請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99414完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立涵 | zh_TW |
| dc.contributor.advisor | Li-Han Chen | en |
| dc.contributor.author | 侯兆謙 | zh_TW |
| dc.contributor.author | Jhao-Cian Hou | en |
| dc.date.accessioned | 2025-09-10T16:12:58Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 1 Yoosukh, W. Taxonomic study on Meretrix (Mollusca: Bivalvia) from Thailand. Phuket Marine Biological Center, Special Publication 25, 451-460 (2001).
2 Hsiao, S.-T. & Chuang, S.-C. Meretrix taiwanica (Bivalvia: Veneridae), a previously misidentified new species in Taiwan. Molluscan Research 43, 12-21 (2023). 3 Hassan, M. M., Parks, V. & Laramore, S. Optimizing microalgae diets for hard clam, Mercenaria mercenaria, larvae culture. Aquaculture Reports 20, 100716 (2021). 4 Tan, K., Zhang, H., Li, S., Ma, H. & Zheng, H. Lipid nutritional quality of marine and freshwater bivalves and their aquaculture potential. Critical Reviews in Food Science and Nutrition 62, 6990-7014 (2022). 5 Chen, Y.-C. Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria) cultures. Journal of applied phycology 15, 439-444 (2003). 6 Chen, H.-C. Recent innovations in cultivation of edible molluscs in Taiwan, with special reference to the small abalone Haliotis diversicolor and the hard clam Meretrix lusoria. Aquaculture 39, 11-27 (1984). 7 Lokmer, A. & Wegner, K. M. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. The ISME journal 9, 670-682 (2015). 8 Ray, A. K., Ghosh, K. & Ringø, E. Enzyme‐producing bacteria isolated from fish gut: a review. Aquaculture nutrition 18, 465-492 (2012). 9 Diwan, A., Harke, S. N. & Panche, A. N. Host-microbiome interaction in fish and shellfish: An overview. Fish and Shellfish Immunology Reports 4, 100091 (2023). 10 Huang, J. F., Chou, M. T., Lee, J. M. & Cheng, Y. H. Effects of culture area, stocking density, and shrimp and fish polyculture on the cost efficiency of hard clam, Meretrix meretrix, culture: A case study of hard clam farms in Yunlin, Taiwan. Journal of the World Aquaculture Society 47, 481-495 (2016). 11 Huang, H. T., Pao, C. N., Liao, T. Y. & Liu, L. L. Low genetic diversity of cultivated spotted hard clam (Meretrix petechialis) in Taiwan. Aquaculture Research 51, 2962-2972 (2020). 12 Chang, C. C., Huang, J. F., Schafferer, C., Lee, J. M. & Ho, L. M. Impacts of culture survival rate on culture cost and input factors: Case study of the hard clam (Meretrix meretrix) culture in Yunlin County, Taiwan. Journal of the World Aquaculture Society 51, 139-158 (2020). 13 Borowitzka, M. A. High-value products from microalgae—their development and commercialisation. Journal of applied phycology 25, 743-756 (2013). 14 Richmond, A. Handbook of microalgal culture: biotechnology and applied phycology. Vol. 577 (Wiley Online Library, 2004). 15 Chen, S.-Y., Pan, L.-Y., Hong, M.-J. & Lee, A.-C. The effects of temperature on the growth of and ammonia uptake by marine microalgae. Botanical Studies 53 (2012). 16 Kuo, C.-M. et al. Cultivation and biorefinery of microalgae (Chlorella sp.) for producing biofuels and other byproducts: A review. Sustainability 13, 13480 (2021). 17 Shumway, S. E., Cucci, T. L., Newell, R. C. & Yentsch, C. M. Particle selection, ingestion, and absorption in filter-feeding bivalves. Journal of experimental marine biology and ecology 91, 77-92 (1985). 18 Brown, M., Jeffrey, S., Volkman, J. & Dunstan, G. Nutritional properties of microalgae for mariculture. Aquaculture 151, 315-331 (1997). 19 Coutteau, P., Curé, K. & Sorgeloos, P. Effect of algal ration on feeding and growth of juvenile Manila clam Tapes philippinarum (Adams and Reeve). J. Shellfish Res 13, 47-55 (1994). 20 Liu, Z.-Y., Wang, G.-C. & Zhou, B.-C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource technology 99, 4717-4722 (2008). 21 Anderson, D. M., Glibert, P. M. & Burkholder, J. M. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25, 704-726 (2002). 22 Chen, X.-h., Zhu, L.-s. & Zhang, H.-s. Numerical simulation of summer circulation in the East China Sea and its application in estimating the sources of red tides in the Yangtze River estuary and adjacent sea areas. Journal of Hydrodynamics 19, 272-281 (2007). 23 Gu, H. et al. Emerging harmful algal bloom species over the last four decades in China. Harmful Algae 111, 102059 (2022). 24 黃欣瑜. 雲林縣文蛤養殖生產技術效率分析, (2013). 25 Boyd, C. E. & Pillai, V. Water quality management in aquaculture. CMFRI special Publication 22, 1-44 (1985). 26 Anderson, D. in Harmful algae 2012: proceedings of the 15th International Conference on Harmful Algae: October 29-November 2, 2012, CECO, Changwon, Gyeongnam, Korea/editors, Hak Gyoon Kim, Beatriz Reguera, Gustaaf M. Hallegraeff, Chang Kyu Lee, M. 3. 27 Azam, F. et al. The ecological role of water-column microbes in the sea. Marine ecology progress series. Oldendorf 10, 257-263 (1983). 28 Moran, M. A. et al. The Ocean's labile DOC supply chain. Limnology and Oceanography 67, 1007-1021 (2022). 29 Moran, M. A. et al. Deciphering ocean carbon in a changing world. Proceedings of the National Academy of Sciences 113, 3143-3151 (2016). 30 Chen, C.-C., Lin, W.-H., Hsu, T.-H. & Ho, Y.-N. Complete genome sequence of a potential new species Vibrio sp. NTOU-M3 isolated from hard clam, Meretrix taiwanica, in Taiwan. Microbiology Resource Announcements 13, e00810-00824 (2024). 31 Yue, X., Liu, B., Xiang, J. & Jia, J. Identification and characterization of the pathogenic effect of a Vibrio parahaemolyticus-related bacterium isolated from clam Meretrix meretrix with mass mortality. Journal of invertebrate pathology 103, 109-115 (2010). 32 Tey, Y. H., Jong, K.-J., Fen, S.-Y. & Wong, H.-C. Occurrence of Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus in the aquacultural environments of Taiwan. Journal of food protection 78, 969-976 (2015). 33 Ganguly, N. et al. ICMR-DBT guidelines for evaluation of probiotics in food. Indian Journal of Medical Research 134, 22-25 (2011). 34 Araya, M. et al. Guidelines for the evaluation of probiotics in food. Joint FAO/WHO Working Group Report on drafting guidelines for the evaluation of probiotics in food, 1-11 (2002). 35 Hai, N. The use of probiotics in aquaculture. Journal of applied microbiology 119, 917-935 (2015). 36 Assan, D. et al. Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 257, 110653 (2022). 37 El-Saadony, M. T. et al. The functionality of probiotics in aquaculture: An overview. Fish & shellfish immunology 117, 36-52 (2021). 38 Martínez Cruz, P., Ibáñez, A. L., Monroy Hermosillo, O. A. & Ramírez Saad, H. C. Use of probiotics in aquaculture. International scholarly research notices 2012, 916845 (2012). 39 Bairagi, A., Ghosh, K. S., Sen, S. K. & Ray, A. K. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International 10, 109-121 (2002). 40 Verschuere, L., Rombaut, G., Sorgeloos, P. & Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology reviews 64, 655-671 (2000). 41 Zhao, Q. et al. Relations Between Core Taxa and Metabolic Characteristics of Bacterial Communities in Litopenaeus vannamei Ponds and Their Probiotic Potential. Microorganisms 13, 466 (2025). 42 Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiology and molecular biology reviews 68, 669-685 (2004). 43 Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431-437 (2013). 44 Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457-463 (2017). 45 Wang, Y., Wang, Q., Xing, K., Jiang, P. & Wang, J. Dietary cinnamaldehyde and Bacillus subtilis improve growth performance, digestive enzyme activity, and antioxidant capability and shape intestinal microbiota in tongue sole, Cynoglossus semilaevis. Aquaculture 531, 735798 (2021). 46 Smith, A., Dumas, A., Yossa, R., Overturf, K. & Bureau, D. Effects of soybean meal and high‐protein sunflower meal on growth performance, feed utilization, gut health and gene expression in Arctic charr (Salvelinus alpinus) at the grow‐out stage. Aquaculture Nutrition 24, 1540-1552 (2018). 47 Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome biology 12, 1-18 (2011). 48 do Carmo Neves, L. et al. Physiological responses of juvenile Colossoma macropomum after different periods of air exposure. Aquaculture 548, 737583 (2022). 49 Hastie, T. & Tibshirani, R. (1986). 50 Stehfest, K. M., Carter, C. G., McAllister, J. D., Ross, J. D. & Semmens, J. M. Response of Atlantic salmon Salmo salar to temperature and dissolved oxygen extremes established using animal-borne environmental sensors. Scientific reports 7, 4545 (2017). 51 Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58, 267-288 (1996). 52 Meinshausen, N. & Bühlmann, P. Stability selection. Journal of the Royal Statistical Society Series B: Statistical Methodology 72, 417-473 (2010). 53 Jiang, L. et al. Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data. Biometrics 78, 1155-1167 (2022). 54 Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. (2012). 55 Wang, F. et al. Alterations in bacterial structure and function in seawater due to Mytilus coruscus farming: implications for sustainable aquaculture management. Frontiers in Microbiology 16, 1567340 (2025). 56 Márquez, L., Almansa, E., Ruiz Díaz, N. E., Díaz, M. & Moyano, F. J. Relationships between the specific growth rate and the thermal-unit growth coefficient applied to cultured juvenile fish. Frontiers in Marine Science 11, 1332912 (2024). 57 Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research 41, e1-e1 (2013). 58 Bradley, I. M., Pinto, A. J. & Guest, J. S. Design and evaluation of Illumina MiSeq-compatible, 18S rRNA gene-specific primers for improved characterization of mixed phototrophic communities. Applied and environmental microbiology 82, 5878-5891 (2016). 59 MobaXterm v. Version 23.6 ( Mobatek, France, 2024). 60 Callahan, B. et al. High-resolution sample inference from Illumina amplicon data., 2016, 13. DOI: https://doi. org/10.1038/nmeth 3869, 581-583. 61 Uparse, R. E. Highly accurate OTU sequences from microbial amplicon reads., 2013, 10. DOI: https://doi. org/10.1038/nmeth 2604, 996-998. 62 Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research 41, D590-D596 (2012). 63 Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology 37, 852-857 (2019). 64 McKinney, W. Data structures for statistical computing in Python. SciPy 445, 51-56 (2010). 65 Hunter, J. Matplotlib: A 2D graphics environment Computing in Science & Engineering 9 (3), 90–95. Publisher: IEEE COMPUTER SOC (2007). 66 Xu, S. et al. MicrobiotaProcess: A comprehensive R package for deep mining microbiome. The Innovation 4 (2023). 67 McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one 8, e61217 (2013). 68 Shannon, C. E. A mathematical theory of communication. The Bell system technical journal 27, 379-423 (1948). 69 Simpson, E. H. Measurement of diversity. nature 163, 688-688 (1949). 70 Chao, A. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 265-270 (1984). 71 Chao, A. & Lee, S.-M. Estimating the number of classes via sample coverage. Journal of the American statistical Association 87, 210-217 (1992). 72 Pielou, E. C. The measurement of diversity in different types of biological collections. Journal of theoretical biology 13, 131-144 (1966). 73 Villanueva, R. A. M. & Chen, Z. J. (Taylor & Francis, 2019). 74 Wickham, H. et al. Welcome to the Tidyverse. Journal of open source software 4, 1686 (2019). 75 Gower, J. C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325-338 (1966). 76 Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral ecology 26, 32-46 (2001). 77 Douglas, G. M. et al. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv, 672295 (2019). 78 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 27-30 (2000). 79 Nomenclature, E. (Academic, New York, 1992). 80 Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic acids research 46, D633-D639 (2018). 81 Liu, C., Cui, Y., Li, X. & Yao, M. microeco: an R package for data mining in microbial community ecology. FEMS microbiology ecology 97, fiaa255 (2021). 82 Tibshirani, R. J. & Efron, B. An introduction to the bootstrap. Monographs on statistics and applied probability 57, 1-436 (1993). 83 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498-2504 (2003). 84 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Journal of statistical software 67, 1-48 (2015). 85 Patterson, H. D. & Thompson, R. Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545-554 (1971). 86 Greven, S. & Kneib, T. On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika 97, 773-789 (2010). 87 Wickham, H. dplyr: A grammar of data manipulation. R package version 04. 3, p156 (2015). 88 Wood, S. N. Generalized additive models: an introduction with R. (chapman and hall/CRC, 2017). 89 Friedman, J. H., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. Journal of statistical software 33, 1-22 (2010). 90 Lahti, L. & Shetty, S. Introduction to the microbiome R package. Preprint at https://microbiome. github. io/tutorials (2018). 91 Saulsbury, J. et al. Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates. Paleobiology 45, 405-420 (2019). 92 Mubiana, V. K. & Blust, R. Effects of temperature on scope for growth and accumulation of Cd, Co, Cu and Pb by the marine bivalve Mytilus edulis. Marine Environmental Research 63, 219-235 (2007). 93 Lauritsen, D. D. Filter-feeding in Corbicula fluminea and its effect on seston removal. Journal of the North American Benthological Society 5, 165-172 (1986). 94 Fan, S. et al. Clam challenges high concentrations of algae diet environment: Growth performance, metabolism physiology, and related gene expression characteristics. Aquaculture Reports 30, 101586 (2023). 95 Sundaram, K. & Syed Shafee, M. Salinity tolerance of some bivalves of Ennore estuary. Journal of the Marine Biological Association of India 31, 299-302 (1989). 96 Christoforou, E. et al. The effects of artificial light at night (ALAN) on the gaping activity and feeding of mussels. Marine pollution bulletin 192, 115105 (2023). 97 Liu, C., Li, X., Wu, C., Wang, A. & Gu, Z. Effects of three light intensities on the survival, growth performance and biochemical composition of two size giant clams Tridacna crocea in the Southern China Sea. Aquaculture 528, 735548 (2020). 98 Xu, H. et al. Investigation of the light intensity effect on growth, molting, hemolymph lipid, and antioxidant capacity of juvenile swimming crab Portunus trituberculatus. Frontiers in Marine Science 9, 922021 (2022). 99 Zhang, J.-M. et al. The effect of nitrite and nitrate treatment on growth performance, nutritional composition and flavor-associated metabolites of grass carp (Ctenopharyngodon idella). Aquaculture 562, 738784 (2023). 100 Bitew, W. T., Getahun, T. B., Ayele, T. G. & Zawka, S. D. Optimizing shellfish aquaculture in nitrogen and fisheries management. Mathematical Modelling and Numerical Simulation with Applications 5, 18-37 (2025). 101 Lee, K. H. et al. Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions. Algae 34, 237-251 (2019). 102 Zhao, W. et al. Dietary Tribonema sp. supplementation increased growth performance, antioxidant capacity, immunity and improved hepatic health in golden pompano (Trachinotus ovatus). Aquaculture 529, 735667 (2020). 103 Chen, W. et al. Effect of dietary supplementation with filamentous microalga Tribonema ultriculosum on growth performance, fillet quality and immunity of rainbow trout Oncorhynchus mykiss. Aquaculture Nutrition 27, 1232-1243 (2021). 104 Cognie, B., Barillé, L. & Rincé, Y. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries 24, 126-134 (2001). 105 Yokoyama, H. & Ishihi, Y. Feeding of the bivalve Theora lubrica on benthic microalgae: isotopic evidence. Marine Ecology Progress Series 255, 303-309 (2003). 106 Dason, J. S., Emma Huertas, I. & Colman, B. Source of inorganic carbon for photosynthesis in two marine dinoflagellates 1. Journal of Phycology 40, 285-292 (2004). 107 薛卫, 王培培, 吴文惠, 马明 & 陈磊. 海洋植物多糖及其在食品工业应用的研究进展. 中国酿造 41, 1-7 (2022). 108 Tortoli, E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clinical microbiology reviews 27, 727-752 (2014). 109 Apprill, A. Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Frontiers in Marine Science 4, 222 (2017). 110 Jeong, H. J. et al. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. Journal of Eukaryotic Microbiology 55, 271-288 (2008). 111 Gárate-Lizárraga, I., Band-Schmidt, C. J., López-Cortés, D. J. & del Socorro Muñetón-Gómez, M. Bloom of Scrippsiella trochoidea (Gonyaulacaceae) in a shrimp pond in the southwestern Gulf of California, Mexico. Marine pollution bulletin 58, 145-149 (2009). 112 Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410-414 (2018). 113 Velo-Suarez, L., Brosnahan, M. L., Anderson, D. M. & McGillicuddy Jr, D. J. A quantitative assessment of the role of the parasite Amoebophrya in the termination of Alexandrium fundyense blooms within a small coastal embayment. PLoS One 8, e81150 (2013). 114 Jephcott, T. G. et al. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecology 19, 47-58 (2016). 115 Barry‐Martinet, R. et al. Geographic Genetic Divergence in Tychoplanktonic Taxa Dominating Diatom Communities in Marine Biofilms. Environmental DNA 7, e70116 (2025). 116 Bere, T. & Chakandinakira, A. Diatoms as indicators of anthropogenic changes in water quality in Mucheke and Shagashe Rivers, Masvingo, Zimbabwe. Takako Matsumura-Tundisi 15 (2018). 117 Lan, J., Liu, P., Hu, X. & Zhu, S. Harmful algal blooms in eutrophic marine environments: causes, monitoring, and treatment. Water 16, 2525 (2024). 118 Lobban, C. S. Benthic marine diatom flora of Guam: new records, redescription of Psammodictyon pustulatum n. comb., n. stat., and three new species (Colliculoamphora gabgabensis, Lauderia excentrica, and Rhoiconeis pagoensis). Micronesica 2, 1-49 (2015). 119 Moestrup, Ø., Lindberg, K. & Daugbjerg, N. Studies on woloszynskioid dinoflagellates IV: The genus Biecheleria gen. nov. Phycological Research 57, 203-220 (2009). 120 Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Applied microbiology and biotechnology 100, 8315-8324 (2016). 121 Lavrinovičs, A., Murby, F., Zīverte, E., Mežule, L. & Juhna, T. Increasing phosphorus uptake efficiency by phosphorus-starved microalgae for municipal wastewater post-treatment. Microorganisms 9, 1598 (2021). 122 Zonneveld, K. A., Versteegh, G. J. & de Lange, G. J. Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: a 10,000 year natural experiment. Marine micropaleontology 29, 393-405 (1997). 123 Tortoli, E. et al. The new phylogeny of the genus Mycobacterium: the old and the news. Infection, Genetics and Evolution 56, 19-25 (2017). 124 Morrow, K. M. et al. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. The ISME journal 9, 894-908 (2015). 125 Cai, W., De La Fuente, L. & Arias, C. R. Biofilm formation by the fish pathogen Flavobacterium columnare: development and parameters affecting surface attachment. Applied and environmental microbiology 79, 5633-5642 (2013). 126 Yang, W.-Y., Lee, Y., Lu, H., Chou, C.-H. & Wang, C. Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PloS one 14, e0205784 (2019). 127 Qi, X. et al. Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome 11, 135 (2023). 128 Suzuki, A., Shirakata, C., Anzai, H., Sumiyama, D. & Suzuki, M. Vitamin B12 biosynthesis of Cetobacterium ceti isolated from the intestinal content of captive common bottlenose dolphins (Tursiops truncatus). Microbiology 168, 001244 (2022). 129 Parrish, C. C. Essential fatty acids in aquatic food webs. Lipids in aquatic ecosystems, 309-326 (2009). 130 Montuori, E., Saggiomo, M. & Lauritano, C. Microalgae from cold environments and their possible biotechnological applications. Marine Drugs 21, 292 (2023). 131 Zhao, J. et al. Relationships between microbial community, functional profile and fermentation quality during ensiling of hybrid Pennisetum. J. Anim. Feed Sci 32, 447-458 (2023). 132 Leyn, S. A., Maezato, Y., Romine, M. F. & Rodionov, D. A. Genomic reconstruction of carbohydrate utilization capacities in microbial-mat derived consortia. Frontiers in Microbiology 8, 1304 (2017). 133 Wiegmann, K. et al. Carbohydrate catabolism in Phaeobacter inhibens DSM 17395, a member of the marine Roseobacter clade. Applied and environmental microbiology 80, 4725-4737 (2014). 134 Fazi, S. et al. High concentrations of dissolved biogenic methane associated with cyanobacterial blooms in East African lake surface water. Communications Biology 4, 845 (2021). 135 Dalebroux, Z. D. & Swanson, M. S. ppGpp: magic beyond RNA polymerase. Nature Reviews Microbiology 10, 203-212 (2012). 136 Gonçalves, I. L., Mielniczki-Pereira, A. A., Borges, A. C. P. & Valduga, A. T. Metabolic modeling and comparative biochemistry in glyoxylate cycle. Acta Scientiarum. Biological Sciences 38, 1-6 (2016). 137 Su, R., Fang, J., Wang, H. & Liu, B. Lipid metabolism changes in clam Meretrix petechialis in response to Vibrio infection and the identification of Vibrio-resistance markers. Aquaculture 539, 736611 (2021). 138 Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015). 139 Faust, K. & Raes, J. Microbial interactions: from networks to models. Nature Reviews Microbiology 10, 538-550 (2012). 140 Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259-264 (2006). 141 Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663-666 (2015). 142 Shade, A. & Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environmental microbiology 14, 4-12 (2012). 143 Richard, M. et al. Are mussels and oysters capable of reducing the abundances of Picochlorum sp., responsible for a massive green algae bloom in Thau lagoon, France? Journal of Experimental Marine Biology and Ecology 556, 151797 (2022). 144 Nayak, S. K. Probiotics and immunity: a fish perspective. Fish & shellfish immunology 29, 2-14 (2010). 145 Seyedsayamdost, M. R., Wang, R., Kolter, R. & Clardy, J. Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules. Journal of the American Chemical Society 136, 15150-15153 (2014). 146 Bird, A. R., Molloy, J. C. & Hall, E. A. Biocatalytic synthesis of 2′‐deoxynucleotide 5′‐triphosphates from bacterial genomic DNA: Proof of principle. Biotechnology and Bioengineering 120, 1531-1544 (2023). 147 Garde, S., Chodisetti, P. K. & Reddy, M. Peptidoglycan: structure, synthesis, and regulation. EcoSal Plus 9 (2021). 148 Manchanayake, T., Salleh, A., Amal, M. N. A., Yasin, I. S. M. & Zamri-Saad, M. Pathology and pathogenesis of Vibrio infection in fish: A review. Aquaculture Reports 28, 101459 (2023). 149 Escribano, M. P., Balado, M., Toranzo, A. E., Lemos, M. L. & Magariños, B. The secretome of the fish pathogen Tenacibaculum maritimum includes soluble virulence-related proteins and outer membrane vesicles. Frontiers in Cellular and Infection Microbiology 13, 1197290 (2023). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99414 | - |
| dc.description.abstract | 文蛤(Meretrix spp.)為臺灣極具經濟價值的養殖貝類,惟養殖過程常面臨季節性死亡與成長不良等問題。藻類與微生物組成被認為與貝類健康密切相關,然目前對臺灣文蛤實際攝食藻類種類與腸道菌相結構之了解有限,亦缺乏可預測水質變化與生物風險的微生物指標。本研究旨在探討不同季節與環境條件下,水體與腸道微生物組成對文蛤特定生長速率(Specific Growth Rate, SGR)的潛在影響。研究自2023年7月至2024年2月,每月兩次於彰化伸港兩處文蛤養殖池系統採樣,蒐集水體藻類、微生物、環境參數,以及文蛤腸道菌相與生長數據。分析方法包括廣義加乘模型(Generalized Additive Model, GAM)、套索回歸(Least Absolute Shrinkage and Selection Operator, LASSO)、斯皮爾曼相關係數(Spearman’s rank correlation)及微生物網絡分析。結果顯示,文蛤生長具有明顯季節性,秋季 SGR 顯著高於冬季(p < 0.01)。GAM 顯示日照量約 525 MJ/m²、硝酸鹽濃度 0.2–0.5 mg/L及中等鹽度與 SGR 呈正相關。LASSO 辨識出與文蛤 SGR 正相關的藻類與菌屬如Navicula、Tribonema。Spearman 分析顯示適度控制磷酸鹽濃度有助優化藻菌組成、促進生長。微生物功能呈現季節性差異,秋季腸道菌相有利於能量代謝與腸道穩定;冬季則反映營養限制與潛在有害藻類(如Scrippsiella、Rhodella)富集,可能釋放毒性或阻礙濾食。秋季水體 Cetobacterium益生菌顯著富集,在微生物網絡中與 Blidingia 等正向貢獻藻類呈正相關,並可能透過資源競爭抑制 Clostridium 等潛在有害菌,顯示其兼具營養提供與腸道穩定之潛力。未來可整合微生物共生關係、代謝路徑與基因功能,發展以關鍵菌種為核心的腸道微生態管理策略,以提升文蛤健康與養殖效益。 | zh_TW |
| dc.description.abstract | Meretrix spp., one of the most economically valuable cultured bivalves in Taiwan, often faces challenges such as seasonal mortality and poor growth performance. Shifts in algal and microbial community composition are believed to be closely linked to the health of bivalves. However, knowledge about the actual algal species consumed by Meretrix in Taiwan and the structure of its gut microbiota remains limited. Moreover, there is a lack of microbial indicators and management strategies to predict water quality changes and biological risks. This study aimed to investigate the potential effects of seasonal and environmental variation in water and gut microbial communities on the specific growth rate (SGR) of Meretrix. From July 2023 to February 2024, biweekly sampling was conducted in two clam ponds in Shengang, Changhua, to collect data on phytoplankton, microbial communities, environmental parameters, gut microbiota, and clam growth. Analytical methods included Generalized Additive Models (GAM), Least Absolute Shrinkage and Selection Operator (LASSO) regression, Spearman’s rank correlation, and microbial network analysis. Results showed a clear seasonal pattern, with significantly higher SGR in autumn than in winter (p < 0.01). GAM analysis indicated positive correlations between SGR and sunshine (~525 MJ/m²), nitrate concentration (0.2–0.5 mg/L), and moderate salinity. LASSO identified algae genera such as Navicula and Tribonema as positively associated with SGR. Spearman analysis suggested that proper phosphate control may optimize algal-bacterial composition and enhance growth. Microbial functional profiles showed seasonal variation: autumn gut microbiota supported energy metabolism and intestinal stability, while winter communities reflected nutrient limitation and enrichment of potentially harmful algae (e.g., Scrippsiella, Rhodella), which may release toxins or obstruct filter-feeding. The probiotic Cetobacterium was enriched in autumn water samples and showed a positive correlation with beneficial algae, such as Blidingia, in microbial networks. It may also suppress harmful genera like Clostridium through resource competition, suggesting its dual role in nutrient provision and gut stabilization. These findings underscore the potential of integrating microbial symbiosis, metabolic pathways, and gene functions to develop gut microbiota management strategies based on key taxa, thereby enhancing clam health and aquaculture sustainability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:12:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:12:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 i 中文摘要 iii Abstract iv 目次 vi 表次 ix 圖次 x 第一章前言 1 1.1 微藻與文蛤養殖關係 3 1.2 水中菌相及水產養殖常見益生菌 5 1.3 宏基因體學及水產養殖應用 7 1.4 統計方法 8 第二章研究目的 11 第三章材料與方法 12 3.1採樣地點與採樣方式 12 3.1.1採樣地點 12 3.1.2水質檢測 12 3.1.3水質採樣 13 3.1.4文蛤採樣 13 3.2 細菌DNA萃取和次世代定序分析 13 3.3 宏基因體學(Metagenomics)定序資料分析 15 3.3.1 序列檔案上傳與品質控制 (Quality Control) 15 3.3.2物種組成分析與 Top 20 物種豐度分析 15 3.3.3 Alpha 多樣性分析 (Alpha Diversity) 16 3.3.4 Beta 多樣性分析 (Beta Diversity) 16 3.3.5微生物功能性預測 (Microbiome Function Prediction) 16 3.3.6 LEfSe 分析 (Linear Discriminant Analysis Effect Size) 17 3.3.7 網絡分析Network Analyze 17 3.3.8廣義加性模型 (GAM, Generalized Additive Model) 17 3.3.9 LASSO (Least Absolute Shrinkage and Selection Operator) 18 3.3.10熱圖(Heat map) 19 3.4統計分析 19 第四章實驗結果 20 4.1 文蛤特定成長率 (SGR)分析 20 4.2環境因子對文蛤特定成長率(SGR)的影響 20 4.2.1 環境指標分析 20 4.2.2 GAM分析各環境因子對文蛤SGR的影響 20 4.3 LASSO方法篩選可能影響文蛤SGR的藻屬與菌屬 22 4.4對文蛤SGR造成影響之細菌及藻類與環境指標之間的關係 22 4.5 比較各組別藻類以及細菌生物群落的組成與變化 23 4.6 α多樣性(Alpha diversity) 24 4.7 β多樣性(Beta diversity) 25 4.8 秋季及冬季的LEfSe 25 4.9 秋季及冬季的KEGG代謝途徑功能性預測 26 4.10 四個組別的LEfSe 28 4.11 四個組別的KEGG代謝途徑功能性預測 29 4.12網絡分析Network Analyze 30 4.12.1水體與文蛤腸道整體微生物網絡分析Network Analyze 31 4.12.2 秋冬季文蛤腸道微生物網絡分析Network Analyze 31 4.12.3 不同養殖池文蛤腸道微生物網絡分析Network Analyze 32 4.12.4 水體微生物網絡分析Network Analyze 33 第五章討論 35 5.1 文蛤特定成長率(SGR)之季節變異 35 5.2 各組別環境參數差異與其生態意涵 35 5.3 GAM 模型解析環境因子對SGR之非線性影響 35 5.4 LASSO篩選結果與生態意義 36 5.4.1 正向影響之藻類與其潛在生態角色 36 5.4.2 正向影響之細菌屬:Mycobacterium 37 5.4.3 負向影響藻屬與其潛在風險 37 5.4.4 負向影響菌屬:Endozoicomonas 38 5.5 藻類、細菌與環境指標的交互關係 39 5.6 文蛤腸道與水體微生物網絡之結構與潛在調控節點 40 5.7 微生物群落組成、功能與網絡穩定性之季節與空間變化 41 5.7.1 秋冬微生物群落組成與功能變化 41 5.7.2 微生物網絡穩定性之季節與空間差異 43 5.7.3 小結:秋冬差異如何反映文蛤生理變化 44 5.9 四組比較與 ZA 組最佳生長表現之解釋 45 5.9 研究限制與未來展望 47 第六章結論 49 參考文獻 50 結果圖/表 64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 文蛤(Meretrix spp.) | zh_TW |
| dc.subject | 特定生長速率(SGR) | zh_TW |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | 藻類組成 | zh_TW |
| dc.subject | 廣義加乘模型(GAM) | zh_TW |
| dc.subject | 套索回歸(LASSO) | zh_TW |
| dc.subject | 網絡分析 | zh_TW |
| dc.subject | Generalized Additive Model (GAM) | en |
| dc.subject | Network analysis | en |
| dc.subject | LASSO regression | en |
| dc.subject | Algal composition | en |
| dc.subject | Meretrix spp. | en |
| dc.subject | Specific Growth Rate (SGR) | en |
| dc.subject | Gut microbiota | en |
| dc.title | 臺灣文蛤養殖水質與微生物相對文蛤生長影響之研究 | zh_TW |
| dc.title | Effects of Water Quality and Microbiota on Growth of Hard Clam(Meretrix spp.)in Taiwanese Aquaculture | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃慶輝;張俊偉 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Hui Huang;Chun-Wei Chang | en |
| dc.subject.keyword | 文蛤(Meretrix spp.),特定生長速率(SGR),腸道菌相,藻類組成,廣義加乘模型(GAM),套索回歸(LASSO),網絡分析, | zh_TW |
| dc.subject.keyword | Meretrix spp.,Specific Growth Rate (SGR),Gut microbiota,Algal composition,Generalized Additive Model (GAM),LASSO regression,Network analysis, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202503092 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | 2030-07-31 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-31 | 6.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
