請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99392完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊姍樺 | zh_TW |
| dc.contributor.advisor | Shan-Hua Yang | en |
| dc.contributor.author | 白崴 | zh_TW |
| dc.contributor.author | Wei Pai | en |
| dc.date.accessioned | 2025-09-10T16:08:50Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Aichelman, H. E., Benson, B. E., Gomez-Campo, K., Martinez-Rugerio, M. I., Fifer, J. E., Tsang, L., Hughes, A. M., Bove, C. B., Nieves, O. C., & Pereslete, A. M. (2025). Cryptic coral diversity is associated with symbioses, physiology, and response to thermal challenge. Science advances, 11(3), eadr5237.
Ainsworth, T., & Hoegh-Guldberg, O. (2009). Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress. Aquatic Biology, 4(3), 289-296. Allendorf, F. W., Luikart, G. H., & Aitken, S. N. (2012). Conservation and the genetics of populations. John Wiley & Sons. Aronson, R. B., & Precht, W. F. (2001). White-band disease and the changing face of Caribbean coral reefs. The ecology and etiology of newly emerging marine diseases, 25-38. Assis, J., Fernández Bejarano, S. J., Salazar, V. W., Schepers, L., Gouvêa, L., Fragkopoulou, E., Leclercq, F., Vanhoorne, B., Tyberghein, L., & Serrão, E. A. (2024). Bio‐ORACLE v3. 0. Pushing marine data layers to the CMIP6 Earth System Models of climate change research. Global Ecology and Biogeography, 33(4), e13813. Ayre, D. J., & Hughes, T. P. (2000). Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution, 54(5), 1590-1605. Baird, A. H., Guest, J. R., & Willis, B. L. (2009). Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annual review of ecology, evolution, and systematics, 40(1), 551-571. Balbuena, J. A., Míguez-Lozano, R., & Blasco-Costa, I. (2013). PACo: a novel procrustes application to cophylogenetic analysis. PloS one, 8(4), e61048. Baums, I. B., Chamberland, V. F., Locatelli, N. S., & Conn, T. (2022). Maximizing genetic diversity in coral restoration projects. In Coral reef conservation and restoration in the Omics Age (pp. 35-53). Springer. Bayer, T., Neave, M. J., Alsheikh-Hussain, A., Aranda, M., Yum, L. K., Mincer, T., Hughen, K., Apprill, A., & Voolstra, C. R. (2013). The Microbiome of the Red Sea Coral Stylophora pistillata Is Dominated by Tissue-Associated Endozoicomonas Bacteria. Applied and Environmental Microbiology, 79(15), 4759-4762. https://doi.org/doi:10.1128/AEM.00695-13 Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827-833. Ben-Haim, Y., Thompson, F., Thompson, C., Cnockaert, M., Hoste, B., Swings, J., & Rosenberg, E. (2003). Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. International journal of systematic and evolutionary microbiology, 53(1), 309-315. Berthaud, J., Clément, J., Emperaire, L., Louette, D., Pinton, F., Sanou, J., & Second, G. (2000). The role of local-level geneflow in enhancing and maintaining genetic diversity. Blakeway, D., & Hamblin, M. G. (2015). Self-generated morphology in lagoon reefs. PeerJ, 3, e935. Blasco-Costa, I., Hayward, A., Poulin, R., & Balbuena, J. A. (2021). Next-generation cophylogeny: unravelling eco-evolutionary processes. Trends in Ecology & Evolution, 36(10), 907-918. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., & Asnicar, F. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology, 37(8), 852-857. Buitrago‐López, C., Cárdenas, A., Hume, B. C., Gosselin, T., Staubach, F., Aranda, M., Barshis, D. J., Sawall, Y., & Voolstra, C. R. (2023). Disparate population and holobiont structure of pocilloporid corals across the Red Sea gradient demonstrate species‐specific evolutionary trajectories. Molecular Ecology, 32(9), 2151-2173. Cai, L., Tian, R.-M., Zhou, G., Tong, H., Wong, Y. H., Zhang, W., Chui, A. P. Y., Xie, J. Y., Qiu, J.-W., & Ang, P. O. (2018). Exploring coral microbiome assemblages in the South China Sea. Scientific reports, 8(1), 2428. Chaney, R. C. (2020). Marine geology and geotechnology of the South China Sea and Taiwan Strait. CRC Press. Chang, Y.-C., Tseng, R.-S., & Centurioni, L. R. (2010). Typhoon-induced strong surface flows in the Taiwan Strait and Pacific. Journal of oceanography, 66, 175-182. Charlesworth, B., Bartolomé, C., & NoëL, V. (2005). The detection of shared and ancestral polymorphisms. Genetics Research, 86(2), 149-157. Chien, H., Cheng, H.-Y., & Chiou, M.-D. (2014). Wave climate variability of Taiwan waters. Journal of oceanography, 70, 133-152. Combosch, D. J., & Vollmer, S. V. (2015). Trans-Pacific RAD-Seq population genomics confirms introgressive hybridization in Eastern Pacific Pocillopora corals. Molecular Phylogenetics and Evolution, 88, 154-162. Connell, J. H. (1973). Population ecology of reef-building corals. Biology and geology of coral reefs, 2, 205-245. Costanza, R., De Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global environmental change, 26, 152-158. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., & Sherry, S. T. (2011). The variant call format and VCFtools. bioinformatics, 27(15), 2156-2158. Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E., & Anderson, J. T. (2020). Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB Plants, 12(2), plaa005. Dietzel, A., Bode, M., Connolly, S. R., & Hughes, T. P. (2021). The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nature Ecology & Evolution, 5(5), 663-669. Dixon, G. B., Davies, S. W., Aglyamova, G. V., Meyer, E., Bay, L. K., & Matz, M. V. (2015). Genomic determinants of coral heat tolerance across latitudes. Science, 348(6242), 1460-1462. Doering, T., Tandon, K., Topa, S. H., Pidot, S. J., Blackall, L. L., & van Oppen, M. J. (2023). Genomic exploration of coral-associated bacteria: identifying probiotic candidates to increase coral bleaching resilience in Galaxea fascicularis. Microbiome, 11(1), 185. Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., & Leitão, P. J. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. Einbinder, S., Mass, T., Brokovich, E., Dubinsky, Z., Erez, J., & Tchernov, D. (2009). Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Marine Ecology Progress Series, 381, 167-174. Fan, T.-Y., Li, J.-J., Ie, S.-X., & Fang, L.-S. (2002). Lunar periodicity of larval release by pocilloporid corals in southern Taiwan. ZOOLOGICAL STUDIES-TAIPEI-, 41(3), 288-294. Flot, J.-F., Blanchot, J., Charpy, L., Cruaud, C., Licuanan, W. Y., Nakano, Y., Payri, C., & Tillier, S. (2011). Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC ecology, 11, 1-14. Frankham, R., Ballou, J., & Briscoe, D. (2018). Conservation genetics. Gardner, S. G., Camp, E. F., Smith, D. J., Kahlke, T., Osman, E. O., Gendron, G., Hume, B. C., Pogoreutz, C., Voolstra, C. R., & Suggett, D. J. (2019). Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave. Ecology and evolution, 9(3), 938-956. Gignoux-Wolfsohn, S. A., Aronson, F. M., & Vollmer, S. V. (2017). Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral. FEMS microbiology ecology, 93(7), fix080. Gilmour, J. P., Underwood, J. N., Howells, E. J., Gates, E., & Heyward, A. J. (2016). Biannual spawning and temporal reproductive isolation in Acropora corals. PloS one, 11(3), e0150916. Glynn, P. W. (1991). Coral reef bleaching in the 1980s and possible connections with global warming. Trends in Ecology & Evolution, 6(6), 175-179. Goodbody-Gringley, G., & de Putron, S. J. (2016). Brooding corals: planulation patterns, larval behavior, and recruitment dynamics in the face of environmental change. The cnidaria, past, present and future: the world of Medusa and her sisters, 279-289. Graham, N. A., & Nash, K. L. (2013). The importance of structural complexity in coral reef ecosystems. Coral reefs, 32, 315-326. Hending, D. (2025). Cryptic species conservation: a review. Biological Reviews, 100(1), 258-274. Hochart, C., Paoli, L., Ruscheweyh, H.-J., Salazar, G., Boissin, E., Romac, S., Poulain, J., Bourdin, G., Iwankow, G., & Moulin, C. (2023). Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean. Nature communications, 14(1), 3037. Hsu, P. C., Centurioni, L., Shao, H. J., Zheng, Q., Lu, C. Y., Hsu, T. W., & Tseng, R. S. (2021). Surface current variations and oceanic fronts in the southern East China Sea: Drifter experiments, coastal radar applications, and satellite observations. Journal of Geophysical Research: Oceans, 126(10), e2021JC017373. Hsueh, Y. (2000). The kuroshio in the east China sea. Journal of Marine Systems, 24(1-2), 131-139. Huang, Y.-Y., Chen, T.-R., Lai, K. P., Kuo, C.-Y., Ho, M.-J., Hsieh, H. J., Hsin, Y.-C., & Chen, C. A. (2024). Poleward migration of tropical corals inhibited by future trends of seawater temperature and calcium carbonate (CaCO3) saturation. Science of the Total Environment, 929, 172562. Johnston, E. C., Cunning, R., & Burgess, S. C. (2022). Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo′ orea and their symbionts (Symbiodiniaceae). Molecular Ecology, 31(20), 5368-5385. Keshavmurthy, S., Yang, S.-Y., Alamaru, A., Chuang, Y.-Y., Pichon, M., Obura, D., Fontana, S., De Palmas, S., Stefani, F., & Benzoni, F. (2013). DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Scientific reports, 3(1), 1520. Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., & Robbins, L. L. (2005). Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held, Knowlton, N., Brainard, R. E., Fisher, R., Moews, M., Plaisance, L., & Caley, M. J. (2010). Coral reef biodiversity. Life in the world’s oceans: diversity distribution and abundance, 65-74. Kohl, K. D. (2020). Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philosophical Transactions of the Royal Society B, 375(1798), 20190251. Koren, O., & Rosenberg, E. (2008). Bacteria associated with the bleached and cave coral Oculina patagonica. Microbial Ecology, 55, 523-529. Kuo, C.-Y., Keshavmurthy, S., Huang, Y.-Y., Ho, M.-J., Hsieh, H. J., Hsiao, A.-T., Lo, W.-C., Hsin, Y.-C., & Chen, C. A. (2023). Transitional coral ecosystem of Taiwan in the era of changing climate. In Coral Reefs of Eastern Asia under Anthropogenic Impacts (pp. 7-35). Springer. Lai, Z., Liu, Z., Deng, Y., Feng, W., Zhao, Y., Qin, S., & Sun, Y. (2024). Distinguishing the effects of micro‐and macro‐habitats on plant‐associated microbiomes in the Qinghai‐Tibetan Qaidam Basin. Land Degradation & Development, 35(10), 3344-3361. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. bioinformatics, 25(14), 1754-1760. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & Subgroup, G. P. D. P. (2009). The sequence alignment/map format and SAMtools. bioinformatics, 25(16), 2078-2079. Li, Z. (2019). Symbiotic microbiomes of coral reefs sponges and corals. Springer. Lim, S. J., & Bordenstein, S. R. (2020). An introduction to phylosymbiosis. Proceedings of the Royal Society B, 287(1922), 20192900. Lischer, H. E., & Excoffier, L. (2012). PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. bioinformatics, 28(2), 298-299. Lo, W. T., Hsieh, H. Y., Wu, L. J., Jian, H. B., Liu, D. C., & Su, W. C. (2010). Comparison of larval fish assemblages between during and after northeasterly monsoon in the waters around Taiwan, western North Pacific. Journal of Plankton Research, 32(7), 1079-1095. Luthfi, O. M., Handayani, M., Isdianto, A., Asadi, M. A., Atho’illah, T., & Affandi, M. (2020). Pseudomonas community in white syndrome diseases of Echinopora lamellosa coral at nature reserve Pulau Sempu, Indonesia. Ecol. Environ. Conserv, 26, 1368-1371. Maher, R. L., Epstein, H. E., & Vega Thurber, R. (2022). Dynamics of bacterial communities on coral reefs: implications for conservation. In Coral reef conservation and restoration in the omics age (pp. 97-116). Springer. Maher, R. L., Schmeltzer, E. R., Meiling, S., McMinds, R., Ezzat, L., Shantz, A. A., Adam, T. C., Schmitt, R. J., Holbrook, S. J., & Burkepile, D. E. (2020). Coral microbiomes demonstrate flexibility and resilience through a reduction in community diversity following a thermal stress event. Frontiers in Ecology and Evolution, 8, 555698. Malinsky, M., Trucchi, E., Lawson, D. J., & Falush, D. (2018). RADpainter and fineRADstructure: population inference from RADseq data. Molecular biology and evolution, 35(5), 1284-1290. Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10(7), 294-299. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal, 17(1), 10-12. Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., Harrison, S. P., Hurlbert, A. H., Knowlton, N., & Lessios, H. A. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology letters, 10(4), 315-331. Mokodongan, D. F., Taninaka, H., Sara, L., Kikuchi, T., Yuasa, H., Suyama, Y., & Yasuda, N. (2021). Spatial autocorrelation analysis using MIG-seq data indirectly estimated the gamete and larval dispersal range of the blue coral, Heliopora coerulea, within reefs. Frontiers in Marine Science, 8, 702977. Moran, N. A., & Baumann, P. (2000). Bacterial endosymbionts in animals. Current opinion in microbiology, 3(3), 270-275. Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology & Evolution, 9(10), 373-375. Moynihan, M. A., Goodkin, N. F., Morgan, K. M., Kho, P. Y., Lopes dos Santos, A., Lauro, F. M., Baker, D. M., & Martin, P. (2022). Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. The ISME journal, 16(1), 233-246. Mu, Y., Zhou, L., Zeng, X.-C., Liu, L., Pan, Y., Chen, X., Wang, J., Li, S., Li, W.-J., & Wang, Y. (2016). Arsenicitalea aurantiaca gen. nov., sp. nov., a new member of the family Hyphomicrobiaceae, isolated from high-arsenic sediment. International journal of systematic and evolutionary microbiology, 66(12), 5478-5484. Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., & Durbin, R. (2016). BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. bioinformatics, 32(11), 1749-1751. Neave, M. J., Apprill, A., Ferrier-Pagès, C., & Voolstra, C. R. (2016). Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Applied microbiology and biotechnology, 100, 8315-8324. Ogunseitan, O. (2008). Microbial diversity: form and function in prokaryotes. John Wiley & Sons. Onogi, T., & Sawayama, E. (2025). Skin mucus DNA with MIG-seq: a valuable combination for genome-wide SNP typing in aquaculture fish. Aquaculture International, 33(3), 227. Peixoto, R. S., Voolstra, C. R., Sweet, M., Duarte, C. M., Carvalho, S., Villela, H., Lunshof, J. E., Gram, L., Woodhams, D. C., & Walter, J. (2022). Harnessing the microbiome to prevent global biodiversity loss. Nature Microbiology, 7(11), 1726-1735. Pinsky, M. L., Clark, R. D., & Bos, J. T. (2023). Coral reef population genomics in an age of global change. Annual Review of Genetics, 57(1), 87-115. Pogoreutz, C., & Ziegler, M. (2024). Frenemies on the reef? Resolving the coral–Endozoicomonas association. Trends in Microbiology, 32(5), 422-434. Pollock, F. J., McMinds, R., Smith, S., Bourne, D. G., Willis, B. L., Medina, M., Thurber, R. V., & Zaneveld, J. R. (2018). Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nature communications, 9(1), 4921. Pootakham, W., Mhuantong, W., Putchim, L., Yoocha, T., Sonthirod, C., Kongkachana, W., Sangsrakru, D., Naktang, C., Jomchai, N., & Thongtham, N. (2018). Dynamics of coral‐associated microbiomes during a thermal bleaching event. MicrobiologyOpen, 7(5), e00604. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 41(D1), D590-D596. Rachmilovitz, E. N., Douek, J., & Rinkevich, B. (2024). Population genetics assessment of the model coral species Stylophora pistillata from Eilat, the Red Sea. Journal of Marine Science and Engineering, 12(2), 315. Radjasa, O. K., Salasia, S. I. O., Sabdono, A., Wiese, J., Imhoff, J. F., Lämmler, C., & Risk, M. J. (2007). Antibacterial activity of marine bacterium Pseudomonas sp. associated with soft coral Sinularia polydactyla against Streptococcus equi subsp. zooepidemicus. International Journal of Pharmacology, 3(2), 170-174. Raina, J.-B., Tapiolas, D., Motti, C. A., Foret, S., Seemann, T., Tebben, J., Willis, B. L., & Bourne, D. G. (2016). Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ, 4, e2275. Raina, J.-B., Tapiolas, D., Willis, B. L., & Bourne, D. G. (2009). Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Applied and Environmental Microbiology, 75(11), 3492-3501. Rambaut, A. (2010). FigTree v1. 3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. In. Richardson, L. L. (1998). Coral diseases: what is really known? Trends in Ecology & Evolution, 13(11), 438-443. Riginos, C., Popovic, I., Meziere, Z., Garcia, V., Byrne, I., Howitt, S. M., Ishida, H., Bairos-Novak, K., Humanes, A., & Scharfenstein, H. (2024). Cryptic species and hybridisation in corals: challenges and opportunities for conservation and restoration. Peer Community Journal, 4. Rohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10. Roth, M. S. (2014). The engine of the reef: photobiology of the coral–algal symbiosis. Frontiers in microbiology, 5, 422. Sabdono, A., Sawonua, P. H., Kartika, A. G. D., Amelia, J. M., & Radjasa, O. K. (2015). Coral diseases in Panjang Island, Java Sea: diversity of anti–pathogenic bacterial coral symbionts. Procedia Chemistry, 14, 15-21. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. Sharp, K. H., Distel, D., & Paul, V. J. (2012). Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. The ISME journal, 6(4), 790-801. Shefy, D., & Rinkevich, B. (2021). Stylophora pistillata—A model colonial species in basic and applied studies. Handbook of Marine Model Organisms in Experimental Biology, 195-216. Shefy, D., Shashar, N., & Rinkevich, B. (2018). The reproduction of the Red Sea coral Stylophora pistillata from Eilat: 4-decade perspective. Marine biology, 165, 1-10. Singh, B. (2014). Reproductive isolating mechanisms: prerequisite for speciation. Starko, S., Fifer, J. E., Claar, D. C., Davies, S. W., Cunning, R., Baker, A. C., & Baum, J. K. (2023). Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners. Science advances, 9(32), eadf0954. Stefani, F., Benzoni, F., Yang, S.-Y., Pichon, M., Galli, P., & Chen, C. (2011). Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral reefs, 30, 1033-1049. Strudwick, P., Seymour, J., Camp, E. F., Roper, C., Edmondson, J., Howlett, L., & Suggett, D. J. (2023). Bacterial communities associated with corals out-planted on the Great Barrier Reef are inherently dynamic over space and time. Marine Biology, 170(7), 85. Suyama, Y., & Matsuki, Y. (2015). MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Scientific reports, 5(1), 16963. Swart, P. K. (2013). Coral reefs: Canaries of the sea, rainforests of the oceans. Nature Education Knowledge, 4(3), 5. Takabayashi, M., Carter, D., Lopez, J., & Hoegh-Guldberg, O. (2003). Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral reefs, 22, 17-22. Tandon, K., Lu, C.-Y., Chiang, P.-W., Wada, N., Yang, S.-H., Chan, Y.-F., Chen, P.-Y., Chang, H.-Y., Chiou, Y.-J., & Chou, M.-S. (2020). Comparative genomics: dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). The ISME journal, 14(5), 1290-1303. Team, R. D. C. (2010). R: A language and environment for statistical computing. (No Title). Thompson, D. M., Kleypas, J., Castruccio, F., Curchitser, E. N., Pinsky, M. L., Jönsson, B., & Watson, J. R. (2018). Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity? Progress in Oceanography, 165, 110-122. Tseng, Y.-H., Lu, C.-Y., Zheng, Q., & Ho, C.-R. (2021). Characteristic analysis of sea surface currents around Taiwan Island from CODAR observations. Remote Sensing, 13(15), 3025. van Oppen, M. J., & Blackall, L. L. (2019). Coral microbiome dynamics, functions and design in a changing world. Nature Reviews Microbiology, 17(9), 557-567. Voolstra, C. R., Raina, J.-B., Dörr, M., Cárdenas, A., Pogoreutz, C., Silveira, C. B., Mohamed, A. R., Bourne, D. G., Luo, H., & Amin, S. A. (2024). The coral microbiome in sickness, in health and in a changing world. Nature Reviews Microbiology, 22(8), 460-475. Wainwright, B. J., Afiq-Rosli, L., Zahn, G. L., & Huang, D. (2019). Characterisation of coral-associated bacterial communities in an urbanised marine environment shows strong divergence over small geographic scales. Coral reefs, 38(6), 1097-1106. Wang, J., Santiago, E., & Caballero, A. (2016). Prediction and estimation of effective population size. Heredity, 117(4), 193-206. Webster, N. S., & Reusch, T. B. (2017). Microbial contributions to the persistence of coral reefs. The ISME journal, 11(10), 2167-2174. Willis, C., Desai, D., & LaRoche, J. (2019). Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS microbiology letters, 366(13), fnz152. Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177-1191. Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., & Graham, N. A. (2019). Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023-1034. Yang, S.-H., Tseng, C.-H., Huang, C.-R., Chen, C.-P., Tandon, K., Lee, S. T., Chiang, P.-W., Shiu, J.-H., Chen, C. A., & Tang, S.-L. (2017). Long-term survey is necessary to reveal various shifts of microbial composition in corals. Frontiers in Microbiology, 8, 1094. Yang, S.-H., Tseng, C.-H., Lo, H.-P., Chiang, P.-W., Chen, H.-J., Shiu, J.-H., Lai, H.-C., Tandon, K., Isomura, N., & Mezaki, T. (2020). Locality effect of coral-associated bacterial community in the Kuroshio Current from Taiwan to Japan. Frontiers in Ecology and Evolution, 8, 569107. Yu, H.-S. (2003). Geological characteristics and distribution of submarine physiographic features in the Taiwan region. Marine Georesources and Geotechnology, 21(3-4), 139-153. Zawada, K. J., Dornelas, M., & Madin, J. S. (2019). Quantifying coral morphology. Coral reefs, 38(6), 1281-1292. Zayasu, Y., Takeuchi, T., Nagata, T., Kanai, M., Fujie, M., Kawamitsu, M., Chinen, W., Shinzato, C., & Satoh, N. (2021). Genome‐wide SNP genotyping reveals hidden population structure of an acroporid species at a subtropical coral island: implications for coral restoration. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(9), 2429-2439. Zhai, P., Pörtner, H., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., & Connors, S. (2018). Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Sustainable Development, and Efforts to Eradicate Poverty, 32. Zhou, J., Lin, Z. J., Cai, Z. H., Zeng, Y. H., Zhu, J. M., & Du, X. P. (2020). Opportunistic bacteria use quorum sensing to disturb coral symbiotic communities and mediate the occurrence of coral bleaching. Environmental Microbiology, 22(5), 1944-1962. Ziegler, M., Grupstra, C. G., Barreto, M. M., Eaton, M., BaOmar, J., Zubier, K., Al-Sofyani, A., Turki, A. J., Ormond, R., & Voolstra, C. R. (2019). Coral bacterial community structure responds to environmental change in a host-specific manner. Nature communications, 10(1), 3092. Zoccola, D., Ounais, N., Barthelemy, D., Calcagno, R., Gaill, F., Henard, S., Hoegh-Guldberg, O., Janse, M., Jaubert, J., & Putnam, H. (2020). The World Coral Conservatory (WCC): A Noah's ark for corals to support survival of reef ecosystems. PLoS Biology, 18(9), e3000823. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99392 | - |
| dc.description.abstract | 珊瑚是建造地球上生物多樣性最高的生態系-珊瑚礁生態系的關鍵生物,然而隨著氣候變遷造成全球暖化,珊瑚的死亡率大幅上升。因此,為了維護珊瑚礁生態系寶貴的生物多樣性,必須了解珊瑚族群在不同地理區域中的遺傳多樣性、結構以及族群之間的連接性,以指引後續的保育規劃。除了族群遺傳資訊,珊瑚與眾多微生物具有緊密的共生關係,在這之中,細菌是多樣性與豐富度最高的微生物類群,參與珊瑚宿主的生理代謝、免疫等重要功能。此外,珊瑚共棲菌落組成具有高度的動態變化,隨著環境、地域、珊瑚宿主健康狀態等因子快速變動,可做為評估珊瑚健康狀態的重要指標之一。因此結合珊瑚的遺傳結構與共棲菌落組成,將有助於了解族群的現況,提供後續的保育規劃參考。台灣北部海域具有複雜地形與洋流,如此多變的環境下,使台灣的珊瑚生態系以三貂角作為分界(Chen’s Line),呈現南北不同的珊瑚礁群聚型態。分界線以北為非礁型珊瑚群聚、以南則是熱帶珊瑚礁群聚。然而目前仍不清楚在南北相異的珊瑚礁群聚環境下,珊瑚的族群遺傳結構以及共棲細菌群落的分化模式。為此,本論文以廣泛分布且常用於珊瑚研究的萼形柱珊瑚(Stylophora pistillata)為對象,設立六處樣點,分別為Chen’s Line 以北的鼻頭、望海巷,位於交界處的馬崗,以南的龜山島、豆腐岬、墾丁,每個樣點收集 30~36 個,總計 214 個珊瑚群體,以 MIG-seq 技術獲取珊瑚遺傳資訊並建構族群遺傳結構,並搭配珊瑚杯孔型態評估是否存在隱蔽種;細菌群落資料則以 16S rRNA V6–V8 區段的擴增子定序獲取。本研究結果顯示,萼形柱珊瑚可區分為兩個展現初期分化的遺傳分群,且兩者仍存有一定程度的基因交流,顯示分化程度尚未達到隱蔽種的水準,此外,在族群結構方面,兩個遺傳分群的分布模式與珊瑚群落分界線並不一致,其中一個遺傳分群僅出現在最北(望海巷)與最南(墾丁)的樣點。另一方面,台灣的萼形柱珊瑚族群相對其他洋區,展現高度的連接性,其背後的原因可歸因於台灣周遭複雜的洋流系統。在共棲細菌群落方面,菌相組成受到主要受到環境異質性影響,不同的樣點展現出相異的共棲菌落。雖然樣點是影響菌相的主要因子,然而珊瑚宿主的基因型亦會形塑共棲菌相,萼形柱珊瑚的遺傳分群與共棲菌落呈現譜系共生(phylosymbiosis)現象,顯示珊瑚與共棲微生物之間可能具有協同適應環境變化的潛力。此外,儘管採集的珊瑚樣本皆為健康的群體,然而與環境汙染、白化相關的菌株在超過半數的樣本中被觀察到,顯示本研究的樣點有遭受壓力的可能。 | zh_TW |
| dc.description.abstract | Corals are the key organisms that build coral reef ecosystems, the most biodiverse ecosystems on Earth. However, climate change leads to global coral reef decline, highlighting the urgency of coral conservation. Understanding the genetic connectivity and diversity of coral populations and coral microbiome is needed to guide conservation efforts. Population genetic structure could help managers to evaluate the resilience of population, while coral-associated bacteria play important roles in coral holobiont physiology, immunity, and stress response, which could serve as an indicator to evaluate the physiological state of coral. There is a biogeographic boundary called “Chen’s Line” that separates tropical reefs in the south from non-reefal coral communities in the north. But little is known about how this boundary affects coral population structure and their microbiomes. This study examined Stylophora pistillata populations across six sites along this latitude, including two north of Chen’s Line (Bitou, Wanghaixiang), one at the boundary (Magang), and three to the south (Guishan Island, Dufu Cape, Kenting) by using MIG-seq to genotype 214 colonies and compared coral genetic data with corallite morphological traits, while bacterial communities were obtained through 16S rRNA (V6–V8) sequencing. The results revealed that there were two genetic clusters which showed evidence of incipient speciation. The distribution of genetic clusters did not match Chen’s Line. Besides, both negative FIS and low FST, indicating high geneflow, which may be due to strong and highly variable current systems around Taiwan. Microbial communities differed significantly across locations, mainly due to environmental differences, but also showed links to host genetics. Evidence of phylosymbiosis suggests co-adaptive relationships between corals and their bacteria. Overall, bleaching and stress-associated bacteria are found in most samples, indicating the potential of stress among these sites. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:08:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:08:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III ABSTRACT IV 目次 V 圖次 VIII 表次 IX 壹、前言 1 1.1 珊瑚礁生態系 1 1.2 珊瑚保育 2 1.3族群遺傳與保育 3 1.3.1 遺傳多樣性與族群適存度 3 1.3.2 珊瑚的族群遺傳特性 4 1.3.4 調查族群遺傳結構的方法 5 1.4珊瑚共棲菌落 6 1.5 台灣的珊瑚礁概況 8 1.6 研究目的 9 貳、材料方法 11 2.1 樣點設置與樣本保存 11 2.2 珊瑚骨骼型態資料收集 11 2.2 總DNA萃取 12 2.3 MIG-SEQ 萼形柱珊瑚族群遺傳 12 2.3.1 MIG-seq 分生流程 12 2.3.2 MIG-SEQ 定序資料整理 13 2.3.3族群遺傳多樣性 14 2.3.4族群遺傳結構 14 2.3.5 親緣關係與共祖矩陣 15 2.3.6 基因交流 16 2.4 細菌群落樣本 16 2.4.1 16S rDNA聚合酶連鎖反應(Polymerase chain reaction,PCR) 16 2.4.2 DNA擴增子第一次純化 17 2.4.3 擴增子條碼標記 17 2.4.4 第二次純化與定序 18 2.4.5建庫與定序 18 2.5 共棲細菌群落序列處裡 18 2.6共棲細菌群落分析 19 2.6.1 共棲細菌群落多樣性分析 19 2.6.2 環境因子與共棲細菌群落組成 20 2.6.3 共棲細菌群落的譜系共生 20 參、結果 23 3.1 萼形柱珊瑚族群遺傳 23 3.1.1 MIG-seq 定序結果 23 3.1.2 遺傳多樣性與分化 23 3.1.3 族群遺傳結構 24 3.1.4 骨骼型態與基因型 25 3.1.5 族群基因交流 26 3.2 共棲細菌群落 26 3.2.1 共棲細菌群落多樣性 26 3.2.2 共棲細菌群落組成 27 3.2.3 環境對共棲細菌群落的影響 29 3.2.4 譜系共生 29 肆、討論 31 4.1 萼形柱珊瑚族群遺傳 31 4.1.1 遺傳多樣性 31 4.1.2 族群的基因交流與洋流 31 4.1.3 族群遺傳結構 34 4.1.4 骨骼型態展現高度可塑性 36 4.1.5 遺傳分群呈現初期分化跡象 37 4.1.6 MIG-seq 可行性與參考基因組的差異 38 4.2 珊瑚共棲菌落 38 4.2.1 共棲菌落多樣性 38 4.2.2 菌落組成 39 4.2.3共棲菌落展現高度區域異質性 42 4.2.4 譜系共生 43 4.2.5 保育規劃建議 44 伍 結論 46 陸、圖與表 47 柒、表 64 捌、參考文獻 71 玖、附錄 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 萼形柱珊瑚 | zh_TW |
| dc.subject | 族群遺傳 | zh_TW |
| dc.subject | 珊瑚共棲菌 | zh_TW |
| dc.subject | coral-associated bacteria | en |
| dc.subject | MIG-seq | en |
| dc.subject | population genetics | en |
| dc.subject | Stylophora pistillata | en |
| dc.title | 臺灣北部產萼形柱珊瑚的族群遺傳結構 與共棲菌相多樣性 | zh_TW |
| dc.title | Insights into the Population Genetic Structure and Bacterial Communities Diversity of Stylophora pistillata in Northern Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 楊松穎 | zh_TW |
| dc.contributor.coadvisor | Sung-Yin Yang | en |
| dc.contributor.oralexamcommittee | 陳昭倫;識名信也 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Lun Chen ;Shinya Shikina | en |
| dc.subject.keyword | 萼形柱珊瑚,族群遺傳,珊瑚共棲菌, | zh_TW |
| dc.subject.keyword | Stylophora pistillata,population genetics,coral-associated bacteria,MIG-seq, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202503183 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
