請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99406完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施博仁 | zh_TW |
| dc.contributor.advisor | Po-Jen Shih | en |
| dc.contributor.author | 陳盈璇 | zh_TW |
| dc.contributor.author | Ying-Syuan Chen | en |
| dc.date.accessioned | 2025-09-10T16:11:32Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-23 | - |
| dc.identifier.citation | 1. Nichols, W.W., M.F. ORourke, and C. Vlachopoulos, McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 6th Edition. Mcdonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 6th Edition, 2011: p. 1-741.
2. Wang, W.K., et al., The prandial effect on the pulse spectrum. Am J Chin Med, 1996. 24(1): p. 93-8. 3. Wang, W.K., et al., Influence of spleen meridian herbs on the harmonic spectrum of the arterial pulse. Am J Chin Med, 2000. 28(2): p. 279-89. 4. Kuo, Y.C., et al., Diagnosis of kidney insufficiency by using the pressure waveforms of wrist-type sphygmomanometers: toward a convenient point-of-care device. Am J Transl Res, 2023. 15(10): p. 6015-6025. 5. Allen, J., Photoplethysmography and its application in clinical physiological measurement. Physiol Meas, 2007. 28(3): p. R1-39. 6. Maeda, Y., M. Sekine, and T. Tamura, The advantages of wearable green reflected photoplethysmography. J Med Syst, 2011. 35(5): p. 829-34. 7. Chu, Y.Z., Junwen; Liu, Huiliang; Ma, Yuan; Liu, Nathaniel; Song, Yu; Liang, Jiaming; Shao, Zhichun; Sun, Yu; Dong, Ying; Wang, Xiaohao; Lin, Liwei, Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Advanced Functional Materials, 2018. 28(40): p. 1803413. 8. Charlton, P.H., et al., Wearable Photoplethysmography for Cardiovascular Monitoring. Proc IEEE Inst Electr Electron Eng, 2022. 110(3): p. 355-381. 9. Kamshilin, A.A. and N.B. Margaryants, Origin of photoplethysmographic waveform at green light. Physics Procedia, 2017. 86: p. 72-80. 10. Bruining, N., et al., Acquisition and analysis of cardiovascular signals on smartphones: potential, pitfalls and perspectives: by the Task Force of the e-Cardiology Working Group of European Society of Cardiology. Eur J Prev Cardiol, 2014. 21(2 Suppl): p. 4-13. 11. Goldberger, A.L., C.K. Peng, and L.A. Lipsitz, What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging, 2002. 23(1): p. 23-6. 12. Goldberger, A.L., Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet, 1996. 347(9011): p. 1312-4. 13. Knaus, W.A., et al., APACHE II: a severity of disease classification system. Crit Care Med, 1985. 13(10): p. 818-29. 14. Carrara, M., et al., The role of pulse wave analysis indexes for critically ill patients: a narrative review. Physiol Meas, 2024. 45(8). 15. Kuo, Y.C., et al., Losing harmonic stability of arterial pulse in terminally ill patients. Blood Press Monit, 2004. 9(5): p. 255-8. 16. Sherebrin, M.H. and R.Z. Sherebrin, Frequency-Analysis of the Peripheral Pulse-Wave Detected in the Finger with a Photoplethysmograph. Ieee Transactions on Biomedical Engineering, 1990. 37(3): p. 313-317. 17. Liu, X., Z. Ji, and Y.R. Tang, Recognition of Pulse Wave Feature Points and Non-invasive Blood Pressure Measurement. Journal of Signal Processing Systems for Signal Image and Video Technology, 2017. 87(2): p. 241-248. 18. Schafer, A. and J. Vagedes, How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol, 2013. 166(1): p. 15-29. 19. Sviridova, N. and K. Sakai, Human photoplethysmogram: new insight into chaotic characteristics. Chaos Solitons & Fractals, 2015. 77: p. 53-63. 20. Hiraoka, D., et al., Diagnosis of Atrial Fibrillation Using Machine Learning With Wearable Devices After Cardiac Surgery: Algorithm Development Study. Jmir Formative Research, 2022. 6(8). 21. Poh, M.Z., et al., Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms. Heart, 2018. 104(23): p. 1921-1928. 22. Kabutoya, T., et al., Diagnostic accuracy of an algorithm for detecting atrial fibrillation in a wrist-type pulse wave monitor. Journal of Clinical Hypertension, 2019. 21(9): p. 1393-1398. 23. Wang, S.R., et al., A machine learning strategy for fast prediction of cardiac function based on peripheral pulse wave. Computer Methods and Programs in Biomedicine, 2022. 216. 24. Garcia-Carretero, R., et al., Pulse Wave Velocity and Machine Learning to Predict Cardiovascular Outcomes in Prediabetic and Diabetic Populations. Journal of Medical Systems, 2019. 44(1). 25. Luo, Z.Y., et al., A Study of Machine-Learning Classifiers for Hypertension Based on Radial Pulse Wave. Biomed Research International, 2018. 2018. 26. Gotlibovych, I.C., S.; Goyal, D.; Liu, J.; Kerem, Y.; Benaron, D.; Li, Y., End-to-end deep learning from raw sensor data: Atrial fibrillation detection using wearables. arXiv preprint, 2018. arXiv:1807.10707. 27. Mehrang, S., et al., End-to-end sensor fusion and classification of atrial fibrillation using deep neural networks and smartphone mechanocardiography. Physiol Meas, 2022. 43(5). 28. Devaney, R.L. and ProQuest, An introduction to chaotic dynamical systems. Second edition. ed. Studies in nonlinearity. 2018, Boca Raton, FL: CRC Press, an imprint of Taylor and Francis. 29. Danforth, C.M. Chaos in an Atmosphere Hanging on a Wall. Mathematics of Planet Earth 2013 2013 20 April 2025]; Available from: http://mpe.dimacs.rutgers.edu/2013/03/17/chaos-in-an-atmosphere-hanging-on-a-wall/. 30. Lorenz, E.N., Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 1963. 20(2): p. 130-141. 31. Lorenz, E.N., Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas. American Association for the Advancement of Science., 1972. 32. Rössler, O.E., An equation for continuous chaos. Physics Letters A, 1976. 57(5): p. 397–398. 33. Malykh, S., et al., Homoclinic chaos in the Rossler model. Chaos, 2020. 30(11): p. 113126. 34. Li, X.L., ShiJun, More than six hundred new families of Newtonian periodic planar collisionless three-body orbits. Science China Physics, Mechanics & Astronomy, 2017. 60: p. 1-7. 35. Li, X.J., Yipeng; Liao, Shijun, The 1223 new periodic orbits of planar three-body problem with unequal mass and zero angular momentum. arXiv preprint, 2017. arXiv:1709.04775. 36. Grebogi, C., E. Ott, and J.A. Yorke, Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science, 1987. 238(4827): p. 632-8. 37. van der Pol, B., A theory of the amplitude of free and forced triode vibrations. Radio Review (later Wireless World), 1920. 1: p. 701–710. 38. Mackey, M.C. and L. Glass, Oscillation and chaos in physiological control systems. Science, 1977. 197(4300): p. 287-9. 39. Sel'kov, E.E., Self-oscillations in glycolysis. 1. A simple kinetic model. Eur J Biochem, 1968. 4(1): p. 79-86. 40. Brückner, D.B., et al., Stochastic nonlinear dynamics of confined cell migration in two-state systems. Nature Physics, 2019. 15(6): p. 595-+. 41. Grebogi, C.O., E.; Pelikan, S.; Yorke, J. A., Strange attractors that are not chaotic. Physica D: Nonlinear Phenomena, 1984. 13(1-2): p. 261-268. 42. Matsumoto, T., A chaotic attractor from Chua's circuit. IEEE Transactions on Circuits and Systems, 1984. 31(12): p. 1055-1058. 43. Liu, T., D.J. Hill, and J. Zhao, Output Synchronization of Dynamical Networks with Incrementally-Dissipative Nodes and Switching Topology. Ieee Transactions on Circuits and Systems I-Regular Papers, 2015. 62(9): p. 2312-2323. 44. May, R.M., Simple mathematical models with very complicated dynamics. Nature, 1976. 261(5560): p. 459-67. 45. Gupta, V., M. Mittal, and V. Mittal, Chaos Theory: An Emerging Tool for Arrhythmia Detection. Sensing and Imaging, 2020. 21(1). 46. Rosenstein, M.T., J.J. Collins, and C.J. De Luca, A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Physica D-Nonlinear Phenomena, 1993. 65(1-2): p. 117-134. 47. Fraser, A.M. and H.L. Swinney, Independent coordinates for strange attractors from mutual information. Phys Rev A Gen Phys, 1986. 33(2): p. 1134-1140. 48. Hekmatmanesh, A., et al., EEG Control of a Bionic Hand With Imagination Based on Chaotic Approximation of Largest Lyapunov Exponent: A Single Trial BCI Application Study. Ieee Access, 2019. 7: p. 105041-105053. 49. Strogatz, S., Nonlinear dynamics and chaos : with applications to physics, biology, chemistry, and engineering. 2000, Cambridge, MA: Westview Press. xi, 498 p., 4 p. of col. plates. 50. Kennel, M.B., R. Brown, and H.D. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A, 1992. 45(6): p. 3403-3411. 51. Li, N., et al., The nonlinearity properties of pulse signal of pregnancy in the three trimesters. Biomedical Signal Processing and Control, 2023. 79. 52. Goswami, B., A brief introduction to nonlinear time series analysis and recurrence plots. Vibration, 2019. 2(4): p. 332–368. 53. Gao, J.B. and H.Q. Cai, On the structures and quantification of recurrence plots. Physics Letters A, 2000. 270(1-2): p. 75-87. 54. Marwan, N., et al., Recurrence plots for the analysis of complex systems. Physics Reports-Review Section of Physics Letters, 2007. 438(5-6): p. 237-329. 55. Webber, C.L. and J.P. Zbilut, Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies. Journal of Applied Physiology, 1994. 76(2): p. 965-973. 56. Zbilut, J.P. and C.L. Webber, Embeddings and Delays as Derived from Quantification of Recurrence Plots. Physics Letters A, 1992. 171(3-4): p. 199-203. 57. Zbilut, J.P., J.M. Zaldivar-Comenges, and F. Strozzi, Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Physics Letters A, 2002. 297(3-4): p. 173-181. 58. Roh, D. and H. Shin, Recurrence Plot and Machine Learning for Signal Quality Assessment of Photoplethysmogram in Mobile Environment. Sensors (Basel), 2021. 21(6). 59. Calderón-Juárez, M., et al., Recurrence plot analysis of heart rate variability in end-stage renal disease treated twice-weekly by hemodialysis with or without intradialytic hypotension. European Physical Journal-Special Topics, 2023. 232(1): p. 99-110. 60. Censi, F., et al., Recurrent patterns of atrial depolarization during atrial fibrillation assessed by recurrence plot quantification. Ann Biomed Eng, 2000. 28(1): p. 61-70. 61. Vulpiani, A., Chaos: from simple models to complex systems. Vol. 17. 2010: World Scientific. 62. Benettin, G., et al., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Part 1: Theory. Meccanica, 1980. 15(1): p. 9-20. 63. Brown, R., P. Bryant, and H.D. Abarbanel, Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys Rev A, 1991. 43(6): p. 2787-2806. 64. Sawada, M.S.a.Y., Measurement of the Lyapunov spectrum form a chaotic time series. Physical review letters, 1985. 55(10): p. 1082. 65. Wolf, A., et al., Determining Lyapunov Exponents from a Time-Series. Physica D, 1985. 16(3): p. 285-317. 66. Kantz, H., A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time-Series. Physics Letters A, 1994. 185(1): p. 77-87. 67. Eckmann, J., et al., Liapunov exponents from time series. Phys Rev A Gen Phys, 1986. 34(6): p. 4971-4979. 68. Baker, G.L. and J.P. Gollub, Chaotic dynamics : an introduction. Second edition. ed. 1996, Cambridge: Cambridge University Press. 69. Yan, J., C. Xia, H. Wang, Y. Wang, R. Guo, and F. Li,, Nonlinear Dynamic Analysis of Wrist Pulse with Lyapunov Exponents. 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008: p. 2177-2180. 70. Hoshi, R.A., et al., Poincare plot indexes of heart rate variability: relationships with other nonlinear variables. Auton Neurosci, 2013. 177(2): p. 271-4. 71. Brennan, M., M. Palaniswami, and P. Kamen, Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng, 2001. 48(11): p. 1342-7. 72. Kamen, P.W., H. Krum, and A.M. Tonkin, Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond), 1996. 91(2): p. 201-8. 73. Wang, B.L., Dewen; Gao, Xin; Luo, Yunlei, Three‐Dimensional Poincaré Plot Analysis for Heart Rate Variability. Complexity, 2022. 2022(1): p. 3880047. 74. Poincaré, H., Les méthodes nouvelles de la mécanique céleste. 1892, Paris: Gauthier-Villars et fils. 75. Kamath, C., Classification of orbits in Poincare maps using machine learning. International Journal of Data Science and Analytics, 2024. 17(3): p. 305-321. 76. Sharbafi, M.A., et al., Bioinspired legged locomotion : models, concepts, control and applications. 2017, Amsterdam: Butterworth-Heinemann. 77. Shahhosseini, A., M.H. Tien, and K. D'Souza, Poincare maps: a modern systematic approach toward obtaining effective sections. Nonlinear Dynamics, 2023. 111(1): p. 529-548. 78. Adamopoulos, K., et al., Poincare Maps and Aperiodic Oscillations in Leukemic Cell Proliferation Reveal Chaotic Dynamics. Cells, 2021. 10(12). 79. Pettit, C., P.H. Charlton, and P.J. Aston, Photoplethysmogram beat detection using Symmetric Projection Attractor Reconstruction. Front Physiol, 2024. 15: p. 1228439. 80. Marwan, N., et al., Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys Rev E Stat Nonlin Soft Matter Phys, 2002. 66(2 Pt 2): p. 026702. 81. Dimitriev, D., et al., Recurrence Quantification Analysis of Heart Rate During Mental Arithmetic Stress in Young Females. Front Physiol, 2020. 11: p. 40. 82. Singh, V., et al., A unified non-linear approach based on recurrence quantification analysis and approximate entropy: application to the classification of heart rate variability of age-stratified subjects. Med Biol Eng Comput, 2019. 57(3): p. 741-755. 83. Citi, L., et al., Monitoring heartbeat nonlinear dynamics during general anesthesia by using the instantaneous dominant Lyapunov exponent. Annu Int Conf IEEE Eng Med Biol Soc, 2012. 2012: p. 3124-7. 84. Kashiwa, A., et al., Performance of an atrial fibrillation detection algorithm using continuous pulse wave monitoring. Ann Noninvasive Electrocardiol, 2019. 24(2): p. e12615. 85. Solosenko, A., A. Petrenas, and V. Marozas, Photoplethysmography-Based Method for Automatic Detection of Premature Ventricular Contractions. IEEE Trans Biomed Circuits Syst, 2015. 9(5): p. 662-9. 86. Chong, J.W., et al., Arrhythmia discrimination using a smart phone. IEEE J Biomed Health Inform, 2015. 19(3): p. 815-24. 87. Calderon-Juarez, M., et al., Association between Mean Heart Rate and Recurrence Quantification Analysis of Heart Rate Variability in End-Stage Renal Disease. Entropy (Basel), 2020. 22(1). 88. Valenza, G., L. Citi, and R. Barbieri, Estimation of instantaneous complex dynamics through Lyapunov exponents: a study on heartbeat dynamics. PLoS One, 2014. 9(8): p. e105622. 89. Guo, R., et al., Recurrence quantification analysis on pulse morphological changes in patients with coronary heart disease. J Tradit Chin Med, 2012. 32(4): p. 571-7. 90. Yousef, Q., M.B.I. Reaz, and M.A.M. Ali, The Analysis of PPG Morphology: Investigating the Effects of Aging on Arterial Compliance. Measurement Science Review, 2012. 12(6): p. 266-271. 91. Eckmann, J.P., S.O. Kamphorst, and D. Ruelle, Recurrence Plots of Dynamic-Systems. Europhysics Letters, 1987. 4(9): p. 973-977. 92. Trulla, L.L.G., A.; Zbilut, J. P.; Webber, C. L. Jr., Recurrence quantification analysis of the logistic equation with transients. Physics Letters A, 1996. 223(4): p. 255–260. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99406 | - |
| dc.description.abstract | 本研究旨在針對節律異常之脈搏波訊號,建立具辨識能力與生理意涵之非線性量化指標。傳統分析方法如時域與頻域分析,雖廣泛應用於心血管訊號,卻高度仰賴波形完整性,對於結構紊亂的脈搏波往往難以提供穩定且具解釋力的結果。有鑑於此,本研究聚焦於節律異常且結構混亂的脈搏波,探究其中是否潛藏可量化且具辨識潛力的非線性動態特徵。本研究以非線性分析工具中的遞迴圖、最大李亞普諾夫指數(MLE)與龐加萊映射為核心方法,系統性分析健康、心律不整與臨終三組對象之脈搏波動態特性,特別聚焦於心律不整與臨終患者之異常波形。研究結果顯示,多數遞迴圖參數(RR、DET、ENTR、Lmax)能有效反映系統週期性,而垂直線參數(LAM、TT)未能展現停滯性特徵,反與週期性變化相關,顯示其作為停滯性指標的適用性有限。而MLE與龐加萊映射亦能輔助評估脈搏波系統的混沌程度與波形週期性。綜合所有指標進行機器學習分類,三種多分類模型之分類精確度達82 %,此結果顯示非線性量化指標具一定程度的脈搏波分類能力。這些指標不僅在學術層面上補足傳統分析在異常節律脈搏波處理上的解釋侷限,亦有望在臨床應用中提供具量化依據與生理解釋能力的判別工具,有助於心律不整之診斷與病情追蹤,以及臨終狀態的早期預警,提升臨床決策的精確性與反應效率。 | zh_TW |
| dc.description.abstract | This study aims to develop nonlinear quantitative indices with both discriminative power and physiological relevance for analyzing pulse wave signals characterized by rhythm abnormalities. Traditional time- and frequency-domain analyses are widely used in cardiovascular signal processing but rely heavily on waveform integrity, often leading to unreliable results for structurally disordered pulse waves. To address this limitation, the present study focuses on pulse signals with rhythm abnormalities and disrupted structures, particularly those from patients with arrhythmia and individuals in terminal stages, to investigate whether they contain quantifiable nonlinear dynamic features. Key analytical methods include recurrence plots, the maximum Lyapunov exponent (MLE), and Poincaré maps, applied to data from healthy , arrhythmia patients, and terminally ill patients. Results show that most recurrence-based parameters (RR, DET, ENTR, Lmax) effectively reflect signal periodicity, while vertical line parameters (LAM, TT) do not indicate laminarity as expected and instead show associations with periodic changes, suggesting limited suitability as laminarity markers. MLE and Poincaré maps further assist in characterizing chaotic behavior and rhythm stability. Integrating these indices into machine learning models yielded a classification accuracy of 82%, demonstrating their potential for distinguishing physiological conditions.These findings not only extend the analytical scope beyond conventional methods but also offer clinically meaningful tools for diagnosing arrhythmia, tracking disease progression, and providing early warning of terminal decline, thereby improving the precision and timeliness of clinical decisions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:11:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:11:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 viii 表次 xi 第一章 緒論 1 1.1 研究動機 1 1.2 橈動脈脈搏波介紹 2 1.2.1 脈搏波的量測工具 2 1.2.2 心律不整與臨終患者的脈搏波 4 1.3 研究目的與重要性 7 第二章 脈搏波非線性分析方法文獻回顧 8 2.1 脈搏波傳統分析方法 8 2.2 混沌理論 11 2.2.1 混沌系統 12 2.2.2 吸引子 15 2.2.3 分岔(Bifurcation) 18 2.3 脈搏波非線性分析方法 20 2.3.1 時間延遲嵌入定理 20 2.3.2 遞迴圖 22 2.3.3 李亞普諾夫指數 26 2.3.4 龐加萊圖與龐加萊映射 30 2.4 脈搏波非線性特徵之研究應用 35 第三章 研究方法 38 3.1 受試者脈搏波訊號蒐集 39 3.1.1 資料集來源 39 3.1.2 後設分類與篩選 39 3.2 非線性分析方法 40 3.2.1 訊號預處理、相空間重建與正規化 40 3.2.2 遞迴圖 46 3.2.3 李亞普諾夫指數 49 3.2.4 龐加萊映射 51 3.3 參數統計與分類 57 第四章 研究結果 59 4.1 相空間重建與正規化 59 4.2 遞迴圖 63 4.3 李亞普諾夫指數 70 4.4 龐加萊映射 72 4.5 參數相關性分析 74 4.6 機器學習分類與特徵重要性 76 第五章 討論 80 5.1 遞迴圖 80 5.1.1 遞迴圖量化參數統計結果之討論 80 5.1.2 遞迴圖整體結構之討論 88 5.1.3 心率對遞迴參數之影響 88 5.1.4 重搏波(dicrotic wave)對遞迴圖的影響 91 5.1.5 不同輸入訊號對遞迴圖結構之影響 92 5.2 最大李亞普諾夫指數 93 5.3 龐加萊映射 96 5.4 特徵參數統計與組別區辨能力摘要 96 5.5 參數相關性分析 97 5.6 機器學習分類與特徵重要性 98 5.7 研究限制 100 第六章 結論與未來展望 102 6.1 研究結論 102 6.2 未來展望 103 參考資料 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 脈搏波 | zh_TW |
| dc.subject | 非線性分析 | zh_TW |
| dc.subject | 節律異常 | zh_TW |
| dc.subject | 心律不整 | zh_TW |
| dc.subject | 臨終 | zh_TW |
| dc.subject | Arrhythmia | en |
| dc.subject | Pulse wave | en |
| dc.subject | Nonlinear analysis | en |
| dc.subject | Terminal stage | en |
| dc.subject | Rhythm abnormality | en |
| dc.title | 節律異常之橈動脈脈搏波非線性動態特徵之量化分析 | zh_TW |
| dc.title | Quantitative Analysis of the Nonlinear Dynamic Characteristics in Radial Artery Pulse Waves with Rhythm Abnormalities | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭育誠;田孟軒;施華儒 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Cheng Kuo;Meng-Hsuan Tien;Hua-Ju Shih | en |
| dc.subject.keyword | 脈搏波,非線性分析,節律異常,心律不整,臨終, | zh_TW |
| dc.subject.keyword | Pulse wave,Nonlinear analysis,Rhythm abnormality,Arrhythmia,Terminal stage, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202502005 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2027-08-01 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
