Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99395
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成zh_TW
dc.contributor.advisorLi-Chen Fuen
dc.contributor.author陳光遠zh_TW
dc.contributor.authorGuang-Yuan Chenen
dc.date.accessioned2025-09-10T16:09:23Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-03-
dc.identifier.citationKaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986, 2022.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):221–231, 2012.

Sushmita Poudel. Recurrent neural network (RNN) architecture explained, 2020. Accessed: 2024-07-19.

Applied AI Course. LSTM in machine learning, 2021. Accessed: 2024-07-19.

Dinesh Naik and C.D. Jaidhar. A novel multi-layer attention framework for visual description prediction using bidirectional LSTM. Journal of Big Data, 9(1):104, 2022.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929, 2016.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626, 2017.

Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and Xia Hu. Score-CAM: Score-weighted visual explanations for convolutional neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 24–25, 2020.

Mohsen Mozafari, Andrew J. Law, Rafik A. Goubran, and James R. Green. Respiratory rate estimation from thermal video data using spatio-temporal deep learning. Sensors, 24(19):6386, 2024.

Wui Ip, Maria Xenochristou, Elaine Sui, Elyse Ruan, Ryan Ribeira, Debadutta Dash, Malathi Srinivasan, Maja Artandi, Jesutofunmi A. Omiye, Nicholas Scoulios, et al. Hospitalization prediction from the emergency department using computer vision AI with short patient video clips. npj Digital Medicine, 7(1):371, 2024.

Gabriele Savioli, Iride Francesca Ceresa, Nicole Gri, Gaia Bavestrello Piccini, Yaroslava Longhitano, Christian Zanza, Andrea Piccioni, Ciro Esposito, Giovanni Ricevuti, and Maria Antonietta Bressan. Emergency department overcrowding: understanding the factors to find corresponding solutions. Journal of Personalized Medicine, 12(2):279, 2022.

Marina Sartini, Alessio Carbone, Alice Demartini, Luana Giribone, Martino Oliva, Anna Maria Spagnolo, Paolo Cremonesi, Francesco Canale, and Maria Luisa Cristina. Overcrowding in emergency department: causes, consequences, and solutions—a narrative review. Healthcare, 10:1625, 2022.

Benjamin C. Sun, Renee Y. Hsia, Robert E. Weiss, David Zingmond, Li-Jung Liang, Weijuan Han, Heather McCreath, and Steven M. Asch. Effect of emergency department crowding on outcomes of admitted patients. Annals of Emergency Medicine, 61(6):605–611, 2013.

Nicki Gilboy, Paula Tanabe, Debbie Travers, Alexander M. Rosenau, et al. Emergency severity index (ESI): A triage tool for emergency department care, version 4. Implementation Handbook, 2012:12–0014, 2012.

Chip-Jin Ng, Zui-Shen Yen, Jeffrey Che-Hung Tsai, Li Chin Chen, Shou Ju Lin, Yiing Yiing Sang, Jih-Chang Chen, TTAS National Working Group, et al. Validation of the Taiwan triage and acuity scale: a new computerised five-level triage system. Emergency Medicine Journal, 28(12):1026–1031, 2011.

Andre Esteva, Katherine Chou, Serena Yeung, Nikhil Naik, Ali Madani, Ali Mottaghi, Yun Liu, Eric Topol, Jeff Dean, and Richard Socher. Deep learning-enabled medical computer vision. npj Digital Medicine, 4(1):5, 2021.

Serena Yeung, Francesca Rinaldo, Jeffrey Jopling, Bingbin Liu, Rishab Mehra, N. Lance Downing, Michelle Guo, Gabriel M. Bianconi, Alexandre Alahi, Julia Lee, et al. A computer vision system for deep learning-based detection of patient mobilization activities in the ICU. npj Digital Medicine, 2(1):11, 2019.

Takumi Ino, Mina Samukawa, Tomoya Ishida, Naofumi Wada, Yuta Koshino, Satoshi Kasahara, and Harukazu Tohyama. Validity of AI-based gait analysis for simultaneous measurement of bilateral lower limb kinematics using a single video camera. Sensors, 23(24):9799, 2023.

Jason Moore, Peter McMeekin, Thomas Parkes, Richard Walker, Rosie Morris, Samuel Stuart, Victoria Hetherington, and Alan Godfrey. Contextualizing remote fall risk: video data capture and implementing ethical AI. npj Digital Medicine, 7(1):61, 2024.

Sabrina Pearce, Tyara Marchand, Tara Shannon, Heather Ganshorn, and Eddy Lang. Emergency department crowding: an overview of reviews describing measures, causes, and harms. Internal and Emergency Medicine, 18(4):1137–1158, 2023.

Jeffrey Wiswell, Kenyon Tsao, M. Fernanda Bellolio, Erik P. Hess, and Daniel Cabrera. “Sick” or “not-sick”: accuracy of system 1 diagnostic reasoning for the prediction of disposition and acuity in patients presenting to an academic ED. The American Journal of Emergency Medicine, 31(10):1448–1452, 2013.

Daniel Cabrera, Jonathan F. Thomas, Jeffrey L. Wiswell, James M. Walston, Joel R. Anderson, Erik P. Hess, and M. Fernanda Bellolio. Accuracy of ‘my gut feeling’: comparing system 1 to system 2 decision-making for acuity prediction, disposition and diagnosis in an academic emergency department. Western Journal of Emergency Medicine, 16(5):653, 2015.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effective number of samples. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277, 2019.

Woo Suk Hong, Adrian Daniel Haimovich, and R. Andrew Taylor. Predicting hospital admission at emergency department triage using machine learning. PloS One, 13(7):e0201016, 2018.

Yoshihiko Raita, Tadahiro Goto, Mohammad Kamal Faridi, David F.M. Brown, Carlos A. Camargo, and Kohei Hasegawa. Emergency department triage prediction of clinical outcomes using machine learning models. Critical Care, 23:1–13, 2019.

Bruno P. Roquette, Hitoshi Nagano, Ernesto C. Marujo, and Alexandre C. Maiorano. Prediction of admission in pediatric emergency department with deep neural networks and triage textual data. Neural Networks, 126:170–177, 2020.

Li-Hung Yao, Ka-Chun Leung, Chu-Lin Tsai, Chien-Hua Huang, and Li-Chen Fu. A novel deep learning–based system for triage in the emergency department using electronic medical records: retrospective cohort study. Journal of Medical Internet Research, 23(12):e27008, 2021.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814, 2010.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard, and Lawrence Jackel. Handwritten digit recognition with a backpropagation network. Advances in Neural Information Processing Systems, 2, 1989.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415, 2016.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal features with 3D convolutional networks. Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497, 2015.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788, 2016.

Colin Lea, Michael D. Flynn, Rene Vidal, Austin Reiter, and Gregory D. Hager. Temporal convolutional networks for action segmentation and detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165, 2017.

Shao-Chi Lu, Guang-Yuan Chen, An-Sheng Liu, Jen-Tang Sun, Jun-Wan Gao, Chien-Hua Huang, Chu-Lin Tsai, and Li-Chen Fu. Deep learning–based electrocardiogram model(eianet) to predict emergencydepartmentcardiacarrest: Developmentandexternal validation study. Journal of medical Internet research, 27:e67576, 2025.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. CBAM: Convolutional block attention module. Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99395-
dc.description.abstract急診室擁擠已成為現代醫療體系中的一項重大挑戰,不僅延誤病患的及時治療,也影響資源的最佳分配。臨床醫師常依賴快速且主觀的「臨床直覺」評估來輔助分診與決定是否住院。我們假設深度學習模型同樣能利用病患的影像外觀,以更客觀且一致的方式預測住院需求。本研究提出一種創新的心肺雙模態深度學習模型,整合兩種非侵入式資料:從短程呼吸影片中擷取的呼吸波形影像,以及自心電圖(ECG)影像。為了強化模型對關鍵特徵的聚焦,我們引入注意力機制,並使用 Class-Balanced Loss 處理訓練資料中嚴重的類別不平衡。考量只有部分病患提供完整的 ECG 資料,我們先在外部資料集上以 ConvNeXt 架構預訓練 ECG 特徵擷取器,以提升心電訊號的表示能力。對於呼吸模態,我們首先在無固定攝影機角度的複雜環境中,自動定位病患的胸部感興趣區域;接著透過 3D 卷積神經網路與雙向長短期記憶(BiLSTM)網路組合,估計呼吸訊號並將其轉換為影像格式,由端到端訓練的 ConvNeXt 模型進行特徵抽取。最後,我們將兩種模態的特徵向量與一個標示 ECG 資料可用性的二元指標串聯,並透過全連接層預測住院結果。

在臺大醫院(NTUH)資料集上的實驗結果顯示,融合 ECG 與呼吸模態的模型達到 AUROC 0.863 和準確率 0.814;僅使用呼吸影片的模型也獲得 AUROC 0.810 和準確率 0.788。這些成果證明本方法具備作為急診室客觀、非侵入式臨床決策支援工具的可行性。
zh_TW
dc.description.abstractEmergency department overcrowding has emerged as a critical challenge in modern healthcare systems, compromising timely patient care and optimal resource allocation. Clinicians often rely on rapid, subjective “clinical gestalt” assessments to aid triage and disposition decisions. We hypothesize that a deep learning model can similarly leverage patient appearance to predict hospital admission with greater objectivity and consistency. In this study, we propose a novel Cardio-Respiratory Deep Learning Model that integrates information from two modalities: electrocardiogram (ECG) images and respiratory waveform images extracted from short patient breathing videos. To enhance the model's focus on critical features, we incorporate an attention mechanism and address severe class imbalance in our training data using Class-Balanced Loss. Recognizing that only a subset of patients provide complete ECG data, we pretrain our ECG feature extractor on an external dataset using a ConvNext model to improve cardiac signal representation. For the respiratory modality, we first deploy a deep learning method to automatically localize the patient's chest region of interest (ROI) in unconstrained environments without relying on a fixed camera position. The respiratory signal is then estimated using a combination of 3D convolutional neural networks and bidirectional long short-term memory (LSTM) networks, followed by converting the signal into an image format for feature extraction via a ConvNext model trained end-to-end. Finally, the extracted features from both modalities, along with a binary indicator denoting ECG data availability, are concatenated and processed through fully connected layers to predict hospital admission.

Experimental evaluation on the NTUH dataset demonstrates that our fusion model using both data modalities achieves AUROC of 0.863 and Accuracy of 0.814, whereas the model using only respiratory videos achieves AUROC of 0.810 and Accuracy of 0.788. These results demonstrate the potential of our method as an objective, non‑invasive clinical decision support tool for use in the emergency department.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:09:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:09:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝  i
中文摘要  ii
ABSTRACT  iii
CONTENTS  v
LIST OF FIGURES  viii
LIST OF TABLES  x
Chapter 1 Introduction  1
 1.1 Background  1
 1.2 Motivation  2
 1.3 Challenges  3
 1.4 Objectives  4
 1.5 Related Work  5
 1.6 Contributions  6
 1.7 Thesis Organization  7
Chapter 2 Preliminaries  9
 2.1 Convolutional Neural Network  9
  2.1.1 Convolutional Layers  10
  2.1.2 Pooling Layers  11
  2.1.3 Fully Connected Layers  12
  2.1.4 Activation Functions  13
  2.1.5 Residual Networks  14
  2.1.6 ConvNeXt  15
  2.1.7 3D Convolutional Neural Network  16
 2.2 Recurrent Neural Network  17
  2.2.1 Long Short-Term Memory  18
  2.2.2 Bidirectional LSTM  19
 2.3 CAM  20
  2.3.1 Grad-CAM  21
  2.3.2 Score-CAM  22
Chapter 3 Methodology  24
 3.1 System Overview  24
 3.2 Data Preprocessing  25
  3.2.1 Respiration Video Preprocessing Pipeline Overview  25
  3.2.2 Chest ROI Selection  26
  3.2.3 Respiratory Signal Estimation  29
  3.2.4 Respiratory Curve Image Preprocessing  30
  3.2.5 ECG Image Preprocessing  31
 3.3 Spatial Attention Module  33
 3.4 Transfer Learning for ECG Branch  35
 3.5 Indicator-Gated Dual-Branch Fusion  36
 3.6 Class-Balanced Loss  38
Chapter 4 Experiments  40
 4.1 Dataset  40
 4.2 Experimental Setup  42
 4.3 Evaluation Metrics  43
 4.4 Quantitative Result  45
 4.5 Ablation Study  48
 4.6 Visualization of Model Attention on Respiratory Curve  50
4.7 Visualization of Model Attention on ECG 51
Chapter 5 Conclusion  54
REFERENCES  56
-
dc.language.isoen-
dc.subject心電圖zh_TW
dc.subject住院預測zh_TW
dc.subject電腦視覺zh_TW
dc.subject深度學習zh_TW
dc.subject呼吸zh_TW
dc.subjectRespirationen
dc.subjectDeep Learningen
dc.subjectComputer Visionen
dc.subjectElectrocardiographyen
dc.subjectAdmission predictionen
dc.title基於急診室之心電圖影像與呼吸影片預測住院風險的深度學習模型zh_TW
dc.titleCardio-Respiratory Deep Learning Model for Predicting Hospital Admission from Emergency Department ECG Images and Respiratory Videosen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳祝嵩 ;李明穗;蔡居霖;黃建華zh_TW
dc.contributor.oralexamcommitteeChu-Song Chen;MS Lee;Chu-Lin Tsai;Chien-Hua Huangen
dc.subject.keyword住院預測,心電圖,呼吸,深度學習,電腦視覺,zh_TW
dc.subject.keywordAdmission prediction,Electrocardiography,Respiration,Deep Learning,Computer Vision,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202502727-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
dc.date.embargo-lift2028-08-01-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2028-08-01
9.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved