Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99426Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 余柏毅 | zh_TW |
| dc.contributor.advisor | Bor-Yih Yu | en |
| dc.contributor.author | 黃煒恩 | zh_TW |
| dc.contributor.author | Wei-En Huang | en |
| dc.date.accessioned | 2025-09-10T16:15:11Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | 1. IEA, World Energy Outlook 2024. 2024.
2. Arias, P., N. Bellouin, E. Coppola, R. Jones, G. Krinner, J. Marotzke, V. Naik, M. Palmer, G.-K. Plattner, and J. Rogelj, Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; technical summary. 2021. 3. IEA. Energy sector carbon emissions reached a new record in 2024. 2025; Available from: https://www.iea.org/reports/global-energy-review-2025/co2-emissions. 4. Capellán-Pérez, I., M. Mediavilla, C. de Castro, Ó. Carpintero, and L.J. Miguel, Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy, 2014. 77: p. 641-666. 5. Kemp, L., C. Xu, J. Depledge, K.L. Ebi, G. Gibbins, T.A. Kohler, J. Rockström, M. Scheffer, H.J. Schellnhuber, and W. Steffen, Climate endgame: Exploring catastrophic climate change scenarios. Proceedings of the National Academy of Sciences, 2022. 119(34): p. e2108146119. 6. Mignogna, D., M. Szabó, P. Ceci, and P. Avino, Biomass energy and biofuels: Perspective, potentials, and challenges in the energy transition. Sustainability, 2024. 16(16): p. 7036. 7. Aniza, R., W.-H. Chen, E.E. Kwon, Q.-V. Bach, and A.T. Hoang, Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review. Energy Conversion and Management: X, 2024. 22: p. 100538. 8. Segers, B., P. Nimmegeers, M. Spiller, G. Tofani, E.J. Grojzdek, E. Dace, T. Kikas, J.M. Marchetti, M. Rajić, and G. Yildiz, Lignocellulosic biomass valorisation: A review of feedstocks, processes and potential value chains, and their implications for the decision-making process. RSC sustainability, 2024. 9. Liu, Q., L. Luo, and L. Zheng, Lignins: biosynthesis and biological functions in plants. International journal of molecular sciences, 2018. 19(2): p. 335. 10. Li, P., J. Ren, Z. Jiang, L. Huang, C. Wu, and W. Wu, Review on the preparation of fuels and chemicals based on lignin. RSC advances, 2022. 12(17): p. 10289-10305. 11. Mandlekar, N., A. Cayla, F. Rault, S. Giraud, F. Salaün, G. Malucelli, and J.-P. Guan, An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin-trends and applications, 2018. 9: p. 207-231. 12. Aditiya, H., T. Mahlia, W. Chong, H. Nur, and A. Sebayang, Second generation bioethanol production: A critical review. Renewable and sustainable energy reviews, 2016. 66: p. 631-653. 13. Bajwa, D.S., G. Pourhashem, A.H. Ullah, and S.G. Bajwa, A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products, 2019. 139: p. 111526. 14. Kang, X., A. Kirui, M.C. Dickwella Widanage, F. Mentink-Vigier, D.J. Cosgrove, and T. Wang, Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature communications, 2019. 10(1): p. 347. 15. Pino, M.S., R.M. Rodríguez-Jasso, M. Michelin, A.C. Flores-Gallegos, R. Morales-Rodriguez, J.A. Teixeira, and H.A. Ruiz, Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 2018. 347: p. 119-136. 16. Castro Garcia, A., S. Cheng, and J.S. Cross, Lignin gasification: current and future viability. Energies, 2022. 15(23): p. 9062. 17. Jerzak, W., E. Acha, and B. Li, Comprehensive review of biomass pyrolysis: conventional and advanced technologies, reactor designs, product compositions and yields, and techno-economic analysis. Energies, 2024. 17(20): p. 5082. 18. Ocampo, E., V.V. Beltrán, E.A. Gómez, L.A. Ríos, and D. Ocampo, Hydrothermal liquefaction process: Review and trends. Current Research in Green and Sustainable Chemistry, 2023. 7: p. 100382. 19. Haarlemmer, G., L. Matricon, and A. Roubaud, Comprehensive review of hydrothermal liquefaction data for use in machine‐learning models. Biofuels, Bioproducts and Biorefining, 2024. 18(5): p. 1782-1798. 20. Yiin, C.L., E. bin Odita, S.S.M. Lock, K.W. Cheah, Y.H. Chan, M.K. Wong, B.L.F. Chin, A.T. Quitain, S.K. Loh, and S. Yusup, A review on potential of green solvents in hydrothermal liquefaction (HTL) of lignin. Bioresource Technology, 2022. 364: p. 128075. 21. Kang, S., X. Li, J. Fan, and J. Chang, Hydrothermal conversion of lignin: A review. Renewable and Sustainable Energy Reviews, 2013. 27: p. 546-558. 22. Syed, M.W., W.W. Kazmi, A. Hussain, S.F.A. Shah, I. Kariim, A.M. Mehdi, A. Omer, A.H. Bhatti, F. Eze, and U.H. Bhatti, Lignin Liquefaction: Unraveling the effect of process conditions and sustainable pathways for biofuel production–A comprehensive review. Energy Conversion and Management, 2024. 313: p. 118615. 23. Hashmi, S.F., H. Meriö-Talvio, K.J. Hakonen, K. Ruuttunen, and H. Sixta, Hydrothermolysis of organosolv lignin for the production of bio-oil rich in monoaromatic phenolic compounds. Fuel Processing Technology, 2017. 168: p. 74-83. 24. Tai, L., R. Hamidi, L. Paglia, P. De Filippis, M. Scarsella, and B. de Caprariis, Lignin-enriched waste hydrothermal liquefaction with ZVMs and metal-supported Al2O3 catalyst. Biomass and Bioenergy, 2022. 165: p. 106594. 25. Obeid, R., N. Smith, D.M. Lewis, T. Hall, and P. van Eyk, A kinetic model for the hydrothermal liquefaction of microalgae, sewage sludge and pine wood with product characterisation of renewable crude. Chemical Engineering Journal, 2022. 428: p. 131228. 26. Wang, H., X. Han, Y. Zeng, and C.C. Xu, Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction. Renewable Energy, 2023. 215: p. 118956. 27. Shah, S.W.A., Q. Xu, M.W. Ullah, S. Sethupathy, G.M. Morales, J. Sun, and D. Zhu, Lignin-based additive materials: A review of current status, challenges, and future perspectives. Additive Manufacturing, 2023. 74: p. 103711. 28. Xu, Y.-H. and M.-F. Li, Hydrothermal liquefaction of lignocellulose for value-added products: Mechanism, parameter and production application. Bioresource Technology, 2021. 342: p. 126035. 29. Hossain, M.T. and S. Reza, Lignin Stability and Properties, in Handbook of Lignin. 2025, Springer. p. 1-26. 30. Beaucamp, A., M. Muddasar, I.S. Amiinu, M.M. Leite, M. Culebras, K. Latha, M.C. Gutiérrez, D. Rodriguez-Padron, F. del Monte, and T. Kennedy, Lignin for energy applications–state of the art, life cycle, technoeconomic analysis and future trends. Green Chemistry, 2022. 24(21): p. 8193-8226. 31. Katahira, R., T.J. Elder, and G.T. Beckham, A brief introduction to lignin structure. 2018. 32. Azadi, P., O.R. Inderwildi, R. Farnood, and D.A. King, Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 2013. 21: p. 506-523. 33. Bianchini, L., A. Colantoni, R. Venanzi, L. Cozzolino, and R. Picchio, Physicochemical Properties of Forest Wood Biomass for Bioenergy Application: A Review. Forests, 2025. 16(4): p. 702. 34. Scordia, D. and S.L. Cosentino, Perennial energy grasses: Resilient crops in a changing European agriculture. Agriculture, 2019. 9(8): p. 169. 35. Maaoui, A., A.B.H. Trabelsi, A.B. Abdallah, R. Chagtmi, G. Lopez, M. Cortazar, and M. Olazar, Assessment of pine wood biomass wastes valorization by pyrolysis with focus on fast pyrolysis biochar production. Journal of the Energy Institute, 2023. 108: p. 101242. 36. Tian, X., Z. Fang, R.L. Smith, Z. Wu, and M. Liu, Properties, chemical characteristics and application of lignin and its derivatives. Production of biofuels and chemicals from lignin, 2016: p. 3-33. 37. Vásquez-Garay, F., I. Carrillo-Varela, C. Vidal, P. Reyes-Contreras, M. Faccini, and R. Teixeira Mendonça, A review on the lignin biopolymer and its integration in the elaboration of sustainable materials. Sustainability, 2021. 13(5): p. 2697. 38. Karlsson, M., J. Romson, T. Elder, Å. Emmer, and M. Lawoko, Lignin structure and reactivity in the organosolv process studied by NMR spectroscopy, mass spectrometry, and density functional theory. Biomacromolecules, 2023. 24(5): p. 2314-2326. 39. Imamura, S., M. Hosokawa, Y. Matsushita, D. Aoki, K. Fukushima, and M. Katahira, Quantitative analysis of the β-1 structure in lignin by administration of [ring-1-13C] coniferin. Holzforschung, 2024. 78(2): p. 87-97. 40. Li, J., Y.-N. Zha, H.-M. Wang, J.-N. Tian, and Q.-X. Hou, Advances in lignin chemistry during pulping and bleaching. Industrial Crops and Products, 2025. 229: p. 121004. 41. Kenny, J.K., J.W. Medlin, and G.T. Beckham, Quantification of phenolic hydroxyl groups in lignin via 19F NMR spectroscopy. ACS Sustainable Chemistry & Engineering, 2023. 11(14): p. 5644-5655. 42. Mateo, S., G. Fabbrizi, and A.J. Moya, Lignin from Plant-Based Agro-Industrial Biowastes: From Extraction to Sustainable Applications. Polymers, 2025. 17(7): p. 952. 43. Šuchová, K., C. Fehér, J.L. Ravn, S. Bedő, P. Biely, and C. Geijer, Cellulose-and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnology Advances, 2022. 59: p. 107981. 44. Sun, Y. and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 2002. 83(1): p. 1-11. 45. Ceaser, R., D. Montané, M. Constantí, and F. Medina, Current progress on lignocellulosic bioethanol including a technological and economical perspective. Environment, Development and Sustainability, 2024: p. 1-46. 46. Lopez, P.C., H. Feldman, M. Mauricio-Iglesias, H. Junicke, J.K. Huusom, and K.V. Gernaey, Benchmarking real-time monitoring strategies for ethanol production from lignocellulosic biomass. Biomass and Bioenergy, 2019. 127: p. 105296. 47. Mori, T., T. Terashima, M. Matsumura, K. Tsuruta, H. Dohra, H. Kawagishi, and H. Hirai, Construction of white-rot fungal-bacterial consortia with improved ligninolytic properties and stable bacterial community structure. ISME communications, 2023. 3(1): p. 61. 48. Tezer, Ö., N. Karabağ, A. Öngen, C.Ö. Çolpan, and A. Ayol, Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy, 2022. 47(34): p. 15419-15433. 49. Caballero, J.J.B., I.N. Zaini, and W. Yang, Reforming processes for syngas production: A mini-review on the current status, challenges, and prospects for biomass conversion to fuels. Applications in Energy and Combustion Science, 2022. 10: p. 100064. 50. Gao, Y., M. Wang, A. Raheem, F. Wang, J. Wei, D. Xu, X. Song, W. Bao, A. Huang, and S. Zhang, Syngas production from biomass gasification: influences of feedstock properties, reactor type, and reaction parameters. ACS omega, 2023. 8(35): p. 31620-31631. 51. Lourinho, G., O. Alves, B. Garcia, B. Rijo, P. Brito, and C. Nobre, Costs of gasification technologies for energy and fuel production: overview, analysis, and numerical estimation. Recycling, 2023. 8(3): p. 49. 52. Vuppaladadiyam, A.K., S.S.V. Vuppaladadiyam, A. Awasthi, A. Sahoo, S. Rehman, K.K. Pant, S. Murugavelh, Q. Huang, E. Anthony, and P. Fennel, Biomass pyrolysis: A review on recent advancements and green hydrogen production. Bioresource Technology, 2022. 364: p. 128087. 53. Chen, W.-H., K.-Y. Ho, R. Aniza, A.K. Sharma, A. Saravanakumar, and A.T. Hoang, A review of noncatalytic and catalytic pyrolysis and co-pyrolysis products from lignocellulosic and algal biomass using Py-GC/MS. Journal of Industrial and Engineering Chemistry, 2024. 134: p. 51-64. 54. Hou, R., Y. Quan, and D. Pan, Dielectric constant of supercritical water in a large pressure–temperature range. The Journal of Chemical Physics, 2020. 153(10). 55. Möller, M., P. Nilges, F. Harnisch, and U. Schröder, Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem, 2011. 4(5): p. 566-579. 56. Hussain, A. and K. Anastasakis, Technoeconomic evaluation of integrating hydrothermal liquefaction in wastewater treatment plants. Bioresource Technology, 2025. 419: p. 132030. 57. Biller, P. and A. Roth, Hydrothermal liquefaction: a promising pathway towards renewable jet fuel, in Biokerosene: Status and Prospects. 2017, Springer. p. 607-635. 58. Chelazzi, E., Commercial status of direct thermochemical liquefaction technologies-IEA Bioenergy: Task 34. 2020. 59. Yang, S., T.-Q. Yuan, M.-F. Li, and R.-C. Sun, Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis. International journal of biological macromolecules, 2015. 72: p. 54-62. 60. Zhu, Z., L. Rosendahl, S.S. Toor, D. Yu, and G. Chen, Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Applied Energy, 2015. 137: p. 183-192. 61. Islam, M.N., G. Taki, M. Rana, and J.-H. Park, Yield of phenolic monomers from lignin hydrothermolysis in subcritical water system. Industrial & Engineering Chemistry Research, 2018. 57(14): p. 4779-4784. 62. Rana, M., M.N. Islam, A. Agarwal, G. Taki, S.-J. Park, S. Dong, Y.-T. Jo, and J.-H. Park, Production of phenol-rich monomers from kraft lignin hydrothermolysates in basic-subcritical water over MoO3/SBA-15 catalyst. Energy & Fuels, 2018. 32(11): p. 11564-11575. 63. Rana, M., G. Taki, M.N. Islam, A. Agarwal, Y.-T. Jo, and J.-H. Park, Effects of temperature and salt catalysts on depolymerization of kraft lignin to aromatic phenolic compounds. Energy & Fuels, 2019. 33(7): p. 6390-6404. 64. do Couto Fraga, A., M.B.B. de Almeida, and E.F. Sousa-Aguiar, Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks. Cellulose, 2021. 28(4): p. 2003-2020. 65. Biswas, B., A. Kumar, R. Kaur, B.B. Krishna, and T. Bhaskar, Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst. Bioresource Technology, 2021. 337: p. 125439. 66. Zhang, B., H.-J. Huang, and S. Ramaswamy. Reaction kinetics of the hydrothermal treatment of lignin. in Biotechnology for Fuels and Chemicals: Proceedings of the Twenty-Ninth Symposium on Biotechnology for Fuels and Chemicals Held April 29–May 2, 2007, in Denver, Colorado. 2007. Springer. 67. Halleraker, H.V. and T. Barth, Quantitative NMR analysis of the aqueous phase from hydrothermal liquefaction of lignin. Journal of analytical and applied pyrolysis, 2020. 151: p. 104919. 68. Barbier, J., N. Charon, N. Dupassieux, A. Loppinet-Serani, L. Mahé, J. Ponthus, M. Courtiade, A. Ducrozet, A.-A. Quoineaud, and F. Cansell, Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways. Biomass and Bioenergy, 2012. 46: p. 479-491. 69. Panisko, E., T. Wietsma, T. Lemmon, K. Albrecht, and D. Howe, Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks. Biomass and Bioenergy, 2015. 74: p. 162-171. 70. El Bast, M., N. Allam, Y. Abou Msallem, S. Awad, and K. Loubar, A review on continuous biomass hydrothermal liquefaction systems: Process design and operating parameters effects on biocrude. Journal of the Energy Institute, 2023. 108: p. 101260. 71. Prado, J.M., D. Lachos-Perez, T. Forster-Carneiro, and M.A. Rostagno, Sub-and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: a review. Food and Bioproducts Processing, 2016. 98: p. 95-123. 72. Hao, B., D. Xu, G. Jiang, T.A. Sabri, Z. Jing, and Y. Guo, Chemical reactions in the hydrothermal liquefaction of biomass and in the catalytic hydrogenation upgrading of biocrude. Green Chemistry, 2021. 23(4): p. 1562-1583. 73. Nagel, E. and C. Zhang, Hydrothermal decomposition of a lignin dimer under neutral and basic conditions: A mechanism study. Industrial & Engineering Chemistry Research, 2019. 58(40): p. 18866-18880. 74. Lui, M.Y., B. Chan, A.K. Yuen, A.F. Masters, and T. Maschmeyer, Hydrothermal Liquefaction of α‐O‐4 Aryl Ether Linkages in Lignin. ChemSusChem, 2020. 13(8): p. 2002-2006. 75. González, G., J. Salvadó, and D. Montané, Reactions of vanillic acid in sub-and supercritical water. The Journal of supercritical fluids, 2004. 31(1): p. 57-66. 76. Yong, T.L.-K. and Y. Matsumura, Kinetic analysis of lignin hydrothermal conversion in sub-and supercritical water. Industrial & Engineering Chemistry Research, 2013. 52(16): p. 5626-5639. 77. Yong, T.L.-K. and M. Yukihiko, Kinetic analysis of guaiacol conversion in sub-and supercritical water. Industrial & Engineering Chemistry Research, 2013. 52(26): p. 9048-9059. 78. Wu, X., J. Fu, and X. Lu, Kinetics and mechanism of hydrothermal decomposition of lignin model compounds. Industrial & Engineering Chemistry Research, 2013. 52(14): p. 5016-5022. 79. Jayathilake, M., S. Rudra, N. Akhtar, and A.A. Christy, Characterization and evaluation of hydrothermal liquefaction char from alkali lignin in subcritical temperatures. Materials, 2021. 14(11): p. 3024. 80. Braz, A., M.M. Mateus, R.G. dos Santos, R. Machado, J.M. Bordado, and M.J.N. Correia, Modelling of pine wood sawdust thermochemical liquefaction. Biomass and Bioenergy, 2019. 120: p. 200-210. 81. Obeid, R., D.M. Lewis, N. Smith, T. Hall, and P. van Eyk, Reaction kinetics and characterisation of species in renewable crude from hydrothermal liquefaction of monomers to represent organic fractions of biomass feedstocks. Chemical Engineering Journal, 2020. 389: p. 124397. 82. Forchheim, D., U. Hornung, A. Kruse, and T. Sutter, Kinetic modelling of hydrothermal lignin depolymerisation. Waste and Biomass Valorization, 2014. 5: p. 985-994. 83. Jayathilake, M., S. Rudra, and L.A. Rosendahl, Numerical modeling and validation of hydrothermal liquefaction of a lignin particle for biocrude production. Fuel, 2021. 305: p. 121498. 84. Eberhart, R. and J. Kennedy. A new optimizer using particle swarm theory. in MHS'95. Proceedings of the sixth international symposium on micro machine and human science. 1995. Ieee. 85. Kennedy, J. and R. Eberhart. Particle swarm optimization. in Proceedings of ICNN'95-international conference on neural networks. 1995. ieee. 86. Kirkpatrick, S., C.D. Gelatt Jr, and M.P. Vecchi, Optimization by simulated annealing. science, 1983. 220(4598): p. 671-680. 87. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 2002. 6(2): p. 182-197. 88. Tolbert, A., H. Akinosho, R. Khunsupat, A.K. Naskar, and A.J. Ragauskas, Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 2014. 8(6): p. 836-856. 89. Bensaid, F.F., K. Wietzerbin, and G.J. Martin, Authentication of natural vanilla flavorings: isotopic characterization using degradation of vanillin into guaiacol. Journal of Agricultural and Food Chemistry, 2002. 50(22): p. 6271-6275. 90. Nunes, A.D.S., J. Sierra-Pallares, K.-Q. Tran, and R.J. Hearst, Development of an aqueous lignin mixture thermophysical model for hydrothermal liquefaction applications using uncertainty quantification tools. Chemical Engineering Science, 2022. 261: p. 117944. 91. Lin, S.-T. and S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & engineering chemistry research, 2002. 41(5): p. 899-913. 92. Bbosa, D., M. Mba‐Wright, and R.C. Brown, More than ethanol: a techno‐economic analysis of a corn stover‐ethanol biorefinery integrated with a hydrothermal liquefaction process to convert lignin into biochemicals. Biofuels, Bioproducts and Biorefining, 2018. 12(3): p. 497-509. 93. Channiwala, S. and P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 2002. 81(8): p. 1051-1063. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99426 | - |
| dc.description.abstract | 木質素是生質能源領域中豐富但未充分利用的資源,其高效轉化對發展再生能源具有重要意義。水熱液化(Hydrothermal Liquefaction, HTL)技術在亞臨界水條件下將木質素轉化為高熱值生物油,被視為極具潛力的木質素高值化途徑。然而,目前對其水熱液化動力學機制與產物生成行為的瞭解仍不完整。本研究針對上述挑戰,開發了一套嚴謹的木質素水熱液化動力學模型並建立完整的製程模擬,以提升對反應行為的預測能力並最佳化生物油產製效率。
在研究方法上,首先對既有總集式動力學模型進行系統性改良,提出不同於過往文獻的反應路徑與動力學架構,使之更準確地描述木質素在水熱環境下分解為油相、水相、固相及氣相產物的速率。接著,本研究建立了首創的木質素HTL嚴格反應動力學模型,引入多種模型化合物,描述各相中具體產物間的平衡與轉化反應。在模型建立完成後,將其輸入Aspen Plus軟體中模擬連續式木質素HTL製程,設計其分離與熱整合單元,並最佳化其操作條件。 研究結果顯示,改良後的總集模型在木質素各相產物產率的預測上較文獻模型更加準確,平均絕對誤差為2.03 wt%。而嚴格動力學模型能精確模擬不同反應條件下的各相產率與產物分佈,平均絕對誤差為4.51 wt%。在製程模擬與最佳化方面,利用嚴格模型輸出的產物組成資料進行Aspen Plus製程模擬,使用多目標最佳化,結果顯示生物油的產率與熱值之間存在明顯拮抗關係,在最佳條件下(溫度270 – 340 ˚C、滯留時間120分鐘、水過量比5)隨著溫度升高有助於提升油品熱值但使產率下降。本研究選定溫度302 ˚C、120分鐘滯留時間及水過量比5作為製程與熱整合設計之示範操作條件,對應約41 wt%的生物油產率與約30.2 MJ/kg的高熱值。而熱整合設計顯著降低了外部加熱器的能耗,與未整合之製程相比減少高達95 %的能耗。 | zh_TW |
| dc.description.abstract | Lignin is a rich but underutilized resource in the field of biomass energy, and its conversion is crucial for the development of renewable energy. Hydrothermal liquefaction (HTL) process converts lignin into high-energy bio-oil under subcritical water conditions and is considered a highly promising method for lignin valorization. However, our understanding of the kinetics mechanism and product formation behavior remains insufficient. This study aims to address these challenges by developing a rigorous kinetic model for lignin HTL and establishing a complete process simulation to enhance the predictive capability of reaction behavior and optimize bio-oil production efficiency.
In terms of research methodology, this research initially refined existing lumped kinetic models by proposing different reaction pathways and kinetic frameworks to more accurately describe the decomposition rates of lignin into oil, water, solid, and gas phase products in hydrothermal environment. Subsequently, this research established a rigorous kinetic model, introducing various model compounds to describe the equilibrium and conversion among specific products in each phase. After completing the model, it was integrated into Aspen Plus software to simulate the continuous lignin HTL process, design its separation and thermal integration units, and optimize its operating conditions. The results showed that the enhanced lumped model was more accurate in predicting the yields of lignin's various phase products compared to existing literature models, achieving a mean absolute error of 2.03 wt%. The rigorous kinetic model effectively predicted the yields and product distribution across each phase under different reaction conditions, with a mean absolute error of 4.51%. Regarding process simulation and optimization, the product distribution data output from the rigorous model was used for Aspen Plus process simulation, employing multi-objective optimization. The results indicated a significant antagonistic relationship between the yield and heating value of bio-oil. Under optimal conditions (temperature 270 – 340 ˚C, residence time 120 minutes, water-to-biomass ratio 5), an increase in temperature enhanced the heating value of the oil while concurrently reducing the yield. This study selected a temperature of 302 ˚C, a residence time of 120 minutes, and a water-to-biomass ratio of 5 as the operating conditions for process and thermal integration design, yielding approximately 41 wt% bio-oil with heating value around 30.2 MJ/kg. The thermal integration design significantly reduced the energy consumption of external heaters, achieving up to a 95% reduction in energy consumption compared to the non-integrated process. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:15:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:15:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 ix 表次 x 第一章 緒論 1 1.1 背景 1 1.2 木質素高值化技術 3 1.3 水熱液化製程研究 4 1.4 研究目標 5 1.5 章節組織 6 第二章 文獻回顧 7 2.1 木質素作為生質原料 7 2.1.1 木質素的結構與化學特性 7 2.1.2 木質素現有的利用途徑與限制 9 2.2 生質物之水熱液化技術 12 2.2.1 水熱液化技術之概述 12 2.2.2 水熱液化技術之實驗性產率研究 14 2.2.3 水熱液化技術之實驗性組成研究 15 2.2.4 水熱液化之操作條件與反應機制 18 2.3 木質素之水熱液化模擬研究 20 2.3.1 現今之水熱液化動力學模型研究 20 2.3.2 現今動力學模型之限制與挑戰 22 2.4 動力學模型與製程模型參數最佳化演算法設計 24 2.4.1 前言 24 2.4.2 粒子群演算法 25 2.4.3 模擬退火演算法 28 2.4.4 第二代非支配排序遺傳演算法 31 第三章 總集動力學模型(lumped kinetic model) 34 3.1 反應機構建立 34 3.1.1 反應網路 34 3.1.2 反應動力學建立 35 3.2 模型擬合方式 37 3.2.1 模型參數擬合數據 37 3.2.2 最佳化變數設計與搜尋空間設定 39 3.3 總集模型擬合結果 43 第四章 嚴格動力學模型 51 4.1 前言 51 4.2 反應機構建立 52 4.2.1 模型化合物 52 4.2.2 反應網路 56 4.2.3 反應動力學建立 58 4.3 模型擬合方式 60 4.3.1 模型參數擬合數據 60 4.3.2 最佳化變數設計與搜尋空間設定 62 4.4 嚴格動力學模型擬合結果 64 4.4.1 二階段參數最佳化策略 64 4.4.2 模型比較 67 4.4.3 模型細部最佳化 69 第五章 熱力學模型 77 5.1 前言 77 5.2 固相物質 77 5.3 常規成分性質 78 第六章 製程設計與最佳化分析 80 6.1 前言 80 6.2 製程最佳化 80 6.2.1 製程最佳化方法與變數設計 80 6.2.2 製程最佳化結果 83 6.2.3 製程熱整合設計 88 第七章 結論 90 7.1 研究結果 90 7.2 研究限制與未來展望 91 參考文獻 92 附錄一 熱力學性質 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水熱液化 | zh_TW |
| dc.subject | 木質素 | zh_TW |
| dc.subject | 製程模擬 | zh_TW |
| dc.subject | 動力學模型 | zh_TW |
| dc.subject | 最佳化演算法 | zh_TW |
| dc.subject | Hydrothermal Liquefaction | en |
| dc.subject | Optimization Algorism | en |
| dc.subject | Process Simulation | en |
| dc.subject | Kinetic Model | en |
| dc.subject | Lignin | en |
| dc.title | 木質素水熱液化產製生物油之動力學與製程模型開發 | zh_TW |
| dc.title | Development of a Rigorous Kinetic and Process Model for Bio-Oil Production from Lignin via Hydrothermal Liquefaction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳誠亮;吳哲夫;蔣雅郁;鄭宇伸 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Liang Chen;Jeffrey D. Ward;Ya-Yu Chiang;Yu-Shen Cheng | en |
| dc.subject.keyword | 木質素,水熱液化,最佳化演算法,動力學模型,製程模擬, | zh_TW |
| dc.subject.keyword | Lignin,Hydrothermal Liquefaction,Optimization Algorism,Kinetic Model,Process Simulation, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202502487 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 3.39 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
