請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99398完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐振哲 | zh_TW |
| dc.contributor.advisor | Cheng-Che Hsu | en |
| dc.contributor.author | 劉建邦 | zh_TW |
| dc.contributor.author | Jian-Bang Liu | en |
| dc.date.accessioned | 2025-09-10T16:09:57Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 1. L. Jastrzebski, J. Lagowski, W. Henley, and P. Edelman, "Contamination Monitoring Using Surface Photovoltage and Application to Process Line Control," MRS Proceedings, 354(2011).
2. D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A, 29 (2)(2011). 3. K. Tachibana, "Current status of microplasma research," IEEJ Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006). 4. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, "Microplasmas: Sources, Particle Kinetics, and Biomedical Applications," Plasma Processes and Polymers, 5 (4), 322-344 (2008). 5. S. Muhl, and A. Pérez, "The use of hollow cathodes in deposition processes: A critical review," Thin Solid Films, 579, 174-198 (2015). 6. R. Mavrodineanu, "Hollow cathode discharges: Analytical applications," JOURNAL OF RESEARCH of the National Bureau of Standards, 89 (2), 143 (1984). 7. D. M. Goebel, G. Becatti, I. G. Mikellides, and A. Lopez Ortega, "Plasma hollow cathodes," Journal of Applied Physics, 130 (5)(2021). 8. C. Meyer, S. Müller, E. Gurevich, and J. Franzke, "Dielectric barrier discharges in analytical chemistry," Analyst, 136 (12), 2427-2440 (2011). 9. R. Foest, M. Schmidt, and K. Becker, "Microplasmas, an emerging field of low-temperature plasma science and technology," International Journal of Mass Spectrometry, 248 (3), 87-102 (2006). 10. K. H. Schoenbach, and K. Becker, "20 years of microplasma research: a status report," The European Physical Journal D, 70 (2), 29 (2016). 11. S. Matsusaka, "Control of particle charge by atmospheric pressure plasma jet (APPJ): A review," Advanced Powder Technology, 30 (12), 2851-2858 (2019). 12. P. Vanraes, and A. Bogaerts, "Plasma physics of liquids—A focused review," Applied Physics Reviews, 5 (3)(2018). 13. I. Adamovich, S. Baalrud, A. Bogaerts, P. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden, and P. Favia, "The 2017 Plasma Roadmap: Low temperature plasma science and technology," Journal of Physics D: Applied Physics, 50 (32), 323001 (2017). 14. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. L. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui, and G. Zvereva, "Plasma–liquid interactions: a review and roadmap," Plasma Sources Science and Technology, 25 (5)(2016). 15. B. R. Locke, and S. M. Thagard, "Analysis and Review of Chemical Reactions and Transport Processes in Pulsed Electrical Discharge Plasma Formed Directly in Liquid Water," Plasma Chemistry and Plasma Processing, 32 (5), 875-917 (2012). 16. J. Franclemont, X. Fan, and S. M. Thagard, "Physicochemical mechanisms of plasma-liquid interactions within plasma channels in liquid," Journal of Physics D: Applied Physics, 48 (42), 424004 (2015). 17. P. Bruggeman, and C. Leys, "Non-thermal plasmas in and in contact with liquids," Journal of Physics D: Applied Physics, 42 (5)(2009). 18. N. Shirai, S. Uchida, and F. Tochikubo, "Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode," Plasma Sources Science and Technology, 23 (5), 054010 (2014). 19. Y. Akishev, G. Aponin, M. Grushin, V. Karalnik, A. Petryakov, and N. Trushktn, "Self-running low-frequency pulsed regime of DC electric discharge in gas bubble immersed in a liquid," Journal of Optoelectronics and Advanced Materials, 10 (8), 1917-1921 (2008). 20. K. Tachibana, Y. Takekata, Y. Mizumoto, H. Motomura, and M. Jinno, "Analysis of a pulsed discharge within single bubbles in water under synchronized conditions," Plasma Sources Science and Technology, 20 (3), 034005 (2011). 21. P. Bruggeman, J. Degroote, J. Vierendeels, and C. Leys, "DC-excited discharges in vapour bubbles in capillaries," Plasma Sources Science and Technology, 17 (2), 025008 (2008). 22. Q. Chen, J. Li, and Y. Li, "A review of plasma–liquid interactions for nanomaterial synthesis," Journal of Physics D: Applied Physics, 48 (42), 424005 (2015). 23. X. Huang, Y. Li, and X. Zhong, "Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry," Nanoscale Research Letters, 9 (1), 572 (2014). 24. M. Magureanu, N. B. Mandache, and V. I. Parvulescu, "Degradation of pharmaceutical compounds in water by non-thermal plasma treatment," Water Research, 81, 124-136 (2015). 25. M. Hijosa-Valsero, R. Molina, H. Schikora, M. Müller, and J. M. Bayona, "Removal of cyanide from water by means of plasma discharge technology," Water Research, 47 (4), 1701-1707 (2013). 26. T. Takamatsu, K. Uehara, Y. Sasaki, M. Hidekazu, Y. Matsumura, A. Iwasawa, N. Ito, M. Kohno, T. Azuma, and A. Okino, "Microbial inactivation in the liquid phase induced by multigas plasma jet," PloS one, 10 (7), e0132381 (2015). 27. D. Van Khoai, H. Miyahara, T. Yamamoto, P. T. Tue, A. Okino, and Y. Takamura, "Development of AC-driven liquid electrode plasma for sensitive detection of metals," Japanese Journal of Applied Physics, 55 (2S), 02BC23 (2016). 28. S. L. C. Ferreira, A. S. Souza, G. C. Brandao, H. S. Ferreira, W. N. L. dos Santos, M. F. Pimentel, and M. G. R. Vale, "Direct determination of iron and manganese in wine using the reference element technique and fast sequential multi-element flame atomic absorption spectrometry," Talanta, 74 (4), 699-702 (2008). 29. M. Krawczyk, and M. Jeszka-Skowron, "Multiwalled carbon nanotubes as solid sorbent in dispersive micro solid-phase extraction for the sequential determination of cadmium and lead in water samples," Microchemical Journal, 126, 296-301 (2016). 30. M. Bingöl, G. Yentür, B. ER DEMİRHAN, and A. Oektem, "Determination of some heavy metal levels in soft drinks from Turkey using ICP-OES method," Czech journal of food sciences, 28 (3)(2010). 31. J. Y. Cabon, P. Giamarchi, and A. Le Bihan, "Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: A comparative study," Analytica Chimica Acta, 664 (2), 114-120 (2010). 32. P. Stockwell, and W. Corns, "The role of atomic fluorescence spectrometry in the automatic environmental monitoring of trace element analysis," Journal of Analytical Methods in Chemistry, 15 (3), 79-84 (1993). 33. D. A. Skoog, F. J. Holler, and S. R. Crouch, "Principles of Instrumental Analysis ", Cengage Learning, (2017), pp. 34. F. Rezaei, P. Vanraes, A. Nikiforov, R. Morent, and N. De Geyter, "Applications of Plasma-Liquid Systems: A Review," Materials, 12 (17), 2751 (2019). 35. S. Cohen, I. Chajanovsky, and R. Y. Suckeveriene, "Recent Developments in Enzyme-Free PANI-Based Electrochemical Nanosensors for Pollutant Detection in Aqueous Environments," Polymers, 17 (10), 1320 (2025). 36. S. Kumar, P. P. Singh, A. K. Arya, D. Sur, and S. Kaushal, "SnO2/SnSbP nanocomposite–based ion-selective electrode for the trace level sensing of Pb2+ ions in waste water samples," Ionics, 1-12 (2025). 37. R. F. Aglan, H. M. Saleh, and G. G. Mohamed, "Potentiometric determination of mercury (II) ion in various real samples using novel modified screen-printed electrode," Applied Water Science, 8 (5), 141 (2018). 38. C. Yin, Y. Liu, T. Hu, and X. Chen, "Graphitic Carbon Nitride Nanomaterials-Based Electrochemical Sensing Interfaces for Monitoring Heavy Metal Ions in Aqueous Environments," Nanomaterials, 15 (7), 564 (2025). 39. Y. K. Nubatonis, R. Roto, D. Siswanta, M. Keikimanova, and A. Hosseini-Bandegharaei, "Smartphone colorimetry for rapid environmental monitoring: Detecting Ni2+ using EDTA and mercapto succinic acid functionalized silver nanoparticles," Journal of Molecular Liquids, 426, 127351 (2025). 40. C. Guo, E. Cui, X. Xu, and D. Yang, "Ionophore-based nanospheres enable selective and sensitive fluorescence detection of copper ions," Talanta, 281, 126855 (2025). 41. Y. Zhang, J. Liu, X. Mao, G. Chen, and D. Tian, "Review of miniaturized and portable optical emission spectrometry based on microplasma for elemental analysis," TrAC Trends in Analytical Chemistry, 144, 116437 (2021). 42. Y. Cai, S.-H. Li, S. Dou, Y.-L. Yu, and J.-H. Wang, "Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry," Analytical Chemistry, 87 (2), 1366-1372 (2015). 43. T. Krähling, A. Michels, S. Geisler, S. Florek, and J. Franzke, "Investigations into modeling and further estimation of detection limits of the liquid electrode dielectric barrier discharge," Analytical Chemistry, 86 (12), 5822-5828 (2014). 44. M. Li, K. Li, L. He, X. Zeng, X. Wu, X. Hou, and X. Jiang, "Point Discharge Microplasma Optical Emission Spectrometer: Hollow Electrode for Efficient Volatile Hydride/Mercury Sample Introduction and 3D-Printing for Compact Instrumentation," Analytical Chemistry, 91 (11), 7001-7006 (2019). 45. T. C. a. P. Mezei, "Direct solution analysis by glow discharge: electrolyte-cathode discharge spectrometry," Journal of Analytical Atomic Spectrometry, (1994). 46. P. Mezei, and T. Cserfalvi, "Electrolyte Cathode Atmospheric Glow Discharges for Direct Solution Analysis," Applied Spectroscopy Reviews, 42 (6), 573-604 (2007). 47. K. Greda, K. Swiderski, P. Jamroz, and P. Pohl, "Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn," Analytical Chemistry, 88 (17), 8812-8820 (2016). 48. M. Gorska, P. Pohl, and K. Greda, "The application of antioxidant compounds to minimize matrix effects in flowing liquid anode atmospheric pressure glow discharge optical emission spectrometry," Microchemical Journal, 164, 105975 (2021). 49. P. Zheng, Y. Luo, J. Wang, Y. Yang, Q. Hu, X. Mao, and C. Lai, "Improved solution cathode glow discharge micro-plasma source with a geometrically optimized stainless steel auxiliary cathode for optical emission spectrometry of metal elements," Microchemical Journal, 172, 106883 (2022). 50. M. Yuan, X. Peng, F. Ge, Q. Li, K. Wang, D.-G. Yu, and Z. Wang, "Simplified design for solution anode glow discharge atomic emission spectrometry device for highly sensitive detection of Ag, Bi, Cd, Hg, Pb, Tl, and Zn," Microchemical Journal, 155(2020). 51. Y. Liu, C. Yang, P.-J. Xing, X. Liu, J.-Z. Liu, and Z.-L. Zhu, "Highly sensitive determination of arsenic in water samples by hydrogen-doped solution anode glow discharge-optical emission spectrometry," Journal of Analytical Atomic Spectrometry, 38 (3), 742-750 (2023). 52. C. Yang, G. Cheng, S. Q. Cheng, X. Liu, Y. Liu, H. T. Zheng, S. H. Hu, and Z. L. Zhu, "Direct and Sensitive Determination of Antimony in Water by Hydrogen-Doped Solution Anode Glow Discharge-Optical Emission Spectrometry Without Hydride Generation," Anal Chem, 93 (49), 16393-16400 (2021). 53. Y. Zhu, R. E. Russo, and G. C. Y. Chan, "Temporal characterization of fundamental plasma parameters in pulsed liquid electrode plasma (LEP) optical emission spectrometry," Spectrochimica Acta Part B: Atomic Spectroscopy, 179, 106089 (2021). 54. H. W. Chang, and C. C. Hsu, "Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior," Plasma Sources Science & Technology, 20 (4)(2011). 55. H.-W. Chang, and C.-C. Hsu, "Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour," Journal of Physics D: Applied Physics, 45 (25)(2012). 56. A.-H. Hsieh, H.-W. Chang, and C.-C. Hsu, "The bubble to jetting transition mechanism of plasmas in NaNO3solutions sustained by pulsed power," Journal of Physics D: Applied Physics, 45 (41)(2012). 57. C. Y. Wang, and C. C. Hsu, "Online, Continuous, and Interference-Free Monitoring of Trace Heavy Metals in Water Using Plasma Spectroscopy Driven by Actively Modulated Pulsed Power," Environ Sci Technol, 53 (18), 10888-10896 (2019). 58. P. Zheng, Y. Chen, J. Wang, and S. Xue, "A pulsed atmospheric-pressure discharge generated in contact with flowing electrolyte solutions for metal element analysis by optical emission spectrometry," Journal of Analytical Atomic Spectrometry, 31 (10), 2037-2044 (2016). 59. P. Zheng, Y. Yang, J. Wang, H. I. A. Qazi, M. Wu, Y. He, Q. Hu, and N. Ding, "Development of milli-second pulsed atmospheric pressure solution cathode glow discharge optical emission spectroscopy for detecting metal elements in aqueous solution," Journal of Analytical Atomic Spectrometry, 37 (9), 1806-1814 (2022). 60. H. Yuan, D.-Z. Yang, X. Li, L. Zhang, X.-F. Zhou, W.-C. Wang, and Y. Xu, "A pulsed electrolyte cathode discharge used for metal element analysis by atomic emission spectrometry," Physics of Plasmas, 26 (5)(2019). 61. D. Sun, X. Ma, J. Chang, G. Zhang, M. Su, M. Sikorski, V. Detalle, and X. Bai, "Analysis of Trace Heavy Metal in Solution Using Liquid Cathode Glow Discharge Spectroscopy," Sensors, 24 (23), 7756 (2024). 62. Y. Kohara, Y. Terui, M. Ichikawa, K. Yamamoto, T. Shirasaki, K. Kohda, T. Yamamoto, and Y. Takamura, "Atomic emission spectrometry in liquid electrode plasma using an hourglass microchannel," Journal of Analytical Atomic Spectrometry, 30 (10), 2125-2128 (2015). 63. H. Yuan, X.-F. Zhou, Y. Nie, Y. Li, J.-P. Liang, D.-Z. Yang, E.-Y. Yan, W.-C. Wang, and Y. Xu, "Temporal resolved atomic emission spectroscopy on a pulsed electrolyte cathode discharge for improving the detection sensitivity of Cu," Spectrochimica Acta Part B: Atomic Spectroscopy, 177, 106072 (2021). 64. B. Cao, L. A. Adutwum, A. O. Oliynyk, E. J. Luber, B. C. Olsen, A. Mar, and J. M. Buriak, "How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics," ACS Nano, 12 (8), 7434-7444 (2018). 65. 李輝煌, "田口方法-品質設計的原理與實務 ", 高立圖書有限公司, pp. 66. S. Kiranyaz, T. Ince, and M. Gabbouj, in Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 13-44. 67. P. I. Frazier, "A tutorial on Bayesian optimization," arXiv preprint arXiv:1807.02811, (2018). 68. D. Wang, D. Tan, and L. Liu, "Particle swarm optimization algorithm: an overview," Soft Computing, 22 (2), 387-408 (2018). 69. J. Kennedy, and R. Eberhart, presented at the Proceedings of ICNN'95 - International Conference on Neural Networks, 1995 (unpublished). 70. P. J. M. van Laarhoven, and E. H. L. Aarts, in Simulated Annealing: Theory and Applications, Springer Netherlands, Dordrecht, 1987, pp. 7-15. 71. Y. A. Kaplan, "Forecasting of global solar radiation: A statistical approach using simulated annealing algorithm," Engineering Applications of Artificial Intelligence, 136, 109034 (2024). 72. S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint arXiv:1609.04747, (2016). 73. N. Eguchi, T. Fukazawa, H. Kanda, K. Yamamoto, T. Miyake, and T. N. Murakami, "Performance optimization of perovskite solar cells with automated spin-coating system and artificial intelligence technologies," EES Solar, (2025). 74. E. Kuram, and B. Ozcelik, "Optimization of machining parameters during micro-milling of Ti6Al4V titanium alloy and Inconel 718 materials using Taguchi method," Proceedings of the Institution of Mechanical Engineers, Part B, 231 (2), 228-242 (2017). 75. Z. Khan, B. Prasad, and T. Singh, "Machining condition optimization by genetic algorithms and simulated annealing," Computers & Operations Research, 24 (7), 647-657 (1997). 76. A. M. Zain, H. Haron, and S. Sharif, "Genetic Algorithm and Simulated Annealing to estimate optimal process parameters of the abrasive waterjet machining," Engineering with Computers, 27 (3), 251-259 (2011). 77. C. P. Mohanty, S. S. Mahapatra, and M. R. Singh, "A particle swarm approach for multi-objective optimization of electrical discharge machining process," Journal of Intelligent Manufacturing, 27 (6), 1171-1190 (2016). 78. O. O. Vergara-Villegas, C. F. Ramírez-Espinoza, V. G. Cruz-Sánchez, M. Nandayapa, and R. Ñeco-Caberta, in New Perspectives on Applied Industrial Tools and Techniques, edited by J. L. García-Alcaraz, G. Alor-Hernández, A. A. Maldonado-Macías and C. Sánchez-Ramírez, Springer International Publishing, Cham, 2018, pp. 129-151. 79. B. Solarte-Pardo, D. Hidalgo, and S.-S. Yeh, "Cutting Insert and Parameter Optimization for Turning Based on Artificial Neural Networks and a Genetic Algorithm," Applied Sciences, 9 (3), 479 (2019). 80. M. D. Selvam, D. Dawood, and D. G. Karuppusami, "Optimization of machining parameters for face milling operation in a vertical CNC milling machine using genetic algorithm," IRACST-Engineering Science and Technology: An International Journal (ESTIJ), 2 (4)(2012). 81. I. Puertas, and C. J. Luis, "A study on the machining parameters optimisation of electrical discharge machining," Journal of Materials Processing Technology, 143-144, 521-526 (2003). 82. M. S. Hewidy, T. A. El-Taweel, and M. F. El-Safty, "Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM," Journal of Materials Processing Technology, 169 (2), 328-336 (2005). 83. V. Dutta, S. Sharma, K. Chopra, and B. Singh, "Hybrid electric discharge machining processes for hard materials: a review," Materials Focus, 5 (3), 202-208 (2016). 84. A. Ramirez, E. Lam, D. P. Gutierrez, Y. Hou, H. Tribukait, L. M. Roch, C. Copéret, and P. Laveille, "Accelerated exploration of heterogeneous CO2 hydrogenation catalysts by Bayesian-optimized high-throughput and automated experimentation," Chem Catalysis, 4 (2), 100888 (2024). 85. X. Wang, L. Yan, and Q. Zhang, presented at the 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA), 2021 (unpublished). 86. M. Yaqub, J. Feng, M. S. Zia, K. Arshid, K. Jia, Z. U. Rehman, and A. Mehmood, "State-of-the-Art CNN Optimizer for Brain Tumor Segmentation in Magnetic Resonance Images," Brain Sciences, 10 (7), 427 (2020). 87. H. Hong, P. Tsangaratos, I. Ilia, C. Loupasakis, and Y. Wang, "Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping," Science of The Total Environment, 742, 140549 (2020). 88. L.-H. Ren, Z.-F. Ye, and Y.-P. Zhao, "A modeling method for aero-engine by combining stochastic gradient descent with support vector regression," Aerospace Science and Technology, 99, 105775 (2020). 89. A. Lopez-Rincon, A. Tonda, M. Elati, O. Schwander, B. Piwowarski, and P. Gallinari, "Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification," Applied Soft Computing, 65, 91-100 (2018). 90. H. Tao, and X. Lu, presented at the 2018 37th Chinese Control Conference (CCC), 2018 (unpublished). 91. S. N. Endah, A. P. Widodo, M. L. Fariq, S. I. Nadianada, and F. Maulana, presented at the 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), 2017 (unpublished). 92. C.-Y. Wang, "Development of Rapid Analysis of Heavy Metal Detection Using Plasma in Solution with Optical Emission Spectroscopy," (2023). 93. T. Instruments, "LMx24, LMx24x, LMx24xx, LM2902, LM2902x, LM2902xx, LM2902xxx Quadruple Operational Amplifiers," (2024). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99398 | - |
| dc.description.abstract | 工業濕製程與廢水排放常含有多種重金屬,如銅 (Cu)、鎳 (Ni)、鋅 (Zn)、鉛 (Pb)。若濃度控制不當,不僅影響製程品質與反應速率,亦可能對環境造成長期污染。而傳統電感耦合式光譜法 (ICP-OES) 與 原子吸收光譜法(AAS) 等離線分析受限於實驗室檢測與回報延遲,難以因應取樣頻率高之製程控制與排放警戒。本研究整合脈衝式水溶液電漿光譜 (solution plasma–OES) 與嵌入式微電腦 (Raspberry Pi) 控制單元,建立一套連續、快速之線上多金屬自動監測平台,並透過系統化參數研究與梯度導向參數優化,提升檢測靈敏度與長期穩定度。
第一部分為討論脈衝式水溶液電漿光譜系統不同參數(脈衝開啟時間、脈衝關閉時間、電壓值)對於不同金屬之光譜強度響應,於1 wt % 硝酸溶液中進行系統性參數研究(Parametric Study)的定量分析。並針對四種金屬的最佳參數條件個別建立檢量線,得到低於 ppm 等級的檢測能力。隨後進行線上長期測試,於過程中加藥並觀察光譜強度之變化,並評估其長期穩定度,驗證其相對標準差低於5 %,濃度漂移控制在 ±3 % 以內。 第二部分為開發結合梯度資訊之參數優化演算法,並針對其超參數(步伐調整方式、各金屬之迭代次數)進行微調與討論,並針對使用者需求提出三種搜尋策略,其中以全局梯度搜尋 (GSS) 表現最佳。透過整合式的多金屬優化,於270個參數的多維空間中,其實驗操作步數 < 80步即可得到最佳的參數條件;在此條件下 Cu、Ni、Pb、Zn 之 偵測極限 (LOD) 分別達 0.116、0.234、0.029、0.287 ppm。最後針對未知溶液(pH = 2 硝酸溶液)進行演算法的可行性驗證。 | zh_TW |
| dc.description.abstract | Industrial wet-chemical processes and wastewater effluents often contain multiple heavy-metal ions such as Cu, Ni, Zn, and Pb. It’s obvious that inadequate concentration control not only degrades product quality and reaction rates but also poses long-term environmental risks. However, Conventional off-line techniques such as ICP-OES and AAS are limited by laboratory analyses and delayed reports, making them unsuitable for high-frequency process control and real-time discharge alarms.
This study integrates pulsed solution-plasma optical emission spectroscopy (solution plasma–OES) with an embedded micro-controller unit (Raspberry Pi + Arduino) to construct a continuous, high-speed, on-line platform for multi-metal monitoring. A combined approach of systematic parametric study and gradient-guided parameter optimization algorithm is proposed to enhance detection sensitivity and long-term stability. The first part includes parametric study and Longterm qualification test. The influences of pulse on-time, off-time, and voltage on the emission intensities of Cu, Ni, Zn, and Pb were quantified in 1 wt % nitric acid solution (HNO3). Calibration curves are established under the element optimum conditions and yield sub-ppm limits of detection (LODs). Furthermore, A continuous longterm test is evaluated with dosing qualified metal ion in the process, the result shows high stability and accurcy with relative standard deviations below 5 % and concentration drift within ± 3 %. In second part, a gradient-based parameter-search algorithm was developed. Hyperparameters (step-adjusted method, number of iteration per element) algorithm is tuned and discussed, and three search strategies were introduced based on user’s purpose. The result shows that GSS out-performed the other stragedy in fewer than 80 experiments within a 270-point parameter space. Under this optimized condition for each metal, LODs of 0.116 ppm (Cu), 0.234 ppm (Ni), 0.029 ppm (Pb), and 0.287 ppm (Zn) were achieved. The algorithm was further validated on an unknown sample (pH = 2 HNO₃), demonstrating capability and feasibility. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:09:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:09:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 vii ABSTRACT ix 目次 xi 圖次 xv 表次 xxvi 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 3 第 2 章 文獻回顧 5 2.1 電漿之簡介 5 2.1.1 電漿產生機制與分類 5 2.1.2 崩潰電壓與帕邢定律 8 2.1.3 電漿之分類 9 2.1.4 微電漿系統之簡介與分類 11 2.2 水溶液電漿系統 20 2.2.1 水溶液電漿系統之簡介 20 2.2.2 水溶液電漿之系統分類 21 2.2.3 水溶液電漿之應用 28 2.3 水溶液電漿光譜系統與重金屬檢測應用 32 2.3.1 傳統重金屬檢測方法 32 2.3.2 水溶液電漿光譜法之介紹 41 2.3.3 微電漿光譜法之參數化研究 52 2.4 參數優化演算法 61 2.4.1 黑盒子函數 61 2.4.2 傳統優化方法 63 2.4.3 參數優化演算法之介紹 69 2.4.4 參數最優化演算法之應用 78 第 3 章 實驗裝置與模型架構 91 3.1 脈衝式電源驅動水溶液電漿光譜檢測之系統架構 91 3.2 脈衝式電源操作模式 94 3.2.1 控制系統之邏輯 94 3.2.2 電訊號操作參數條件介紹 95 3.2.3 脈衝式電訊號參數之自動化設定 97 3.3 水溶液成分 99 3.3.1 實驗藥品 99 3.3.2 放流水重金屬含量標準 101 3.4 檢測設備 102 3.4.1 溶液性質量測 102 3.4.2 電性診斷 102 3.4.3 光學診斷 102 3.5 光譜數據處理與電訊號實驗參數設置 105 3.5.1 光譜數據處理 105 3.5.2 系統性實驗參數條件 106 3.6 水溶液電漿參數優化演算法 108 3.6.1 電訊號條件參數測試範圍與溶液平台 108 3.6.2 梯度上升優化 110 3.6.3 演算法流程 111 3.6.4 分數計算與調整方式 115 3.6.5 高斯過程之參數網格與擬合參數 117 3.6.6 參數優化策略 119 第 4 章 實驗結果與討論 121 4.1 重金屬檢測平台之操作參數研究 121 4.1.1 光譜之重金屬特徵峰訊號 121 4.1.2 不同電壓對於目標金屬訊號之定量分析 123 4.1.3 不同脈衝時間對於目標金屬訊號之定量分析 125 4.2 重金屬濃度的定量分析與長期測試 129 4.2.1 各金屬之最佳參數條件與濃度線性回歸 129 4.2.2 線上長期測試之穩定性與驗證 131 4.3 參數優化平台之建立 134 4.3.1 不同電參數條件之金屬分數分布 134 4.3.2 參數優化演算法之超參數調整 136 4.3.3 參數優化過程可視化 143 4.3.4 各個參數搜索策略的性能 145 4.4 參數優化策略之結果與濃度定量分析 148 4.4.1 參數優化策略之濃度定量分析 148 4.4.2 未知溶液之參數優化與濃度定量分析 153 第 5 章 結論與未來展望 159 參考文獻 161 附錄 170 附錄 A 補充圖表 170 附錄 B 脈衝訊號電路設計 179 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水溶液電漿 | zh_TW |
| dc.subject | 重金屬濃度定量分析 | zh_TW |
| dc.subject | 線上檢測 | zh_TW |
| dc.subject | 系統性參數研究 | zh_TW |
| dc.subject | 長期測試 | zh_TW |
| dc.subject | 參數優化演算法 | zh_TW |
| dc.subject | parameter-optimization algorithm | en |
| dc.subject | Plasma in Solution | en |
| dc.subject | heavy-metal quantification | en |
| dc.subject | on-line monitoring | en |
| dc.subject | parametric study | en |
| dc.subject | long-term stability | en |
| dc.title | 應用水溶液電漿光譜技術於重金屬檢測之參數研究與優化演算法 | zh_TW |
| dc.title | Parametric Study and Optimization Algorithm for Heavy Metal Detection in Solution using Plasma Emission Spectroscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 游文岳;盧彥文 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yueh Yu ;Yen-Wen Lu | en |
| dc.subject.keyword | 水溶液電漿,重金屬濃度定量分析,線上檢測,系統性參數研究,長期測試,參數優化演算法, | zh_TW |
| dc.subject.keyword | Plasma in Solution,heavy-metal quantification,on-line monitoring,parametric study,long-term stability,parameter-optimization algorithm, | en |
| dc.relation.page | 188 | - |
| dc.identifier.doi | 10.6342/NTU202503156 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2030-07-31 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-31 | 11.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
