Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99381
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲zh_TW
dc.contributor.advisorCheng-Che Hsuen
dc.contributor.author陳孝熏zh_TW
dc.contributor.authorXiao-Xun Chenen
dc.date.accessioned2025-09-10T16:06:47Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. H. Conrads, and M. Schmidt, "Plasma generation and plasma sources," Plasma Sources Science & Technology, 9 (4), 441-454 (2000).
2. N. S. J. Braithwaite, "Introduction to gas discharges," Plasma Sources Science & Technology, 9 (4), 517-527 (2000).
3. D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A, 29 (2)(2011).
4. K. Tachibana, "Current status of microplasma research," IEEJ Trans. Electr. Electron. Eng., 1 (2), 145-155 (2006).
5. K. H. Becker, K. H. Schoenbach, and J. G. Eden, "Microplasmas and applications," Journal of Physics D-Applied Physics, 39 (3), R55-R70 (2006).
6. R. Foest, M. Schmidt, and K. Becker, "Microplasmas, an emerging field of low-temperature plasma science and technology," International Journal of Mass Spectrometry, 248 (3), 87-102 (2006).
7. W. H. Chiang, D. Mariotti, R. M. Sankaran, J. G. Eden, and K. Ostrikov, "Microplasmas for Advanced Materials and Devices," Advanced Materials, 32 (18)(2020).
8. K. H. Schoenbach, and K. Becker, "20 years of microplasma research: a status report," European Physical Journal D, 70 (2)(2016).
9. S. Q. Zhang, and T. Dufour, "Self-organized patterns by a DC pin liquid anode discharge in ambient air: Effect of liquid types on formation," Physics of Plasmas, 25 (7)(2018).
10. J. C. T. Eijkel, H. Stoeri, and A. Manz, "A molecular emission detector on a chip employing a direct current microplasma," Analytical Chemistry, 71 (14), 2600-2606 (1999).
11. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, "Microplasmas: Sources, particle kinetics, and biomedical applications," Plasma Processes and Polymers, 5 (4), 322-344 (2008).
12. K. H. Schoenbach, A. ElHabachi, W. H. Shi, and M. Ciocca, "High-pressure hollow cathode discharges," Plasma Sources Science & Technology, 6 (4), 468-477 (1997).
13. C. Lazzaroni, and P. Chabert, "Electrical characteristics of micro-hollow cathode discharges," Journal of Physics D-Applied Physics, 46 (45)(2013).
14. U. Kogelschatz, "Dielectric-barrier discharges: Their history, discharge physics, and industrial applications," Plasma Chemistry and Plasma Processing, 23 (1), 1-46 (2003).
15. U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," Ieee Transactions on Plasma Science, 30 (4), 1400-1408 (2002).
16. M. Laroussi, and T. Akan, "Arc-free atmospheric pressure cold plasma jets: A review," Plasma Processes and Polymers, 4 (9), 777-788 (2007).
17. Y. C. Hong, and H. S. Uhm, "Microplasma jet at atmospheric pressure," Applied Physics Letters, 89 (22)(2006).
18. F. Fanelli, and F. Fracassi, "Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials," Surf. Coat. Technol., 322, 174-201 (2017).
19. S. O. Kim, and J. G. Eden, "Arrays of microplasma devices fabricated in photodefinable glass and excited AC or DC by interdigitated electrodes," Ieee Photonics Technology Letters, 17 (7), 1543-1545 (2005).
20. E. J. Szili, S. A. Al-Bataineh, P. Ruschitzka, G. Desmet, C. Priest, H. J. Griesser, N. H. Voelcker, F. J. Harding, D. A. Steele, and R. D. Short, "Microplasma arrays: a new approach for maskless and localized patterning of materials surfaces," Rsc Advances, 2 (31), 12007-12010 (2012).
21. S. J. Park, J. Chen, C. J. Wagner, N. P. Ostrom, C. Liu, and J. G. Eden, "Microdischarge arrays: A new family of photonic devices," Ieee Journal of Selected Topics in Quantum Electronics, 8 (1), 139-147 (2002).
22. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. F. Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. M. Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. L. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui, and G. Zvereva, "Plasma-liquid interactions: a review and roadmap," Plasma Sources Science & Technology, 25 (5)(2016).
23. C. Chokradjaroen, X. Wang, J. Niu, T. Fan, and N. Saito, "Fundamentals of solution plasma for advanced materials synthesis," Materials Today Advances, 14(2022).
24. C. Chokradjaroen, J. Q. Niu, G. Panomsuwan, and N. Saito, "Insight on Solution Plasma in Aqueous Solution and Their Application in Modification of Chitin and Chitosan," International Journal of Molecular Sciences, 22 (9)(2021).
25. P. Bruggeman, and R. Brandenburg, "Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics," Journal of Physics D-Applied Physics, 46 (46)(2013).
26. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, "Characterization of a dc atmospheric pressure normal glow discharge," Plasma Sources Science & Technology, 14 (4), 700-711 (2005).
27. J. Kim, S. J. Kim, Y. N. Lee, I. T. Kim, and G. Cho, "Discharge Characteristics and Plasma Erosion of Various Dielectric Materials in the Dielectric Barrier Discharges," Applied Sciences-Basel, 8 (8)(2018).
28. X. Lu, M. Laroussi, and V. Puech, "On atmospheric-pressure non-equilibrium plasma jets and plasma bullets," Plasma Sources Science & Technology, 21 (3)(2012).
29. Y. Xia, W. C. Wang, D. P. Liu, Y. F. Peng, Y. Song, L. F. Ji, Y. Zhao, Z. H. Qi, X. Y. Wang, and B. Li, "An atmospheric-pressure microplasma array produced by using graphite coating electrodes," Plasma Processes and Polymers, 14 (8)(2017).
30. O. J. Lee, H. W. Ju, G. Khang, P. P. Sun, J. Rivera, J. H. Cho, S. J. Park, J. G. Eden, and C. H. Park, "An experimental burn wound-healing study of non-thermal atmospheric pressure microplasma jet arrays," Journal of Tissue Engineering and Regenerative Medicine, 10 (4), 348-357 (2016).
31. A. Dzimitrowicz, A. Bielawska-Pohl, P. Jamroz, J. Dora, A. Krawczenko, G. Busco, C. Grillon, C. Kieda, A. Klimczak, D. Terefinko, A. Baszczynska, and P. Pohl, "Activation of the Normal Human Skin Cells by a Portable Dielectric Barrier Discharge-Based Reaction-Discharge System of a Defined Gas Temperature," Plasma Chemistry and Plasma Processing, 40 (1), 79-97 (2020).
32. R. C. Sanito, S. J. You, and Y. F. Wang, "Degradation of contaminants in plasma technology: An overview," Journal of Hazardous Materials, 424(2022).
33. Y. B. Mu, and P. T. Williams, "Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review," Chemosphere, 308(2022).
34. B. Lu, X. Zhang, X. Yu, T. Feng, and S. Yao, "Catalytic oxidation of benzene using DBD corona discharges," Journal of Hazardous Materials, 137 (1), 633-637 (2006).
35. R. C. Sanito, Y. W. Chen, S. J. You, H. H. Yang, Y. K. Hsieh, and Y. F. Wang, "Hydrogen and Methane Production from Styrofoam Waste Using an Atmospheric-pressure Microwave Plasma Reactor," Aerosol and Air Quality Research, 20 (10), 2226-2238 (2020).
36. T. Desmet, R. Morent, N. De Geyter, C. Leys, E. Schacht, and P. Dubruel, "Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review," Biomacromolecules, 10 (9), 2351-2378 (2009).
37. S. W. Fitriani, S. Ikeda, M. Tani, H. Yajima, H. Furuta, and A. Hatta, "Hydrophilization of polytetrafluoroethylene using an atmospheric-pressure plasma of argon gas with water-ethanol vapor," Mater. Chem. Phys., 282(2022).
38. U. Lommatzsch, D. Pasedag, A. Baalmann, G. Ellinghorst, and H. E. Wagner, "Atmospheric Pressure Plasma Jet Treatment of Polyethylene Surfaces for Adhesion Improvement," Plasma Processes and Polymers, 4, S1041-S1045 (2007).
39. L. L. Lin, and Q. Wang, "Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis," Plasma Chemistry and Plasma Processing, 35 (6), 925-962 (2015).
40. W. H. Chiang, M. Sakr, X. P. A. Gao, and R. M. Sankaran, "Nanoengineering NixFe1-x Catalysts for Gas-Phase, Selective Synthesis of Semiconducting Single-Walled Carbon Nanotubes," Acs Nano, 3 (12), 4023-4032 (2009).
41. J. Weerasinghe, W. S. Li, R. S. Zhou, R. W. Zhou, A. Gissibl, P. Sonar, R. Speight, K. Vasilev, and K. Ostrikov, "Bactericidal Silver Nanoparticles by Atmospheric Pressure Solution Plasma Processing," Nanomaterials, 10 (5)(2020).
42. S. Liu, Y. L. Yu, and J. H. Wang, "Advances in discharge-based microplasmas for the analysis of trace species by atomic spectrometry," Journal of Analytical Atomic Spectrometry, 32 (11), 2118-2126 (2017).
43. Y. Cai, Y. J. Zhang, D. F. Wu, Y. L. Yu, and J. H. Wang, "Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination," Analytical Chemistry, 88 (8), 4192-4195 (2016).
44. K. Greda, K. Swiderski, P. Jamroz, and P. Pohl, "Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn," Analytical Chemistry, 88 (17), 8812-8820 (2016).
45. C. Meyer, S. Müller, E. L. Gurevich, and J. Franzke, "Dielectric barrier discharges in analytical chemistry," Analyst, 136 (12), 2427-2440 (2011).
46. R. Brandenburg, "Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments," Plasma Sources Science & Technology, 26 (5)(2017).
47. R. Tschiersch, M. Bogaczyk, and H. E. Wagner, "Systematic investigation of the barrier discharge operation in helium, nitrogen, and mixtures: discharge development, formation and decay of surface charges," Journal of Physics D-Applied Physics, 47 (36)(2014).
48. S. J. Li, X. Q. Dang, X. Yu, G. Abbas, Q. Zhang, and L. Cao, "The application of dielectric barrier discharge non -thermal plasma in VOCs abatement: A review," Chemical Engineering Journal, 388(2020).
49. J. Ráhel, and D. M. Sherman, "The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure," Journal of Physics D-Applied Physics, 38 (4), 547-554 (2005).
50. Z. T. Cui, Q. J. Liu, Z. K. Cai, J. M. Wang, and Q. F. Wu, "Modified equivalent circuit for coplanar dielectric barrier discharge considering undischarged areas," Physics of Plasmas, 30 (1)(2023).
51. S. Q. Wu, G. W. Huang, W. X. Cheng, W. Chen, B. Hai, T. Shao, and C. H. Zhang, "The influences of the electrode dimension and the dielectric material on the breakdown characteristics of coplanar dielectric barrier discharge in ambient air," Plasma Processes and Polymers, 14 (12)(2017).
52. T. Homola, V. Prukner, P. Hoffer, and M. Simek, "Multi-hollow surface dielectric barrier discharge: an ozone generator with flexible performance and supreme efficiency," Plasma Sources Science & Technology, 29 (9)(2020).
53. J. Mahoney, W. Zhu, V. S. Johnson, K. H. Becker, and J. L. Lopez, "Electrical and optical emission measurements of a capillary dielectric barrier discharge," European Physical Journal D, 60 (3), 441-447 (2010).
54. J. L. Zhang, H. Sun, D. Z. Wang, and X. G. Wang, "A novel cold plasma jet generated by atmospheric dielectric barrier capillary discharge," Thin Solid Films, 506, 404-408 (2006).
55. F. D. Klute, A. Michels, A. Schütz, C. Vadla, V. Horvatic, and J. Franzke, "Capillary Dielectric Barrier Discharge: Transition from Soft Ionization to Dissociative Plasma," Analytical Chemistry, 88 (9), 4701-4705 (2016).
56. T. Krähling, S. Müller, C. Meyer, A. K. Stark, and J. Franzke, "Liquid electrode dielectric barrier discharge for the analysis of solved metals," Journal of Analytical Atomic Spectrometry, 26 (10), 1974-1978 (2011).
57. T. Krähling, A. Michels, S. Geisler, S. Florek, and J. Franzke, "Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge," Analytical Chemistry, 86 (12), 5822-5828 (2014).
58. W. Zhang, Z. Y. Wang, Z. K. Li, J. F. Zhang, C. Chang, and Y. L. Ji, "Experimental and mechanism research on the NOx removal by a novel liquid electrode dielectric barrier discharge reactor," Chemical Engineering Journal, 443(2022).
59. R. Brandenburg, "Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments," Plasma Sources Science and Technology, 26 (5)(2017).
60. G. Neretti, and M. Ricco, "Self-Tuning High-Voltage and High-Frequency Sinusoidal Power Supply for Dielectric Barrier Discharge Plasma Generation," Electronics, 8 (10)(2019).
61. J. Kriegseis, B. Möller, S. Grundmann, and C. Tropea, "Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators," Journal of Electrostatics, 69 (4), 302-312 (2011).
62. D. E. Ashpis, M. C. Laun, and E. L. Griebeler, "Progress Toward Accurate Measurement of Dielectric Barrier Discharge Plasma Actuator Power," Aiaa Journal, 55 (7), 2254-2268 (2017).
63. S. Panda, S. Mehlawat, N. Dhariwal, A. Kumar, and A. Sanger, "Comprehensive review on gas sensors: Unveiling recent developments and addressing challenges," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 308(2024).
64. G. Korotcenkov, S. Do Han, and J. R. Stetter, "Review of Electrochemical Hydrogen Sensors," Chemical Reviews, 109 (3), 1402-1433 (2009).
65. B. J. Privett, J. H. Shin, and M. H. Schoenfisch, "Electrochemical sensors," Analytical Chemistry, 80 (12), 4499-4517 (2008).
66. J. Baranwal, B. Barse, G. Gatto, G. Broncova, and A. Kumar, "Electrochemical Sensors and Their Applications: A Review," Chemosensors, 10 (9)(2022).
67. H. F. Chai, Z. C. Zheng, K. W. Liu, J. Y. Xu, K. D. Wu, Y. F. Luo, H. L. Liao, M. Debliquy, and C. Zhang, "Stability of Metal Oxide Semiconductor Gas Sensors: A Review," Ieee Sensors Journal, 22 (6), 5470-5481 (2022).
68. A. Dey, "Semiconductor metal oxide gas sensors: A review," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 229, 206-217 (2018).
69. J. Zhang, Z. Y. Qin, D. W. Zeng, and C. S. Xie, "Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration," Physical Chemistry Chemical Physics, 19 (9), 6313-6329 (2017).
70. H. Bai, and G. Q. Shi, "Gas sensors based on conducting polymers," Sensors, 7 (3), 267-307 (2007).
71. X. H. Liu, W. Zheng, R. Kumar, M. Kumar, and J. Zhang, "Conducting polymer-based nanostructures for gas sensors," Coordination Chemistry Reviews, 462(2022).
72. V. Schroeder, S. Savagatrup, M. He, S. B. Ling, and T. M. Swager, "Carbon Nanotube Chemical Sensors," Chemical Reviews, 119 (1), 599-663 (2019).
73. K. Luo, H. R. Peng, B. Zhang, L. M. Chen, P. P. Zhang, Z. J. Peng, and X. L. Fu, "Advances in carbon nanotube-based gas sensors: Exploring the path to the future," Coordination Chemistry Reviews, 518(2024).
74. T. Aldhafeeri, M. K. Tran, R. Vrolyk, M. Pope, and M. Fowler, "A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives," Inventions, 5 (3)(2020).
75. R. Epping, and M. Koch, "On-Site Detection of Volatile Organic Compounds (VOCs)," Molecules, 28 (4)(2023).
76. R. K. Jha, "Non-Dispersive Infrared Gas Sensing Technology: A Review," Ieee Sensors Journal, 22 (1), 6-15 (2022).
77. K. W. Liu, and C. Zhang, "Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review," Food Chemistry, 334(2021).
78. H. Nazemi, A. Joseph, J. Park, and A. Emadi, "Advanced Micro- and Nano-Gas Sensor Technology: A Review," Sensors, 19 (6)(2019).
79. J. Devkota, P. R. Ohodnicki, and D. W. Greve, "SAW Sensors for Chemical Vapors and Gases," Sensors, 17 (4)(2017).
80. F. J. Santos, and M. T. Galceran, "The application of gas chromatography to environmental analysis," Trac-Trends in Analytical Chemistry, 21 (9-10), 672-685 (2002).
81. F. Haghighi, Z. Talebpour, and A. Sanati-Nezhad, "Through the years with on-a-chip gas chromatography: a review," Lab on a Chip, 15 (12), 2559-2575 (2015).
82. D. W. Griffith, and I. M. Jamie, "F ourier Transform Infrared Spectrometry in Atmospheric and Trace Gas Analysis," Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, (2006).
83. B. Giechaskiel, and M. Clairotte, "Fourier transform infrared (FTIR) spectroscopy for measurements of vehicle exhaust emissions: A review," Applied Sciences, 11 (16), 7416 (2021).
84. X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, and H. S. Ning, "A Survey on Gas Sensing Technology," Sensors, 12 (7), 9635-9665 (2012).
85. A. Idili, H. Montón, M. Medina-Sánchez, B. Ibarlucea, G. Cuniberti, O. G. Schmidt, K. W. Plaxco, and C. Parolo, in Micro/Nanofluidics and Lab-on-Chip Based Emerging Technologies for Biomedical and Translational Research Applications, Pt B, edited by A. Pandya and V. Singh, 2022, Vol. 187, pp. 295-333.
86. T. Belmonte, C. Noël, T. Gries, J. Martin, and G. Henrion, "Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas," Plasma Sources Science & Technology, 24 (6)(2015).
87. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, "Optical diagnostics of atmospheric pressure air plasmas," Plasma Sources Science & Technology, 12 (2), 125-138 (2003).
88. M. T. Li, S. X. Huang, K. L. Xu, X. M. Jiang, and X. D. Hou, "Miniaturized point discharge-radical optical emission spectrometer: A multichannel optical detector for discriminant analysis of volatile organic sulfur compounds," Talanta, 188, 378-384 (2018).
89. W. Li, C. B. Zheng, G. Y. Fan, L. Tang, K. L. Xu, Y. Lv, and X. D. Hou, "Dielectric Barrier Discharge Molecular Emission Spectrometer as Multichannel GC Detector for Halohydrocarbons," Analytical Chemistry, 83 (13), 5050-5055 (2011).
90. R. Yang, L. J. Yang, J. H. Yang, Z. A. Li, and C. B. Zheng, "Portable analytical system integrating purge and trap and microplasma optical emission spectrometry for online discriminative detection of NOx," Talanta, 291(2025).
91. J. Q. Mao, Y. Atwa, Z. X. Wu, D. McNeill, and H. Shakeel, "Identification of Different Classes of VOCs Based on Optical Emission Spectra Using a Dielectric Barrier Helium Plasma Coupled with a Mini Spectrometer," Acs Measurement Science Au, 4 (2), 201-212 (2024).
92. T. Ren, Y. Lin, Y. B. Su, S. M. Ye, and C. B. Zheng, "Machine Learning-Assisted Portable Microplasma Optical Emission Spectrometer for Food Safety Monitoring," Analytical Chemistry, 96 (13), 5170-5177 (2024).
93. D. X. Xu, C. Li, L. Yang, W. C. Zhu, B. D. Huang, C. Zhang, and T. Shao, "Detection of sulfur mustard simulants using the microwave atmospheric pressure plasma optical emission spectroscopy method," Frontiers in Chemistry, 11(2023).
94. R. Yang, Y. Lin, J. H. Yang, L. B. He, Y. F. Tian, X. D. Hou, and C. B. Zheng, "Headspace Solid-Phase Microextraction Following Chemical Vapor Generation for Ultrasensitive, Matrix Effect-Free Detection of Nitrite by Microplasma Optical Emission Spectrometry," Analytical Chemistry, 93 (18), 6972-6979 (2021).
95. Y. Yang, Y. Wang, X. L. Hou, Y. Lin, L. Yang, X. D. Hou, and C. B. Zheng, "Can low-temperature point discharge Be used as atomic emission source for sensitive determination of cyclic volatile methylsiloxanes?," Analytica Chimica Acta, 1124, 121-128 (2020).
96. J. Vincent, H. Wang, O. Nibouche, and P. Maguire, "Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning," Plasma Sources Science & Technology, 29 (8)(2020).
97. K. Kakegawa, R. Harigane, M. Aida, H. Miyahara, S. Maruo, and A. Okino, "Development of a High-Density Microplasma Emission Source for a Micro Total Analysis System," Analytical Sciences, 33 (4), 505-510 (2017).
98. D. B. Luo, D. C. Ma, Y. He, X. S. Li, S. Wang, and Y. X. Duan, "Needle electrode-based microplasma formed in a cavity chamber for optical emission spectrometric detection of volatile organic compounds through a filter paper sampling," Microchemical Journal, 130, 33-39 (2017).
99. X. Jiang, Z. M. Hu, H. W. He, J. Luo, Y. F. Tian, and X. D. Hou, "A two-dimensional sensor based on dielectric barrier discharge molecular optical emission and chemiluminescence for discrimination analysis of volatile halohydrocarbons," Microchemical Journal, 129, 16-22 (2016).
100. F. Y. Meng, and Y. X. Duan, "Nitrogen Microplasma Generated in Chip-Based Ingroove Glow Discharge Device for Detection of Organic Fragments by Optical Emission Spectrometry," Analytical Chemistry, 87 (3), 1882-1888 (2015).
101. F. Y. Meng, X. M. Li, and Y. X. Duan, "Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement," Scientific Reports, 4(2014).
102. D. B. Luo, Y. X. Duan, Y. He, and B. Gao, "A Novel DC Microplasma Sensor Constructed in a Cavity PDMS Chamber with Needle Electrodes for Fast Detection of Methanol-containing Spirit," Scientific Reports, 4(2014).
103. R. L. Vander Wal, C. K. Gaddam, and M. J. Kulis, "An Investigation of Micro-Hollow Cathode Glow Discharge Generated Optical Emission Spectroscopy for Hydrocarbon Detection and Differentiation," Applied Spectroscopy, 68 (6), 649-656 (2014).
104. B. J. Han, X. M. Jiang, X. D. Hou, and C. B. Zheng, "Dielectric Barrier Discharge Carbon Atomic Emission Spectrometer: Universal GC Detector for Volatile Carbon-Containing Compounds," Analytical Chemistry, 86 (1), 936-942 (2014).
105. J. H. Fujiyama-Novak, C. K. Gaddam, D. Das, R. L. Vander Wal, and B. Ward, "Detection of explosives by plasma optical emission spectroscopy," Sensors and Actuators B-Chemical, 176, 985-993 (2013).
106. Y. Liu, W. Q. Cao, X. L. Ding, X. Yuan, and Y. X. Duan, "Characterization of the analytical capabilities of an atmospheric micro-plasma device for the detection of nonmetals," Spectrochimica Acta Part B-Atomic Spectroscopy, 76, 152-158 (2012).
107. C. Meyer, D. Demecz, E. L. Gurevich, U. Marggraf, G. Jestel, and J. Franzke, "Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy," Journal of Analytical Atomic Spectrometry, 27 (4), 677-681 (2012).
108. X. Yuan, X. L. Ding, Z. J. Zhao, X. F. Zhan, and Y. X. Duan, "Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry," Journal of Analytical Atomic Spectrometry, 27 (12), 2094-2101 (2012).
109. A. R. Hoskinson, J. Hopwood, N. W. Bostrom, J. A. Crank, and C. Harrison, "Low-power microwave-generated helium microplasma for molecular and atomic spectrometry," Journal of Analytical Atomic Spectrometry, 26 (6), 1258-1264 (2011).
110. R. Trejo-Tzab, J. A. Aguilar-Jiménez, P. Quintana-Owen, A. Avila-Ortega, M. A. Alvarez-Lemus, and R. A. Medina-Esquivel, "One-step nitrogen plasma process for bimetallic impregnation to obtain N-TiO2-X /Au/Ag composite," Nanomaterials and Nanotechnology, 10(2020).
111. U. Fantz, "Basics of plasma spectroscopy," Plasma Sources Science & Technology, 15 (4), S137-S147 (2006).
112. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, 521 (7553), 436-444 (2015).
113. L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions," Journal of big Data, 8, 1-74 (2021).
114. W. Hariri, "Unlocking the potential of ChatGPT: A comprehensive exploration of its applications, advantages, limitations, and future directions in natural language processing," arXiv preprint arXiv:2304.02017, (2023).
115. A. Shrestha, and A. Mahmood, "Review of deep learning algorithms and architectures," IEEE Access, 7, 53040-53065 (2019).
116. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, 86 (11), 2278-2324 (1998).
117. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, 25(2012).
118. L. Qian, T. Yu, and J. Yang, "Multi-scale feature fusion of covariance pooling networks for fine-grained visual recognition," Sensors, 23 (8), 3970 (2023).
119. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, presented at the Proceedings of the IEEE conference on computer vision and pattern recognition, 2015 (unpublished).
120. K. He, X. Zhang, S. Ren, and J. Sun, presented at the Proceedings of the IEEE conference on computer vision and pattern recognition, 2016 (unpublished).
121. X. Q. Fan, W. Ming, H. T. Zeng, Z. M. Zhang, and H. M. Lu, "Deep learning-based component identification for the Raman spectra of mixtures," Analyst, 144 (5), 1789-1798 (2019).
122. W. L. Lu, X. Q. Chen, L. Wang, H. F. Li, and Y. V. Fu, "Combination of an Artificial Intelligence Approach and Laser Tweezers Raman Spectroscopy for Microbial Identification," Analytical Chemistry, 92 (9), 6288-6296 (2020).
123. J. J. Xia, J. X. Zhang, Y. M. Xiong, and S. G. Min, "Feature selection of infrared spectra analysis with convolutional neural network," Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 266(2022).
124. C. Ni, D. Y. Wang, and Y. Tao, "Variable weighted convolutional neural network for the nitrogen content quantization of Masson pine seedling leaves with near-infrared spectroscopy," Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 209, 32-39 (2019).
125. J. Castorena, D. Oyen, A. Ollila, C. Legget, and N. Lanza, "Deep spectral CNN for laser induced breakdown spectroscopy," Spectrochimica Acta Part B-Atomic Spectroscopy, 178(2021).
126. B. Kim, S. Im, and G. Yoo, "Performance Evaluation of CNN-Based End-Point Detection Using In-Situ Plasma Etching Data," Electronics, 10 (1)(2021).
127. M. H. Mozaffari, and L. L. Tay, "Overfitting One-Dimensional convolutional neural networks for Raman spectra identification," Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 272(2022).
128. S. Jayasankar, D. Bajhaiya, and S. N. Unni, "Deep learning-enabled soft tissue tumor localization using spatially offset Raman spectral analysis: in-silico investigations," Journal of Physics D-Applied Physics, 55 (39)(2022).
129. J. Q. Hu, Y. Q. Zou, B. Sun, X. Y. Yu, Z. Y. Shang, J. Huang, S. Z. Jin, and P. Liang, "Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection," Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 265(2022).
130. T. Kirchberger-Tolstik, P. Pradhan, M. Vieth, P. Grunert, J. Popp, T. W. Bocklitz, and A. Stallmach, "Towards an Interpretable Classifier for Characterization of Endoscopic Mayo Scores in Ulcerative Colitis Using Raman Spectroscopy," Analytical Chemistry, 92 (20), 13776-13784 (2020).
131. Y. Y. Liu, J. J. Xu, Y. Tao, T. Fang, W. B. Du, and A. P. Ye, "Rapid and accurate identification of marine microbes with single-cell Raman spectroscopy," Analyst, 145 (9), 3297-3305 (2020).
132. M. Fukuhara, K. Fujiwara, Y. Maruyama, and H. Itoh, "Feature visualization of Raman spectrum analysis with deep convolutional neural network," Analytica Chimica Acta, 1087, 11-19 (2019).
133. C. S. Ho, N. Jean, C. A. Hogan, L. Blackmon, S. S. Jeffrey, M. Holodniy, N. Banaei, A. A. E. Saleh, S. Ermon, and J. Dionne, "Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning," Nature Communications, 10(2019).
134. J. Liu, M. Osadchy, L. Ashton, M. Foster, C. J. Solomon, and S. J. Gibson, "Deep convolutional neural networks for Raman spectrum recognition: a unified solution," Analyst, 142 (21), 4067-4074 (2017).
135. Z. L. Dong, J. J. Wang, P. H. Sun, W. S. Ran, and Y. Li, "Mango variety classification based on convolutional neural network with attention mechanism and near-infrared spectroscopy," Journal of Food Measurement and Characterization, 18 (3), 2237-2247 (2024).
136. G. W. Jung, S. G. Jung, and J. M. Cole, "Automatic materials characterization from infrared spectra using convolutional neural networks," Chemical Science, 14 (13), 3600-3609 (2023).
137. J. J. Xia, Y. Huang, Q. Q. Li, Y. M. Xiong, and S. G. Min, "Convolutional neural network with near-infrared spectroscopy for plastic discrimination," Environmental Chemistry Letters, 19 (5), 3547-3555 (2021).
138. X. L. Zhang, J. F. Xu, J. Yang, L. Chen, H. B. Zhou, X. J. Liu, H. F. Li, T. Lin, and Y. B. Ying, "Understanding the learning mechanism of convolutional neural networks in spectral analysis," Analytica Chimica Acta, 1119, 41-51 (2020).
139. X. L. Zhang, T. Lin, J. F. Xu, X. Luo, and Y. B. Ying, "DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis," Analytica Chimica Acta, 1058, 48-57 (2019).
140. W. Ng, B. Minasny, M. Montazerolghaem, J. Padarian, R. Ferguson, S. Bailey, and A. B. McBratney, "Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra," Geoderma, 352, 251-267 (2019).
141. J. Acquarelli, T. van Laarhoven, J. Gerretzen, T. N. Tran, L. M. C. Buydens, and E. Marchiori, "Convolutional neural networks for vibrational spectroscopic data analysis," Analytica Chimica Acta, 954, 22-31 (2017).
142. S. Kajita, S. Iwai, H. Tanaka, D. Nishijima, K. Fujii, H. van der Meiden, and N. Ohno, "Use of machine learning for a helium line intensity ratio method in Magnum-PSI," Nuclear Materials and Energy, 33(2022).
143. C. Y. Wang, T. S. Ko, and C. C. Hsu, "Interpreting convolutional neural network for real-time volatile organic compounds detection and classification using optical emission spectroscopy of plasma," Analytica Chimica Acta, 1179(2021).
144. S. Y. Shao, R. Q. Yan, Y. D. Lu, P. Wang, and R. X. Gao, "DCNN-Based Multi-Signal Induction Motor Fault Diagnosis," Ieee Transactions on Instrumentation and Measurement, 69 (6), 2658-2669 (2020).
145. M. Abdelmaksoud, M. Torki, M. El-Habrouk, and M. Elgeneidy, "Convolutional-neural-network-based multi-signals fault diagnosis of induction motor using single and multi-channels datasets," Alexandria Engineering Journal, 73, 231-248 (2023).
146. F. Husari, and J. Seshadrinath, "Early stator fault detection and condition identification in induction motor using novel deep network," IEEE Transactions on Artificial Intelligence, 3 (5), 809-818 (2021).
147. Y. Hsueh, V. R. Ittangihala, W.-B. Wu, H.-C. Chang, and C.-C. Kuo, "Condition monitor system for rotation machine by CNN with recurrence plot," Energies, 12 (17), 3221 (2019).
148. J. Wang, D. Wang, S. Wang, W. Li, and K. Song, "Fault diagnosis of bearings based on multi-sensor information fusion and 2D convolutional neural network," IEEE Access, 9, 23717-23725 (2021).
149. P. Fu, J. Wang, X. Zhang, L. Zhang, and R. X. Gao, "Dynamic routing-based multimodal neural network for multi-sensory fault diagnosis of induction motor," Journal of Manufacturing Systems, 55, 264-272 (2020).
150. C. M. Tsai, C. S. Wang, Y. J. Chung, Y. D. Sun, and J. W. Perng, "Multi-Sensor Fault Diagnosis of Underwater Thruster Propeller Based on Deep Learning," Sensors, 21 (21)(2021).
151. B. K. Iwana, and S. Uchida, "An empirical survey of data augmentation for time series classification with neural networks," Plos One, 16 (7)(2021).
152. A. G. Moisés, I. V. Pascual, J. J. I. González, and C. R. Zamarreño, "Data Augmentation Techniques for Machine Learning Applied to Optical Spectroscopy Datasets in Agrifood Applications: A Comprehensive Review," Sensors, 23 (20)(2023).
153. M. Kazemzadeh, C. L. Hisey, K. Zargar-Shoshtari, W. L. Xu, and N. G. R. Broderick, "Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications," Optics Communications, 510(2022).
154. K. Georgouli, M. T. Osorio, J. M. Del Rincon, and A. Koidis, "Data augmentation in food science: Synthesising spectroscopic data of vegetable oils for performance enhancement," Journal of Chemometrics, 32 (6)(2018).
155. Y. Shin, M. Kim, and H. Kim, "Towards unbalanced multiclass intrusion detection with hybrid sampling methods and ensemble classification," Applied Soft Computing, 157, 111517 (2024).
156. A. Conlin, E. Martin, and A. Morris, "Data augmentation: an alternative approach to the analysis of spectroscopic data," Chemometrics and intelligent laboratory systems, 44 (1-2), 161-173 (1998).
157. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique," Journal of artificial intelligence research, 16, 321-357 (2002).
158. F. Poggialini, B. Campanella, S. Legnaioli, S. Raneri, and V. Palleschi, "Comparison of convolutional and conventional artificial neural networks for laser-induced breakdown spectroscopy quantitative analysis," Applied Spectroscopy, 76 (8), 959-966 (2022).
159. A. Kühnel, and C. Bogner, "In-situ prediction of soil organic carbon by vis-NIR spectroscopy: an efficient use of limited field data," European Journal of Soil Science, 68 (5), 689-702 (2017).
160. L. Zhang, Y. Wang, Y. Wei, and D. An, "Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel," Food Chemistry, 370, 131047 (2022).
161. W. J. Thrift, S. Ronaghi, M. Samad, H. Wei, D. G. Nguyen, A. S. Cabuslay, C. E. Groome, P. J. Santiago, P. Baldi, and A. I. Hochbaum, "Deep learning analysis of vibrational spectra of bacterial lysate for rapid antimicrobial susceptibility testing," ACS nano, 14 (11), 15336-15348 (2020).
162. X. Zhang, H. Li, X. Tian, C. Chen, Y. Su, M. Li, J. Lv, C. Chen, and X. Lv, "Application of spectral small-sample data combined with a method of spectral data augmentation fusion (SDA-Fusion) in cancer diagnosis," Chemometrics and Intelligent Laboratory Systems, 231, 104681 (2022).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99381-
dc.description.abstract常壓微電漿因其體積小、功耗低與製造成本低等優勢,近年來在氣體檢測領域中備受重視,並展現出克服傳統檢測技術限制的潛力。本研究旨在建立一套具備優異操作性與高選擇性的揮發性有機物檢測平台,並結合卷積神經網路以實現高準確度之光譜辨識系統。整體研究可分為三大部分:首先,進行高壓模組之操作特性分析;其次,探討微電漿檢測系統在不同操作參數下的光譜與電訊表現;最後,結合資料增強技術與卷積神經網路 (Convolutional Neural Network, CNN) 模型,建立可有效分辨揮發性有機物 (Volatile Organic Compound, VOC) 的深度學習分類系統。
在檢測平台建立方面,為提升系統之可調性與操作穩定性,本研究採用微控制器產生脈衝訊號以驅動高壓模組,並透過微型電腦協同控制微控制器與光譜儀,以實現光電訊號的同步擷取。藉由快速脈衝調變 (FAST PWM) 技術精準控制脈衝參數,顯著提升了電漿的穩定性;同時,採用間歇式電漿控制模式有效延長了微電漿產生裝置 (MGD) 的使用壽命。以本系統進行VOC檢測時,在定條件模式下觀察三種VOC的光譜特徵發現,其有機特徵峰強度雖隨濃度變化而變動,但三者間存在顯著的重疊區間,造成辨識困難。為提升辨別能力,本研究進一步採用多條件模式,於25組不同脈衝條件下對三種VOC進行分析,結果顯示其相對強度變化趨勢具明顯差異,驗證多條件掃描有助於提升不同VOC間的可辨識性。
在深度學習的部分,本研究使用卷積神經網路對不同VOC之多條件光譜進行分析,透過擷取其不同VOC隨條件變化之差異進行辨別,並透過資料增強技術增加訓練資料量提升模型表現。通過比較定條件及多條件之模型表現,確定了多條件光譜有利於模型有更高的穩健性及泛化能力,並且我們僅需收集5筆多條件光譜即可利用資料增強技術將資料量增加100倍而在三種VOC皆獲得高達0.99的分類表現,此外,透過改變訓練資料的MGD資料,發現,我們僅需要使用3張MGD就可使模型在4張MGD的測試準確率獲得0.9左右的分類表現,顯示了多條件資料結合資料增強技術在分辨VOC電漿光譜的潛力。
zh_TW
dc.description.abstractAtmospheric pressure microplasmas have received increasing interest in recent years for gas detection applications due to their compact size, low power consumption, and low fabrication cost. These systems show great potential in overcoming the limitations of conventional detection technologies. This study aims to establish a volatile organic compound (VOC) detection platform with excellent operational controllability and high selectivity, integrated with a convolutional neural network (CNN) to enable high-accuracy spectral classification. The research is divided into three main parts: (1) characterization of the high-voltage module’s operating behavior, (2) analysis of the microplasma-based detection system under various operating parameters with respect to its spectral and electrical responses, and (3) development of a deep learning classification model for VOC classification using data augmentation and CNNs.

To enhance the adjustability and operational stability of the detection platform, a microcontroller is employed to generate pulse signals for driving the high-voltage module, while a microcomputer synchronously controls both the microcontroller and spectrometer for simultaneous optical-electrical data acquisition. By applying FAST PWM control, the system achieves precise pulse modulation and improved plasma stability. A burst plasma operation mode is also adopted to significantly extend the lifetime of the MGD. In fixed-condition measurements, the spectral features of three VOC were found to exhibit overlapping intensity ranges despite concentration variation, resulting in poor discriminability. To address this, a multi-condition scanning mode involving 25 different pulse conditions was implemented, revealing distinctive variation trends in relative spectral intensities across VOC, thereby enhancing their differentiability.
In the deep learning section, a CNN was trained on multi-condition spectra of different VOC to learn their condition-dependent spectral variations for accurate classification. Data augmentation was employed to increase training data volume and improve model performance. Comparative analysis confirmed that multi-condition spectra contributed to better model robustness and generalization compared to fixed-condition data. With only 5 raw spectra per condition, data augmentation increased the dataset 100-fold and enabled classification accuracies as high as 0.99 across all three VOC. Furthermore, using data from just three MGDs for training was sufficient to achieve approximately 0.90 accuracy on spectra from four unseen MGDs, highlighting the effectiveness of combining multi-condition data and augmentation in enhancing the generalizability of plasma-based VOC classification.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:06:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:06:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
目次 vii
圖次 xi
表次 xvii
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 2
第 2 章 文獻回顧 3
2.1 電漿之簡介 3
2.1.1 電漿產生機制與反應 3
2.1.2 崩潰電壓與帕邢定律 5
2.1.3 常壓電漿與低壓電漿 7
2.2 常壓微電漿系統 9
2.2.1 常壓微電漿系統之種類 9
2.2.2 常壓微電漿之應用範圍 15
2.3 介電質屏蔽放電系統 19
2.3.1 DBD放電之原理與特性 19
2.3.2 DBD之常見種類與等效電路 23
2.3.3 DBD功率量測與利薩如曲線 26
2.4 氣體檢測技術 28
2.4.1 常見的氣體檢測技術 28
2.4.2 微電漿在氣體檢測之應用 34
2.5 深度學習之技術與應用 40
2.5.1 深度學習之簡介 40
2.5.2 卷積神經網路 44
2.5.3 卷積神經網路於光譜資料之應用 49
2.5.4 多訊號輸入之卷積神經網路 54
2.5.5 資料增強技術 58
第 3 章 實驗裝置與模型架構 63
3.1 微電漿氣體檢測平台 63
3.1.1 微電漿產生裝置之製備 63
3.1.2 基於微控制器之高壓模組 65
3.1.3 高壓模組之控制參數與操控模式 68
3.1.4 微電漿氣體檢測平台之架構 70
3.1.5 化學藥品與氣體成分 72
3.2 微控制器與微型電腦 73
3.2.1 微控制器之脈衝調控 73
3.2.2 光譜儀與電訊號之同步 76
3.3 量測設備 78
3.3.1 電性量測 78
3.3.2 光學量測 78
3.4 深度學習 79
3.4.1 卷積神經網路架構 79
3.4.2 資料增強 85
3.4.3 電漿光譜資料集 86
第 4 章 實驗結果與討論 89
4.1 基於微控制器之高壓模組之特徵分析 89
4.1.1 使用快速脈衝寬度調變 (FAST PWM) 控制訊號之必要性 89
4.1.2 電漿工作模式的選擇 93
4.1.3 升壓控制參數設定與系統響應分析 96
4.1.4 脈衝時間配置對電壓之影響 98
4.2 微電漿氣體檢測系統實驗參數分析 102
4.2.1 不同脈衝時間之微電漿電訊分析 102
4.2.2 不同脈衝時間之微電漿光譜分析 107
4.2.3 揮發性有機物之光譜特徵 112
4.2.4 多條件模式之光譜分析 114
4.3 基於卷積神經網路之揮發性有機物分類模型建立 117
4.3.1 模型架構調整 117
4.3.2 多條件資料與定條件資料之比較 121
4.3.3 資料增強之優勢 125
4.3.4 源資料與擴充資料量對模型表現之影響 127
4.3.5 MGD數量對模型表現之影響 131
第 5 章 結論與未來展望 135
參考文獻 137
-
dc.language.isozh_TW-
dc.subject電漿發射光譜zh_TW
dc.subject介電質屏蔽放電zh_TW
dc.subject深度學習zh_TW
dc.subject氬氣氣氛zh_TW
dc.subject資料增強zh_TW
dc.subject卷積神經網路zh_TW
dc.subject微電漿zh_TW
dc.subject有機氣體檢測zh_TW
dc.subjectdata augmentationen
dc.subjectconvolutional neural networken
dc.subjectdeep learningen
dc.subjectdielectric barrier dischargeen
dc.subjectargon atmosphereen
dc.subjectplasma optical emission spectroscopyen
dc.subjectorganic gas detectionen
dc.subjectMicroplasmaen
dc.title基於微控制器之高壓模組結合微電漿光譜與深度學習於有機氣體檢測之應用zh_TW
dc.titleMicrocontroller-Based High-Voltage Module for Organic Gas Detection via Microplasma Spectroscopy and Deep Learningen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游文岳;盧彥文zh_TW
dc.contributor.oralexamcommitteeWen-Yueh Yu ;Yen-Wen Luen
dc.subject.keyword微電漿,有機氣體檢測,電漿發射光譜,氬氣氣氛,介電質屏蔽放電,深度學習,卷積神經網路,資料增強,zh_TW
dc.subject.keywordMicroplasma,organic gas detection,plasma optical emission spectroscopy,argon atmosphere,dielectric barrier discharge,deep learning,convolutional neural network,data augmentation,en
dc.relation.page157-
dc.identifier.doi10.6342/NTU202503157-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2030-07-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-31
9.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved