Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99391
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王翰聰zh_TW
dc.contributor.advisorHan-Tsung Wangen
dc.contributor.author杜以亮zh_TW
dc.contributor.authorYi-Liang Tuen
dc.date.accessioned2025-09-10T16:08:38Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation李运虎、李美君、彭兰丽 & 邓灶福。2019。不同酸化剂对断奶仔猪胃肠道 pH 和消化酶活性的影响。饲料博览。2: 20-23。
李鹏、武书庚、张海军 & 齐广海。2009。复合酸化剂对断奶仔猪生长性能、胃肠道酸度及消化酶活性的影响。养猪。1: 5-8。
陳靜宜、王翰聰。2021。綜論報告:豬隻體外仿生消化模擬系統的建立與應用。中國畜牧學會會誌。50: 23-48。
Abushaheen, M. A., Muzaheed, A. J. Fatani, M. Alosaimi, W. Mansy, M. George, S. Acharya, S. Rathod, D. D. Divakar, C. Jhugroo, S. Vellappally, A. A. Khan, J. Shaik, and P. Jhugroo. 2020. Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon. 66:100971.
Aghamohammad, S., and M. Rohani. 2023. Antibiotic resistance and the alternatives to conventional antibiotics: The role of probiotics and microbiota in combating antimicrobial resistance. Microbiol. Res. 267:127275.
Anastassiadis, S., and I. G. Morgunov. 2007. Gluconic acid production. Recent Pat. Biotechnol. 1:167-180.
AOAC. 2005. Office methods of analysis. 18th ed. Assoc. Off. Anal. Chem., Washington, DC.
Apajalahti, J., Kettunen, A., and Graham, H. 2004. Characteristics of the gastrointestinal microbial communities, with special reference to chickens. World Poult. Sci. J. 52: 223-232.
Bampidis, V., G. Azimonti, M. de L. Bastos, H. Christensen, B. Dusemund, M. Fašmon Durjava, M. Kouba, M. López‐Alonso, S. López Puente, F. Marcon, B. Mayo, A. Pechová, M. Petkova, F. Ramos, Y. Sanz, R. E. Villa, R. Woutersen, N. Dierick, L. Herman, G. Martelli, J. Galobart, and M. Anguita. 2021. Safety and efficacy of a feed additive consisting of endo‐1,4‐β‐xylanase produced by Bacillus subtilis LMG S‐27588 (Beltherm MP/ML) for laying hens, minor poultry species and all avian species (Puratos NV). EFSA Journal. 19. e06906.
Barba-Vidal, E., S. M. Martín-Orúe, and L. Castillejos. 2018. Review: Are we using probiotics correctly in post-weaning piglets? Animal 12:2489-2498.
Barbosa, L. N., F. C. B. Alves, B. F. M. T. Andrade, M. Albano, V. L. M. Rall, A. A. H. Fernandes, M. A. R. Buzalaf, A. D. L. Leite, L. G. De Pontes, L. D. Dos Santos, and A. Fernandes Junior. 2020. Proteomic analysis and antibacterial resistance mechanisms of Salmonella Enteritidis submitted to the inhibitory effect of Origanum vulgare essential oil, thymol and carvacrol. J. Proteomics 214:103625.
Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin, and M. W. A. Verstegen. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 73:313-322.
Bedford, M. R., and A. J. Cowieson. 2012. Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci. Tech. 173:76-85.
Behbahani, A.B., M. Noshad, F. Falah. 2019. Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microbial Pathogenesis, 136:103716.
Benedé, S., I. López-Expósito, G. Giménez, G. Grishina, L. Bardina, H. A. Sampson, R. López-Fandiño, and E. Molina. 2014a. Mapping of IgE epitopes in in vitro gastroduodenal digests of β-lactoglobulin produced with human and simulated fluids. Food Res. Int. 62:1127-1133.
Benedé, S., I. López-Expósito, G. Giménez, G. Grishina, L. Bardina, H. A. Sampson, E. Molina, and R. López-Fandiño. 2014b. In vitro digestibility of bovine β-casein with simulated and human oral and gastrointestinal fluids. Identification and IgE-reactivity of the resultant peptides. Food Chem. 143:514-521.
Bengtsson, B., and M. Wierup. 2006. Antimicrobial resistance in Scandinavia after a ban of antimicrobial growth promoters. Anim. Biotechnol. 17:147-156.
Bikker, P., A. Dirkzwager, J. Fledderus, P. Trevisi, I. Le Huërou-Luron, J. P. Lallès, and A. Awati. 2006. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. J. Anim. Sci. 84:3337-3345.
Bøe, K. 1991. The process of weaning in pigs: when the sow decides. Appl. Anim. Behav. Sci. 30:47-59.
Bohn, T., F. Carriere, L. Day, A. Deglaire, L. Egger, D. Freitas, M. Golding, S. Le Feunteun, A. Macierzanka, O. Menard, B. Miralles, A. Moscovici, R. Portmann, I. Recio, D. Rémond, V. Santé-Lhoutelier, T. J. Wooster, U. Lesmes, A. R. Mackie, and D. Dupont. 2018. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 58:2239-2261.
Brenes, A., and E. Roura. 2010. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. and Technol. 158:1-14.
Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94:223-253.
Calleson, J. 2004. Effects of termination of AGP-use on pig welfare and productivity. In: DIAS report 57: Horticulture. Danish Inst. Agric. Sci., Tjele, Denmark. p. 57-60.
Cardinal, K. M., I. Andretta, M. K. D. Silva, T. B. Stefanello, B. Schroeder, and A. M. L. Ribeiro. 2021. Estimation of productive losses caused by withdrawal of antibiotic growth promoter from pig diets - Meta-analysis. Sci. agric. (Piracicaba, Braz.). 78: e20200266.
Castillo, M., S. M. Martín-Orúe, M. Nofrarías, E. G. Manzanilla, and J. Gasa. 2007. Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet. Microbiol. 124:239-247.
Chaney, A. L., and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
Chattopadhyay, M. K. 2014. Use of antibiotics as feed additives: a burning question. Front. Microbiol. 5:334.
Chen, Y., L. Zeng, Y. Liao, J. Li, B. Zhou, Z. Yang, and J. Tang. 2020. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the Black Tea (Camellia sinensis) manufacturing process. Foods. 9:66.
Cheng, G., H. Hao, S. Xie, X. Wang, M. Dai, L. Huang, and Z. Yuan. 2014. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front. Microbiol. 5:217.
Chitprasert, P., and P. Sutaphanit. 2014. Holy Basil (Ocimum sanctum Linn.) essential oil delivery to swine gastrointestinal tract using gelatin microcapsules coated with aluminum carboxymethyl cellulose and beeswax. J. Agric. Food Chem. 62:12641-12648.
Clunies, M., and S. Leeson. 1984. In vitro estimation of dry matter and crude protein digestibility. Poult. Sci. 63:89-96.
Colson, V., E. Martin, P. Orgeur, and A. Prunier. 2012. Influence of housing and social changes on growth, behaviour and cortisol in piglets at weaning. Physiol. Behav. 107:59-64.
Coppens, M.-O. 2012. A nature-inspired approach to reactor and catalysis engineering. Curr. Opin. Chem. Eng. 1:281-289.
Cotter, P. D., R. P. Ross, and C. Hill. 2013. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 11: 95-105.
Cranwell, P. D., I. Tarvid, D. T. Harrison, and R. G. Campbell. 1995. Weight at weaning, causes and consequences. In: D. P. Hennessy and P. D. Cranwell, editors, Manipulating pig production V. Australas. Pig Sci. Assoc., Werribee, VIC, Australia. p. 174.
Davila, A.-M., F. Blachier, M. Gotteland, M. Andriamihaja, P.-H. Benetti, Y. Sanz, and D. Tomé. 2013. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol. Res. 68:95-107.
Deslandes, B., C. Gariépy, and A. Houde. 2001. Review of microbiological and biochemical effects of skatole on animal production. Livest. Prod. Sci. 71:193-200.
Dinan, T. G., and J. F. Cryan. 2017. Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacol. 42:178-192.
Duijsens, D., K. Pälchen, J. M. Guevara-Zambrano, S. H. E. Verkempinck, M. R. Infantes-Garcia, M. E. Hendrickx, A. M. Van Loey, and T. Grauwet. 2022. Strategic choices for in vitro food digestion methodologies enabling food digestion design. Trends Food Sci. Technol. 126:61-72.
Duque-Soto C., A. Quintriqueo-Cid, A. Rueda-Robles, P. Robert, I. Borrás-Linares., and J. Lozano-Sánche. 2023. Evaluation of different advanced approaches to simulation of dynamic in vitro digestion of polyphenols from different food matrices—a systematic review. Antioxidants 12:101.
Dupont, D., M. Alric, S. Blanquet-Diot, G. Bornhorst, C. Cueva, A. Deglaire, S. Denis, M. Ferrua, R. Havenaar, J. Lelieveld, A. R. Mackie, M. Marzorati, O. Menard, M. Minekus, B. Miralles, I. Recio, and P. Van Den Abbeele. 2019. Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. 59:1546-1562.
Dupont, D., G. Mandalari, D. Molle, J. Jardin, J. Léonil, R. M. Faulks, M. S. J. Wickham, E. N. Clare Mills, and A. R. Mackie. 2010a. Comparative resistance of food proteins to adult and infant in vitro digestion models. Mol. Nutr. Food Res. 54:767-780.
Dupont, D., G. Mandalari, D. Mollé, J. Jardin, O. Rolet‐Répécaud, G. Duboz, J. Léonil, C. E. N. Mills, and A. R. Mackie. 2010b. Food processing increases casein resistance to simulated infant digestion. Mol. Nutr. Food Res. 54:1677-1689.
Duque-Soto, C., A. Quintriqueo-Cid, A. Rueda-Robles, P. Robert, I. Borrás-Linares, and J. Lozano-Sánchez. 2022. Evaluation of different advanced approaches to simulation of dynamic in vitro digestion of polyphenols from different food matrices—a systematic review. Antioxidants 12:101.
Durbin, R. P. 1975. Letter: Acid secretion by gastric mucous membrane. Am. J. Physiol. 229:1726.
Elling-Staats, M. L., A. K. Kies, J. W. Cone, W. F. Pellikaan, and R. P. Kwakkel. 2023. An in vitro model for caecal proteolytic fermentation potential of ingredients in broilers. Animal. 17:100768.
Ewing, W. N., and D. J. A. Cole. 1994. The living gut: an introduction to micro-organisms in nutrition. Context Publ., Nottingham, UK.
Franz, C., K. Baser, and W. Windisch. 2010. Essential oils and aromatic plants in animal feeding - a European perspective. A review. Flavour Frag. J. 25:327-340.
Furuya, S., K. Sakamoto, and S. Takahashi. 1979. A new in vitro method for the estimation of digestibility using the intestinal fluid of the pig. Brit. J. Nutr. 41:511-520.
Gaballah, M. S., J. Guo, H. Sun, D. Aboagye, M. Sobhi, A. Muhmood, and R. Dong. 2021. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook. Bioresour. Technol. 333:125069.
Gao, K., C. Mu, A. Farzi, and W. Zhu. 2020. Tryptophan metabolism: a link between the gut microbiota and brain. Adv. Nutr. 11:709-723.
Groot, J. C. J., J. W. Cone, B. A. Williams, F. M. A. Debersaques, and E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64:77-89.
Hąc-Wydro, K., M. Flasiński, M. Broniatowski, and M. Sołtys. 2017. Studies on the behavior of eucalyptol and terpinen-4-ol—natural food additives and ecological pesticides—in model lipid membranes. Langmuir. 33:6916-6924.
Hajati, H. 2018. Application of organic acids in poultry nutrition. Int. J. Avian Wildl. Biol. 3:324-329.
Hedemann, M., and B. Jensen. 2004. Variations in enzyme activity in stomach and pancreatic tissue and digesta in piglets around weaning. Arch. Anim. Nutr. 58:47-59.
Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, and C. M. Nyachoti. 2013. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post‐weaning diarrhoea without using in‐feed antimicrobial compounds. J. Anim. Physiol. Nutr. 97:207-237.
Hickson, J. C. D. 1970. The secretion of pancreatic juice in response to stimulation of the vagus nerves in the pig. J. Physiol. 206:275-297.
Hsu, J., S. Lo, Y. Lin, H. Wang, and C. Chen. 2022. Effects of essential oil mixtures on nitrogen metabolism and odor emission via in vitro simulated digestion and in vivo growing pig experiments. J. Sci. Food Agric. 102:1939-1947.
Htoo, J. K., B. A. Araiza, W. C. Sauer, M. Rademacher, Y. Zhang, M. Cervantes, and R. T. Zijlstra. 2007. Effect of dietary protein content on ileal amino acid digestibility, growth performance, and formation of microbial metabolites in ileal and cecal digesta of early-weaned pigs. J. Anim. Sci. 85:3303-3312.
Ilić,D.P., L.P. Stanojević, D.Z. Troter, J.S. Stanojević, B.R. Danilović, V.D. Nikolić, andL.B. Nikolić.2019. Improvement of the yield and antimicrobial activity of fennel (Foeniculum vulgare Mill.) essential oil by fruit milling. Ind. Crops Prod. 142:111854.
Jackman, J. A., R. D. Boyd, and C. C. Elrod. 2020. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J. Anim. Sci. Biotechnol. 11:44.
Jackman, J. A., T. A. Lavergne, and C. C. Elrod. 2022. Antimicrobial monoglycerides for swine and poultry applications. Front. Anim. Sci. 3:1019320.
Jackman, J. A., P.-Y. Shi, and N.-J. Cho. 2019. Targeting the achilles heel of mosquito-borne viruses for antiviral therapy. ACS Infect. Dis. 5:4-8.
Jensen, B. B., and H. Jørgensen. 1994. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl. Environ. Microbiol. 60:1897-1904.
Jensen, P., and B. Recén. 1989. When to wean — Observations from free-ranging domestic pigs. Appl. Anim. Behav. Sci. 23:49-60.
Jha, A., V. K. Mishra, and G. Mohammad. 2008. Immunomodulation and anticancer potentials of yogurt probiotic. EXCLI J. 7:177-184.
Jha, R., and J. F. D. Berrocoso. 2016. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed Sci. Technol. 212:18-26.
Jha, R., J. M. Fouhse, U. P. Tiwari, L. Li, and B. P. Willing. 2019. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 6:48.
Jha, R., and P. Leterme. 2012. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal 6:603-611.
Ji, H., J. Hu, S. Zuo, S. Zhang, M. Li, and S. Nie. 2022. In vitro gastrointestinal digestion and fermentation models and their applications in food carbohydrates. Crit. Rev. Food Sci. Nutr. 62:5349-5371.
Kaur, L., B. Mao, A. S. Beniwal, Abhilasha, R. Kaur, F. M. Chian, and J. Singh. 2022. Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends Food Sci. Technol. 122:275-286.
Kiarie, E. G., I. A. Parenteau, C. Zhu, N. E. Ward, and A. J. Cowieson. 2020. Digestibility of amino acids, energy, and minerals in roasted full-fat soybean and expelled-extruded soybean meal fed to growing pigs without or with multienzyme supplement containing fiber-degrading enzymes, protease, and phytase. J. Anim. Sci. 98: skaa174.
Koczulla, A. R., and R. Bals. 2003. Antimicrobial peptides: current status and therapeutic potential. Drugs 63:389-406.
Kroismayr, A., T. Steiner, C. Zhang. 2006. Influence of a phytogenic feed additive on performance of weaner piglets. J. Anim. Sci. 84:270.
Kumar, A., M. Toghyani, S. K. Kheravii, L. Pineda, Y. Han, R. A. Swick, and S.-B. Wu. 2021. Potential of blended organic acids to improve performance and health of broilers infected with necrotic enteritis. Anim. Nutr. 7:440-449.
Kumar, H., K. Bhardwaj, T. Kaur, E. Nepovimova, K. Kuča, V. Kumar, S. K. Bhatia, D. S. Dhanjal, C. Chopra, R. Singh, S. Guleria, T. C. Bhalla, R. Verma, and D. Kumar. 2020. Detection of bacterial pathogens and antibiotic residues in chicken meat: A Review. Foods 9:1504.
Kvasnickij, A. V. 1951. Voprosy fiziologii piščevrarenija u svinej. Gos. Izd. sel'skochoz. lit, Moscow, USSR.
Laine, T., M. Yliaho, V. Myllys, T. Pohjanvirta, M. Fossi, and M. Anttila. 2004. The effect of antimicrobial growth promoter withdrawal on the health of weaned pigs in Finland. Prev. Vet. Med. 66:163-174.
Lallès, J. P., B. Sève, S. Pié, F. Blazy, J. Laffitte, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 134:641-647.
Lambert, R. J. W., P. N. Skandamis, P. J. Coote, and G.-J. E. Nychas. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91:453-462.
Lærke, H. N., and M. S. Hedemann. 2012. The digestive system of the pig: anatomy and physiology. Danish Inst. Agric. Sci., Tjele, Denmark.
Le Dividich, J., and P. Herpin. 1994. Effects of climatic conditions on the performance, metabolism and health status of weaned piglets: a review. Livest. Prod. Sci. 38:79-90.
Le Goff, G., S. Dubois, J. V. Milgen, and J. Noblet. 2002. Influence of dietary fibre level on digestive and metabolicutilisation of energy in growing and finishing pigs. Anim. Res. 51:245-259.
Le, P. D., A. J. A. Aarnink, N. W. M. Ogink, P. M. Becker, and M. W. A. Verstegen. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18:3-30.
Li, L., H. Wang, N. Zhang, T. Zhang, and Y. Ma. 2022. Effects of α-glycerol monolaurate on intestinal morphology, nutrient digestibility, serum profiles, and gut microbiota in weaned piglets. J. Anim. Sci. 100: skac046.
Li, X., B. Zhang, Y. Hu, and Y. Zhao. 2021. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front. Pharmacol. 12:769501.
Li, Y., Q. Xiang, Q. Zhang, Y. Huang, and Z. Su. 2012. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides 37:207-215.
Liao, S. F., and M. Nyachoti. 2017. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 3:331-343.
Lin, J., C. Liu, R. Bai, J. Pang, J. Li, C. Zhang, X. Liu, H. Li, and S. Hu. 2024. The application of static digestive models simulating the digestion system of infants and young children for the development of accessory food: Current status and future perspective. Trends Food Sci. Technol. 143:104306.
Lin, Y., L. Huo, Z. Liu, J. Li, Y. Liu, Q. He, X. Wang, and S. Liang. 2013. Sodium laurate, a novel protease- and mass spectrometry-compatible detergent for mass spectrometry-based membrane proteomics. M. Massiah, editor. PLoS ONE 8: e59779.
Liu, D., Y. Wei, X. Liu, Y. Zhou, L. Jiang, J. Yin, F. Wang, Y. Hu, A. N. Nanjaraj Urs, Y. Liu, E. L. Ang, S. Zhao, H. Zhao, and Y. Zhang. 2018. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nat. Commun. 9:4224.
Liu, H.-Y., C. Zhu, M. Zhu, L. Yuan, S. Li, F. Gu, P. Hu, S. Chen, and D. Cai. 2024. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. Stress Biol. 4:1.
Liu, Y., C. D. Espinosa, J. J. Abelilla, G. A. Casas, L. V. Lagos, S. A. Lee, W. B. Kwon, J. K. Mathai, D. M. D. L. Navarro, N. W. Jaworski, and H. H. Stein. 2018. Non-antibiotic feed additives in diets for pigs: A review. Anim. Nutr. 4:113-125.
Lo, S.-H., C.-Y. Chen, and H.-T. Wang. 2022. Three-step in vitro digestion model for evaluating and predicting fecal odor emission from growing pigs with different dietary protein intakes. Anim. Biosci. 35:1592-1605.
Long, S. F., Y. T. Xu, L. Pan, Q. Q. Wang, C. L. Wang, J. Y. Wu, Y. Y. Wu, Y. M. Han, C. H. Yun, and X. S. Piao. 2018. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim. Feed Sci. Technol. 235:23-32.
López-Colom, P., L. Castillejos, A. Rodríguez-Sorrento, M. Puyalto, J. J. Mallo, and S. M. Martín-Orúe. 2019. Efficacy of medium-chain fatty acid salts distilled from coconut oil against two enteric pathogen challenges in weanling piglets. J. Anim. Sci. Biotechnol. 10:89.
Low, C. X., L. T. H. Tan, N. S. Ab Mutalib, P. Pusparajah, B. H. Goh, K. G. Chan, V. Letchumanan, and L. H. Lee. 2021. Unveiling the impact of antibiotics and alternative methods for animal husbandry: a review. Antibiotics 10: 578.
Lückstädt, C., L. Wylie, R. Remmer, R. De Kok, H. R. Costa, M. Brebels, and C. Heusden. 2014. Organic Acids in Animal Nutrition. Anitox: Lawrenceville, GA, USA.
Lyu, F., M. Thomas, A. F. B. Van Der Poel, and W. H. Hendriks. 2022. The importance of particle size on organic matter and crude protein in vitro digestibility of maize and soybean meal. Anim. Feed Sci. Technol. 285:115243.
Makkink, C. A., P. J. Berntsen, B. M. L. Op Den Kamp, B. Kemp, and M. W. A. Verstegen. 1994a. Gastric protein breakdown and pancreatic enzyme activities in response to two different dietary protein sources in newly weaned pigs. J. Anim. Sci. 72:2843-2850.
Makkink, C. A., G. P. Negulescu, Q. Guixin, and M. W. A. Verstegen. 1994b. Effect of dietary protein source on feed intake, growth, pancreatic enzyme activities and jejunal morphology in newly-weaned piglets. Brit. J. Nutr. 72:353-368.
Manzanilla, E. G., M. Nofrarías, M. Anguita, M. Castillo, J. F. Perez, S. M. Martín-Orúe, C. Kamel, and J. Gasa. 2006. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 84:2743-2751.
Mauron, J., F. Mottu, E. Bujard, and R. H. Egli. 1955. The availability of lysine, methionine and tryptophan in condensed milk and milk powder. In vitro digestion studies. Arch. Biochem. Biophys. 59:433-451.
Mbira, C. 2024. Influence of Substrate Concentration on Enzyme Activity in Bio Catalysis. J. CHEM. 3:48-58.
McCracken, B. A., M. E. Spurlock, M. A. Roos, F. A. Zuckermann, and H. R. Gaskins. 1999. Weaning anorexia may contribute to local inflammation in the piglet small intestine. J. Nutr. 129:613-619.
McDonald, D. E., D. W. Pethick, B. P. Mullan, and D. J. Hampson. 2001. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Brit. J. Nutr. 86:487-498.
Michiels, J., J. Missotten, N. Dierick, D. Fremaut, P. Maene, and S. De Smet. 2008. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans ‐cinnamaldehyde along the gastrointestinal tract of piglets. J. Sci. Food Agric. 88:2371-2381.
Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D. J. McClements, O. Ménard, I. Recio, C. N. Santos, R. P. Singh, G. E. Vegarud, M. S. J. Wickham, W. Weitschies, and A. Brodkorb. 2014. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct. 5:1113-1124.
Molloy, E. M., D. Field., P. M. O. Connor, P. D. Cotter, C. Hill, and R. P. Ross. 2013. Saturation mutagenesis of lysine 12 leads to the identification of derivatives of nisin A with enhanced antimicrobial activity. PloS one 8: e58530.
Mulder, I. E., B. Schmidt, C. R. Stokes, M. Lewis, M. Bailey, R. I. Aminov, J. I. Prosser, B. P. Gill, J. R. Pluske, C.-D. Mayer, C. C. Musk, and D. Kelly. 2009. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 7:79.
National Farm Animal Care Council. 2016. Code of practice for the care and handling of hatching eggs, breeders, chickens, and turkeys. Natl. Farm Anim. Care Counc., Ottawa, ON.
Nazzaro, F., F. Fratianni, L. De Martino, R. Coppola, and V. De Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451-1474.
Nguyen, D. H., S. D. Upadhaya, X. J. Lei, J. Yin, and I. H. Kim. 2019. Influence of dietary protease supplementation to corn-soybean meal-based high- and low-energy diets on growth performance, nutrient digestibility, blood profiles, and gas emission in growing pigs. J. Plaizier, editor. Can. J. Anim. Sci. 99:482-488.
Nhara, R. B., U. Marume, and C. W. T. Nantapo. 2024. Potential of organic acids, essential oils and their blends in pig diets as alternatives to antibiotic growth promoters. Animals 14:762.
Nitbani, F. O., P. J. P. Tjitda, F. Nitti, J. Jumina, and A. I. R. Detha. 2022. Antimicrobial properties of lauric acid and monolaurin in virgin coconut oil: a review. ChemBioEng Rev. 9:442-461.
Nyachoti, C. M., F. O. Omogbenigun, M. Rademacher, and G. Blank. 2006. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J. Anim. Sci. 84:125-134.
Omonijo, F. A., L. Ni, J. Gong, Q. Wang, L. Lahaye, and C. Yang. 2018. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 4:126-136.
Owsley, W. F., D. E. Orr, and L. F. Tribble. 1986. Effects of age and diet on the development of the pancreas and the synthesis and secretion of pancreatic enzymes in the young pig. J. Anim. Sci. 63:497-504.
Partanen, K. H., and Z. Mroz. 1999. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 12:117-145.
Pedersen, K. S., and N. Toft. 2011. Intra- and inter-observer agreement when using a descriptive classification scale for clinical assessment of faecal consistency in growing pigs. Prev. Vet. Med. 98:288-291.
Pié, S., J. P. Lallès, F. Blazy, J. Laffitte, B. Sève, I. P. Oswald. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. 2004. J. Nutr. 134, 641-647.
Piran Filho, F. A., T. D. Turner, I. Mueller, and J. L. P. Daniel. 2021. Influence of phytogenic feed additive on performance of feedlot cattle. Front. Anim. Sci. 2:767034.
Piva, A., A. Panciroli, E. Meola, and A. Formigoni. 1996. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets. J. Nutr. 126:280-289.
Pluske, J. R., D. J. Hampson, and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51:215-236.
Pluske, J. R., D. W. Pethick, D. E. Hopwood, and D. J. Hampson. 2002. Nutritional influences on some major enteric bacterial diseases of pig. Nutr. Res. Rev. 15:333-371.
Rabetafika, H. N., A. Razafindralambo, B. Ebenso, and H. L. Razafindralambo. 2023. Probiotics as antibiotic alternatives for human and animal applications. Encyclopedia 3:561-581.
Raheem, A., L. Liang, G. Zhang, and S. Cui. 2021. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front. Immunol. 12:616713.
Rahman, M., I. Fliss, and E. Biron. 2022. Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics 11:766.
Rao, Z.-X., M. D. Tokach, J. C. Woodworth, J. M. DeRouchey, R. D. Goodband, and J. T. Gebhardt. 2023. Effects of various feed additives on finishing pig growth performance and carcass characteristics: a review. Animals 13:200.
Rathnayaka, S. D., S. Selvanathan, and E. A. Selvanathan. 2021. Demand for animal‐derived food in selected Asian countries: A system‐wide analysis. Agric. Econ. 52:97-122.
Rathnayake, D., H. S. Mun, M. A. Dilawar, K. S. Baek, and C. J. Yang. 2021. Time for a paradigm shift in animal nutrition metabolic pathway: dietary inclusion of organic acids on the production parameters, nutrient digestibility, and meat quality traits of swine and broilers. Life 11:476.
Rhouma, M., J. M. Fairbrother, F. Beaudry, and A. Letellier. 2017. Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta. Vet. Scand. 59:31.
Roager, H. M., and T. R. Licht. 2018. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9:3294.
Rodríguez-Romero, J. D. J., A. C. Durán-Castañeda, A. P. Cárdenas-Castro, J. A. Sánchez-Burgos, V. M. Zamora-Gasga, and S. G. Sáyago-Ayerdi. 2022. What we know about protein gut metabolites: implications and insights for human health and diseases. Food Chem.: X. 13:100195.
Roselli, M., A. Finamore, M. S. Britti, P. Bosi, I. Oswald, and E. Mengheri. 2005. Alternatives to in-feed antibiotics in pigs: Evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim. Res. 54:203-218.
Rowland, I., G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, and K. Tuohy. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57:1-24.
Rychen, G., G. Aquilina, G. Azimonti, V. Bampidis, M. de L. Bastos, G. Bories, A. Chesson, P. S. Cocconcelli, G. Flachowsky, J. Gropp, B. Kolar, M. Kouba, M. López-Alonso, S. L. Puente, A. Mantovani, B. Mayo, F. Ramos, M. Saarela, R. E. Villa, R. J. Wallace, P. Wester, M. Anguita, and J. Galobar. 2018. Guidance on the assessment of the efficacy of feed additives. EFSA Journal. 16: 5274.
Salazar-Villanea, S., W. H. Hendriks, E. M. A. M. Bruininx, H. Gruppen, and A. F. B. Van Der Poel. 2016. Protein structural changes during processing of vegetable feed ingredients used in swine diets: implications for nutritional value. Nutr. Res. Rev. 29:126-141.
Sambrook, I. E. 1979. Studies on digestion and absorption in the intestines of growing pigs: 7. Measurements of the flow of total carbohydrate, total reducing substances and glucose. Brit. J. Nutr. 42:267-277.
Schluter, J., C. D. Nadell, B. L. Bassler, and K. R. Foster. 2015. Adhesion as a weapon in microbial competition. ISME J. 9:139-149.
Schrezenmeir, J., and M. De Vrese. 2001. Probiotics, prebiotics, and synbiotics—approaching a definition. Am. J. Clin. Nutr. 73:361s-364s.
Shi, J., D. Zhao, S. Song, M. Zhang, G. Zamaratskaia, X. Xu, G. Zhou, and C. Li. 2020. High-meat-protein high-fat diet induced dysbiosis of gut microbiota and tryptophan metabolism in wistar rats. J. Agric. Food Chem. 68:6333-6346.
Shi, Z., T. Wang, J. Kang, Yidan Li, Yang Li, and L. Xi. 2022. Effects of weaning modes on the intestinal pH, activity of digestive enzymes, and intestinal morphology of piglets. Animals 12:2200.
Si, W., J. Gong, C. Chanas, S. Cui, H. Yu, C. Caballero, and R. M. Friendship. 2006. In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards Salmonella serotype Typhimurium DT104: effects of pig diets and emulsification in hydrocolloids. J. Appl. Microbiol. 101:1282-1291.
Singh, R. P. 2024. Progress and challenges in designing dynamic in vitro gastric models to study food digestion. Front. Nutr. 11:1399534.
Skrivanova, E., M. Marounek, V. Benda, and P. Brezina. 2006. Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringensto organic acids and monolaurin. Vet. Med. 51:81-88.
Slominski, B. A. 2011. Recent advances in research on enzymes for poultry diets. Poult. Sci. 90:2013-2023.
Soergel, K. H. 1994. Colonic fermentation: metabolic and clinical implications. Clin. Investig. 72:742-748.
Solà-Oriol, D., E. Roura, and D. Torrallardona. 2011. Feed preference in pigs: Effect of selected protein, fat, and fiber sources at different inclusion rates1. J. Anim. Sci. 89:3219-3227.
Sousa, R., I. Recio, D. Heimo, S. Dubois, P. J. Moughan, S. M. Hodgkinson, R. Portmann, and L. Egger. 2023. In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data. Food Chem. 404:134720.
Spreeuwenberg, M. A. M., J. M. A. J. Verdonk, H. R. Gaskins, and M. W. A. Verstegen. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J. Nutr. 131:1520-1527.
Stein, H. H., and D. Y. Kil. 2006. Reduced use of antibiotic growth promoters in diets fed to weanling pigs: dietary tools, part 2. Anim. Biotechnol. 17:217-231.
Suiryanrayna, M. V. A. N., and J. V. Ramana. 2015. A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 6:45.
Suresh, G., D. U. Santos, T. Rouissi, S. K. Brar, Y. Mehdi, S. Godbout, Y. Chorfi, and A. A. Ramirez. 2019. Production and in-vitro evaluation of an enzyme formulation as a potential alternative to feed antibiotics in poultry. Process Biochem. 80:9-16.
Suzuki, A. H., F. C. Lage, L. S. Oliveira, A. S. Franca, and J. A. Daniels. 2016. Biological materials as precursors for the production of resins. In: J. A. Daniels, editor, Advances in environmental research. Vol. 49. Nova Sci. Publ., Inc., Hauppauge, NY.
Tariq, S., S. Wani, W. Rasool, K. Shafi, M. A. Bhat, A. Prabhakar, A. H. Shalla, and M. A. Rather. 2019. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 134:103580.
Thacker, P. A. 2013. Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci. Biotechnol. 4:35.
Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197.
Thomas, L. L., J. C. Woodworth, M. D. Tokach, S. S. Dritz, J. M. DeRouchey, R. D. Goodband, H. E. Williams, A. R. Hartman, D. J. Mellick, D. M. McKilligan, and A. M. Jones. 2020. Evaluation of different blends of medium-chain fatty acids, lactic acid, and monolaurin on nursery pig growth performance12. Transl. Anim. Sci. 4:548-557.
Tiseo, K., L. Huber, M. Gilbert, T. P. Robinson, and T. P. Van Boeckel. 2020. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9:918.
Toldrá, F., ed. 2009. Safety of meat and processed meat. Springer, New York, NY.
Tugnoli, B., G. Giovagnoni, A. Piva, and E. Grilli. 2020. From acidifiers to intestinal health enhancers: how organic acids can improve growth efficiency of pigs. Animals 10:134.
Valenzuela-Grijalva, N. V., A. Pinelli-Saavedra, A. Muhlia-Almazan, D. Domínguez-Díaz, and H. González-Ríos. 2017. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol. 59:8.
Van Boeckel, T. P., C. Brower, M. Gilbert, B. T. Grenfell, S. A. Levin, T. P. Robinson, A. Teillant, and R. Laxminarayan. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. 112:5649-5654.
Varel, V. H. 2002. Carvacrol and thymol reduce swine waste odor and pathogens: stability of oils. Curr. Microbiol. 44:38-43.
Vervaeke, I. J., N. A. Dierick, D. I. Demeyer, and J. A. Decuypere. 1989. Approach to the energetic importance of fibre digestion in pigs. II. An experimental approach to hindgut digestion. Anim. Feed Sci. Technol. 23:169-194.
Wang, B., K. Xie, and K. Lee. 2021. Veterinary drug residues in animal-derived foods: sample preparation and analytical methods. Foods 10:555.
Wang, D., H. Du, X. Dang, Y. Zhao, J. Zhang, R. Liu, Z. Ge, Q. Zhong, and Z. Sun. 2024. Enzymatic hydrolysis processing of soybean meal altered its structure and in vitro protein digestive dynamics in pigs. Front. Vet. Sci. 11:1503817.
Whitehead, T. R., N. P. Price, H. L. Drake, and M. A. Cotta. 2008. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes , and swine manure. Appl. Environ. Microbiol. 74:1950-1953.
Wiesmann, U. N., S. DiDonato, and N. N. Herschkowitz. 1975. Effect of chloroquine on cultured fibroblasts: release of lysosomal hydrolases and inhibition of their uptake. Biochem. Biophys. Res. Commun. 66:1338-1343.
Wilfart, A., L. Montagne, H. Simmins, J. Noblet, and J. V. Milgen. 2007. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. Brit. J. Nutr. 98:54-62.
Williams, B. A., M. W. Bosch, H. Boer, M. W. A. Verstegen, and S. Tamminga. 2005. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 123-124:445-462.
Williams, B., L. Grant, M. Gidley, and D. Mikkelsen. 2017. Gut fermentation of dietary fibres: physico-chemistry of plant cell walls and implications for health. Int. J. Mol. Sci. 18:2203.
Wu, S., F. Zhang, Z. Huang, H. Liu, C. Xie, J. Zhang, P. A. Thacker, and S. Qiao. 2012. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 35:225-230.
Xie, Z., Q. Zhao, H. Wang, L. Wen, W. Li, X. Zhang, W. Lin, H. Li, Q. Xie, and Y. Wang. 2020. Effects of antibacterial peptide combinations on growth performance, intestinal health, and immune function of broiler chickens. Poult. Sci. 99:6481-6492.
Xin, M., M. Zhao, J. Tian, and B. Li. 2023. Guidelines for in vitro simulated digestion and absorption of food. Food Front. 4:524-532.
Xiong, X., B. Tan, M. Song, P. Ji, K. Kim, Y. Yin, and Y. Liu. 2019. Nutritional intervention for the intestinal development and health of weaned pigs. Front. Vet. Sci. 6:46.
Yáñez-Ruiz, D. R., D. Morgavi, T. Misselbrook, M. Melle, S. Dreijere, O. Aes, and M. Sekowski. 2017. Feeding strategies for improving the productivity and sustainability of pig and poultry production. EIP-AGRI Focus Group Report. Eur. Comm., Brussels, Belgium.
Yang, C., M. A. Chowdhury, Y. Huo, and J. Gong. 2015. Phytogenic compounds as alternatives to in-feed antibiotics: potentials and challenges in application. Pathogens 4:137-156.
Yang, W., J. Li, Z. Yao, and M. Li. 2024. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Sci. Total Environ. 926:171757.
Ye, J., and Q. Fu. 2023. Screening of skatole-degrading bacteria and control of human fecal odor by compound bacteria. Ann. Microbiol. 73:22.
Yin, J., and I.-H. Kim. 2019. Effects of multi-enzyme supplementation in a corn and soybean meal-based diet on growth performance, apparent digestibility, blood characteristics, fecal microbes and noxious gas emission in growing pigs. Korean J. Agric. Sci. 46:1-10.
Yin, J., M. M. Wu, H. Xiao, W. K. Ren, J. L. Duan, G. Yang, T. J. Li, and Y. L. Yin. 2014. Development of an antioxidant system after early weaning in piglets. J. Anim. Sci. 92:612-619
You, X., N. Xu, X. Yang, and W. Sun. 2021. Pollutants affect algae-bacteria interactions: a critical review. Environ. Pollut. 276:116723.
Yue, L. Y., and S. Y. Qiao. 2008. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning. Livest. Sci. 115:144-152.
Yusuf, M. A. 2013. Lactic acid bacteria: bacteriocin producer: a mini review. IOSR J. Pharm. 3:44-50.
Zentek, J., S. Buchheit-Renko, F. Ferrara, W. Vahjen, A. G. Van Kessel, and R. Pieper. 2011. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim. Health Res. Rev. 12:83-93.
Zhang, H., N. V. D. Wielen, B. V. D. Hee, J. Wang, W. Hendriks, and M. Gilbert. 2020. Impact of fermentable protein, by feeding high protein diets, on microbial composition, microbial catabolic activity, gut health and beyond in pigs. Microorganisms 8:1735.
Zhang, M. S., A. Sandouk, and J. C. D. Houtman. 2016. Glycerol monolaurate (GML) inhibits human T cell signaling and function by disrupting lipid dynamics. Sci. Rep. 6:30225.
Zhang, M. S., P. M. Tran, A. J. Wolff, M. M. Tremblay, M. G. Fosdick, and J. C. D. Houtman. 2018. Glycerol monolaurate induces filopodia formation by disrupting the association between LAT and SLP-76 microclusters. Sci. Signal. 11: eaam9095.
Zhang, Q.-Y., Z.-B. Yan, Y.-M. Meng, X.-Y. Hong, G. Shao, J.-J. Ma, X.-R. Cheng, J. Liu, J. Kang, and C.-Y. Fu. 2021. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil. Med. Res. 8:48.
Zhang, Y., Y. Zhang, F. Liu, Y. Mao, Y. Zhang, H. Zeng, S. Ren, L. Guo, Z. Chen, N. Hrabchenko, J. Wu, and J. Yu. 2023. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porc. Health Manag. 9:5.
Zhao, J., A. F. Harper, M. J. Estienne, K. E. Webb, A. P. McElroy, and D. M. Denbow. 2007. Growth performance and intestinal morphology responses in early weaned pigs to supplementation of antibiotic-free diets with an organic copper complex and spray-dried plasma protein in sanitary and nonsanitary environments. J. Anim. Sci. 85:1302-1310.
Zuidhof, M. J., B. L. Schneider, V. L. Carney, D. R. Korver, and F. E. Robinson. 2014. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 93:2970-2982.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99391-
dc.description.abstract仔豬離乳最初幾週會因營養、環境等因素受到疾病之風險造成嚴重損失,隨著國際趨勢禁用抗生素作為生長促進劑的同時,抗生素替代物的研發與應用日益重要。然而,各種替代物之實際有效用量及效果可能受飼料組成、動物日齡等因素影響,致使其實際飼養上的使用效果評估仍缺乏有效測試。動物試驗雖可獲得真實的生理反應與代謝資料,但成本高且效率低。體外消化與發酵平台即是一套可大量操作,減少動物使用且低成本與快速的篩選方法。但離乳仔豬因消化能力與生長或肥育豬有相當大之差異,需建立適用於離乳仔豬之體外消化條件才能正確進行評估工作。本研究旨在建立一套適用於離乳仔豬消化條件之體外消化與發酵系統,評估抗生素替代物之效果及用量,並藉由動物試驗驗證其準確性。
試驗第一階段建立與優化離乳仔豬體外消化與發酵系統,依照離乳仔豬腸道生理特性之研究,分別調整為生長豬消化道酵素活性之50%,並分別設定胃與小腸乾物質比例30%與12%條件下,以pH 4或pH 5模擬胃部pH值消化1小時,接續以pH 6.5模擬小腸消化8或16小時。試驗透過不同粗蛋白含量之離乳仔豬飼糧評估不同消化條件對於體外消化情形、臭味物質,並與實際動物體內消化率、糞便臭味物質及生長表現間進行比對,以建立具代表性之模擬系統。進一步運用透析法評估模擬小腸吸收之時間設定,優化現有體外消化平台。體外模擬結果顯示,三種粗蛋白含量飼糧在模擬胃pH 4或5與小腸消化8或16小時的組合條件下,對乾物質消化率並無顯著差異,因此設定8小時作為模擬小腸消化時間。在胃部pH 4條件下,中蛋白與高蛋白飼糧之體外粗蛋白消化率顯著高於低蛋白組,與動物試驗結果趨勢一致。生長表現方面,中蛋白組與高蛋白組仔豬之平均日增重以及飼料效率皆優於低蛋白組。體外發酵臭味物質與糞便分析結果也具有一致趨勢。因此,依離乳仔豬腸道乾物質比例,並採生長豬酵素活性之半量進行模擬,結果顯示以胃pH 4消化1小時,接續小腸pH 6.5消化8小時,可有效模擬體內消化情形。搭配12小時透析可移除約90%游離胺基酸與還原糖,模擬腸吸收。進一步以不同粗蛋白與能量水平仔豬飼糧進行雙重驗證,結果顯示體外模擬與實際動物試驗在消化與發酵產物上皆具有相關性,進一步證實體外模擬平台與活體動物消化情形具有良好對應關係。
第二部分之研究利用第一階段建立之離乳仔豬體外消化與發酵平台,評估中鏈脂肪酸混合物(含12碳單酸甘油酯與14碳之脂肪酸)作為抗生素替代物之效用與添加量,並搭配動物試驗進行體內外添加效果之雙向驗證。結果顯示,添加0.2%混合物時,體外全腸消化率與對照組並無顯著差異,且與動物實際消化結果一致,但營養物釋放速率較0.1%為佳。體外發酵之微生物分析顯示,添加0.2%亦可提升乳酸菌比例、抑制大腸桿菌與沙門氏菌生長,且與動物實驗中之糞便菌相變化趨勢一致。進一步將透析模擬吸收作用納入評估,比對動物試驗結果,顯示模擬消化後之透析操作可有效改變發酵基質組成,反映出更貼近體內後腸發酵之產氣動力學與臭味物質分佈。
綜合上述,本研究成功建立一套涵蓋消化—吸收—發酵三階段之離乳仔豬體外消化與發酵系統,能準確反應實際飼糧對仔豬消化性能與腸道環境之影響。透過體內外雙向驗證,證實該系統可作為抗生素替代物添加之篩選之工具,有效降低動物試驗需求,並提升抗生素替代物之精準利用。
zh_TW
dc.description.abstractThe weaner period is a critical phase in piglet development, because nutritional deficits, underdeveloped digestive function, and environmental stressors significantly increase the risk of disease and growth retardation. With the global trend of banning the use of antibiotic growth promoters, the development and application of antibiotic alternatives have become increasingly important. However, the efficacy and optimal dosages of these alternatives vary depending on factors such as feed composition and age. Therefore, there is still a lack of efficient evaluation methods on the effectiveness and dosage of their practical application. While animal experiments provide accurate physiological and metabolic data, they are costly, labor-intensive, and low efficiency. As such, an in vitro digestion and fermentation system offers a high efficiency, low-cost, and animal-sparing alternative for evaluating the efficacy and dosage of these alternatives. However, due to substantial differences in digestive capacity between weaning piglets and growing or finishing pigs, it is necessary to establish in vitro digestion conditions specifically suitable for weaning piglets to ensure accurate evaluation. The research aimed to establish an in vitro digestion and fermentation system of weaning piglets, to evaluate the effectiveness and dosage of antibiotic alternatives, and to validate the system’s accuracy through animal experiments.
The first phase of the experiment focused on the development and optimization of the in vitro system. Based on studies of the gastrointestinal physiology of weaning piglets, the system was adjusted to simulate piglet digestion using 50% of the enzymatic activity of growing pigs and dry matter ratios in the stomach and small intestine of 30% and 12%, respectively. Digestion was simulated in the stomach at pH 4 or pH 5 for one hour, followed by digestion in the small intestine at a pH of 6.5 for either 8 or 16 hours. Using diets with varying crude protein (CP) levels, the study evaluated in vitro digestibility, odor compounds, and the correlation between in vitro and in vivo digestive performance, fecal odor compounds, and growth performance. Furthermore, the dialysis process was applied to evaluate and optimize simulated intestinal absorption. The in vitro experiment results showed no significant differences in dry matter digestibility across the various protein-level diets under different small intestinal digestion times or gastric pH conditions, which supports using 8 hours is suitable for small intestinal digestion. At gastric pH 4, medium- and high-CP diets exhibited significantly higher in vitro protein digestibility than the low-CP diet, consistent with in vivo results. Piglets fed medium- or high-CP diets also showed better average daily gain and feed efficiency. Additionally, odor compounds produced from in vitro fermentation and fecal samples showed similar trends. It suggested that the effectiveness of simulating gastric digestion at pH 4 for 1 hour and intestinal digestion at pH 6.5 for 8 hours under the specified dry matter ratios and enzyme activity levels. The 12-hour dialysis duration removed approximately 90% of free amino acids and reducing sugars, successfully simulating nutrient absorption. Bidirectional evaluation using diets with varying crude protein and energy levels confirmed a strong correlation between in vitro and in vivo digestive and fermentation outcomes, reinforcing the system’s reliability.
In the second experiment, the in vitro digestion and fermentation platform for weaning piglets established in the first experiment was applied to evaluate the efficacy and dosage of medium-chain fatty acids (MCFA) mixture (including C12 monoglyceride and C14 fatty acids) as antibiotic alternatives with bidirectional verification. The results showed that 0.2% MCFA mixture supplementation had no significant effect on total tract digestibility compared to the control group. The nutrient release was more effective at 0.2% than at 0.1%. Furthermore, microbial analysis from in vitro fermentation indicated that 0.2% MCFA mixture increased the proportion of lactic acid bacteria while suppressing the growth of E. coli and Salmonella. This finding aligns with the changes in fecal microbiota observed in vivo. Moreover, incorporating dialysis to simulate nutrient absorption allowed for a more accurate evaluation by modifying the fermentation substrate composition, leading to fermentation kinetics and odor compound profiles that better reflected in vivo hindgut fermentation.
In conclusion, this study successfully established a three-stage in vitro digestion-absorption-fermentation system that accurately simulates the digestive conditions of weaning piglets. The platform effectively evaluated the impact of different diets on digestion efficiency and gut microbial metabolism. Through bidirectional evaluation using in vivo and in vitro results, the system was proven to be a reliable tool for screening antibiotic alternatives. This approach effectively reduces reliance on animal experiments and enhances the precision in the utilization of antibiotic alternatives.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:08:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:08:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目次 vii
圖次 xi
表次 xiv
前言 1
第一章 文獻探討 2
一、 離乳仔豬所面臨的問題 2
(一) 離乳帶來的影響 2
(二) 抗生素生長促進劑的禁用 3
二、 仔豬抗生素替代物 5
(一) 益生菌 5
(二) 酵素 7
(三) 抗菌胜肽 8
(四) 精油 9
(五) 有機酸 11
三、 抗生素替代物效用之評估方法 16
(一) 動物體內法 16
(二) 體外消化法 17
四、 離乳仔豬體外消化平台建立 22
(一) 胃及小腸之pH值 22
(二) 消化道乾物質比例 23
(三) 消化酵素活性 24
(四) 消化時間 27
第二章 研究目的 30
第三章 研究架構 31
第四章 材料與方法 32
一、 試驗分組 32
(一) 利用不同粗蛋白含量之飼糧建立離乳仔豬體外消化條件 32
(二) 透析時間對體外消化模擬吸收之影響 37
(三) 評估仔豬消化條件搭配透析法之正確性 38
(四) 利用優化之離乳仔豬體外消化系統評估中鏈脂肪酸添加效果 43
二、 體外消化(吸收)與發酵試驗與流程 46
(一) 操作模式 46
(二) 消化液配製 47
(三) 厭氧發酵液配製 47
(四) 流程 50
三、 近似分析 54
(一) 乾物質 54
(二) 粗蛋白質 54
(三) 粗脂肪 55
(四) 粗纖維 56
(五) 灰分 57
(六) 鹽酸不溶物 57
(七) 無氮萃取物 57
四、 體外消化產物及殘餘物分析 58
(一) 體外乾物質消化率 58
(二) 體外粗蛋白消化率 58
(三) 還原糖 58
(四) 游離胺基酸 60
(五) pH值 61
五、 發酵產物/殘餘物與糞樣分析 62
(一) 糞樣處理 62
(二) 體外消化率 63
(三) 酵素活性 64
(四) 臭味物質 68
(五) 微生物分析 71
六、 產氣動力學 72
七、 統計分析 73
第五章 結果與討論 74
一、 利用不同粗蛋白含量之飼糧建立離乳仔豬體外消化條件 74
(一) 消化條件設定 74
(二) 體外消化率與發酵率 76
(三) 體外消化營養物質之釋放 80
(四) 動物試驗之生長性能與消化率 84
(五) 臭味物質 87
二、 透析時間對體外消化模擬吸收之影響 91
三、 利用不同粗蛋白及能量水平之離乳仔豬飼糧評估仔豬消化條件搭配透析法之正確性 94
(一) 體外消化率與發酵率 94
(二) 體外消化營養物質之釋放 97
(三) 動物試驗之生長性能與消化率 103
(四) 臭味物質與酵素活性 106
(五) 體外發酵產氣動力學 110
四、 利用優化之離乳仔豬體外消化系統評估中鏈脂肪酸添加效果—評估不同添加濃度之影響 113
(一) 消化率以及營養物質之釋放 113
(二) 微生物菌相分析 118
(三) 臭味物質 120
(四) 體外發酵產氣動力學 123
五、 利用優化之離乳仔豬體外消化系統評估中鏈脂肪酸添加效果—消化後透析對發酵之影響 126
(一) 體外消化營養物質之釋放 126
(二) 體外消化率與發酵率 129
(三) 臭味物質 131
(四) 體外發酵產氣動力學 133
第六章 結論 136
第七章 參考文獻 137
-
dc.language.isozh_TW-
dc.subject體外消化與發酵系統zh_TW
dc.subject消化條件模擬zh_TW
dc.subject離乳仔豬zh_TW
dc.subject抗生素替代物評估zh_TW
dc.subject體內外雙向驗證zh_TW
dc.subjectantibiotic alternatives evaluationen
dc.subjectdigestive simulationen
dc.subjectweaning pigletsen
dc.subjectin vivo-in vitro bidirectional evaluationen
dc.subjectin vitro digestion and fermentation systemen
dc.title仔豬體外消化與發酵平台之建立及其在抗生素替代物評估之應用zh_TW
dc.titleDevelopment of the in vitro digestion and fermentation platform for piglets and its application in antibiotic alternative evaluationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游玉祥;劉芳爵;林傳順;柯孟韡zh_TW
dc.contributor.oralexamcommitteeYu-Hsiang Yu;Fang-Chueh Liu;Chuan-Shun Lin;Meng-Wei Keen
dc.subject.keyword體外消化與發酵系統,消化條件模擬,離乳仔豬,抗生素替代物評估,體內外雙向驗證,zh_TW
dc.subject.keywordin vitro digestion and fermentation system,digestive simulation,weaning piglets,antibiotic alternatives evaluation,in vivo-in vitro bidirectional evaluation,en
dc.relation.page152-
dc.identifier.doi10.6342/NTU202502951-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-30
3.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved