chen-Kang Huangen
dc.subject.keyword鋁摻雜氧化鋅奈米顆粒,選擇性雷射燒結,熱電材料,席貝克係數,功率因數,zh_TW
dc.subject.keywordAluminum-doped zinc oxide nanoparticles,Selective laser sintering,Thermoelectric materials,Seebeck coefficient,Power factor,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202502237-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2028-07-31-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved