請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99373完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻 | zh_TW |
| dc.contributor.advisor | Tai-Horng Young | en |
| dc.contributor.author | 吳億暄 | zh_TW |
| dc.contributor.author | Yi-Hsuan Wu | en |
| dc.date.accessioned | 2025-09-10T16:05:03Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | 1.Drollette, C. M. & Badawy, S. Z. Pathophysiology of pelvic adhesions. Modern trends in preventing infertility. J Reprod Med 37, 107–21; discussion 121-2 (1992).
2.Boland, G. M. & Weigel, R. J. Formation and Prevention of Postoperative Abdominal Adhesions. Journal of Surgical Research 132, 3–12 (2006). 3.Ellis, H. et al. Adhesion-related hospital readmissions after abdominal and pelvic surgery: a retrospective cohort study. The Lancet 353, 1476–1480 (1999). 4.diZerega, G. S. & Campeau, J. D. Peritoneal repair and post-surgical adhesion formation. Hum Reprod Update 7, 547–555 (2001). 5.Larsson C., Djuvfelt E., Lindam A., Tunón K. & Nordin P. Surgical complications after caesarean section: A population-based cohort study. PLOS ONE 16, e0258222 (2021). 6.Pismensky, S. V., Kalzhanov, Z. R., Eliseeva, M. Y., Kosmas, I. P. & Mynbaev, O. A. Severe inflammatory reaction induced by peritoneal trauma is the key driving mechanism of postoperative adhesion formation. BMC Surg 11, 30 (2011). 7. Shih, S.-C. et al. Adhesive small bowel obstruction: How long can patients tolerate conservative treatment? World J Gastroenterol 9, 603–605 (2003). 8. Liao, J., Li, X. & Fan, Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioactive Materials 26, 387–412 (2023). 9.Udayasiri, D. K., Skandarajah, A. & Hayes, I. P. Laparoscopic Compared With Open Resection for Colorectal Cancer and Long-term Incidence of Adhesional Intestinal Obstruction and Incisional Hernia: A Systematic Review and Meta-analysis. Diseases of the Colon & Rectum 63, 101 (2020). 10.Van Goor, H. Consequences and complications of peritoneal adhesions. Colorectal Disease 9, 25–34 (2007). 11.Milone, M. et al. Conversions related to adhesions in abdominal surgery. Robotic versus laparoscopic approach: A multicentre experience. The International Journal of Medical Robotics and Computer Assisted Surgery 17, e2186 (2021). 12.Zhang, Z. et al. Biodegradable and thermoreversible PCLA–PEG–PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 32, 4725–4736 (2011). 13.Mettler, L., Audebert, A., Lehmann-Willenbrock, E., Schive, K. & Jacobs, V. R. Prospective clinical trial of SprayGel as a barrier to adhesion formation: an interim analysis. J Am Assoc Gynecol Laparosc 10, 339–344 (2003). 14.Banasiewicz, T. et al. Preliminary study with SprayShieldTM Adhesion Barrier System in the prevention of abdominal adhesions. Wideochir Inne Tech Maloinwazyjne 8, 301–309 (2013). 15.Zhang, Y. et al. Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning. (2020) doi:10.1039/C9RA06022G. 16.Singh Chandel, A. K. et al. Balance of antiperitoneal adhesion, hemostasis, and operability of compressed bilayer ultrapure alginate sponges. Biomaterials Advances 137, 212825 (2022). 17.Beck, D. E. et al. A prospective, randomized, multicenter, controlled study of the safety of Seprafilm adhesion barrier in abdominopelvic surgery of the intestine. Dis Colon Rectum 46, 1310–1319 (2003). 18.Diamond, M. P., Burns, E. L., Accomando, B., Mian, S. & Holmdahl, L. Seprafilm® adhesion barrier: (1) a review of preclinical, animal, and human investigational studies. Gynecol Surg 9, 237–245 (2012). 19.Choy, K. T., Le, K. D. R. & Kong, J. C. H. Seprafilm® and adhesive small bowel obstruction in colorectal/abdominal surgery: an updated systematic review. BMC Surgery 24, 291 (2024). 20.DeCherney, A. H. & diZerega, G. S. Clinical problem of intraperitoneal postsurgical adhesion formation following general surgery and the use of adhesion prevention barriers. Surg Clin North Am 77, 671–688 (1997). 21.Haney, A. F. & Doty, E. Murine peritoneal injury and de novo adhesion formation caused by oxidized-regenerated cellulose (Interceed* [TC7]) but not expanded polytetrafluoroethylene (Gore-Tex* Surgical Membrane)†‡. Fertility and Sterility 57, 202–208 (1992). 22.Bazzoni, G. et al. Effect of heparin, dermatan sulfate, and related oligo-derivatives on human polymorphonuclear leukocyte functions. J Lab Clin Med 121, 268–275 (1993). 23.Wang, P., Zhu, Y., Feng, L., Wang, Y. & Bu, Y. Rapidly Self-Deactivating and Injectable Succinyl Ester-Based Bioadhesives for Postoperative Antiadhesion. ACS Appl. Mater. Interfaces 14, 373–382 (2022). 24.Shin, C. S. et al. 3D-Bioprinted Inflammation Modulating Polymer Scaffolds for Soft Tissue Repair. Advanced Materials 33, 2003778 (2021). 25.Waldman, R. Z. et al. Janus Membranes via Diffusion-Controlled Atomic Layer Deposition. Advanced Materials Interfaces 5, 1800658 (2018). 26.Afsari, M., Shon, H. K. & Tijing, L. D. Janus membranes for membrane distillation: Recent advances and challenges. Advances in Colloid and Interface Science 289, 102362 (2021). 27.Chen, S., Ai, J., Chen, J., Lin, J. & Chen, Q. TiO2-PDVB Janus particles enhanced compatibility of titanium dioxide and recycled waste styrofoam. Journal of Applied Polymer Science 137, 48691 (2020). 28.Qian, S. et al. Biomedical applications of Janus membrane. Biomedical Technology 2, 58–69 (2023). 29.Pi, H. et al. Janus fibrous membrane with directional liquid transport capacity for wound healing promotion. Chemical Engineering Journal 455, 140853 (2023). 30.Xu, B. et al. High-performance blood plasma separation based on a Janus membrane technique and RBC agglutination reaction. Lab Chip 22, 4382–4392 (2022). 31.Liang, W. et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment. Advanced Materials 34, 2108992 (2022). 32.Oprea, M. & Voicu, S. I. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydrate Polymers 247, 116683 (2020). 33.Groth, T. & Wagenknecht, W. Anticoagulant potential of regioselective derivatized cellulose. Biomaterials 22, 2719–2729 (2001). 34.Ehmann, H. M. A. et al. Design of anticoagulant surfaces based on cellulose nanocrystals. Chem. Commun. 50, 13070–13072 (2014). 35.Huang, G. P., Molina, A., Tran, N., Collins, G. & Arinzeh, T. L. Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine 12, e592–e603 (2018). 36.Menezes, R. et al. Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia 90, 169–178 (2019). 37.McCarthy, B. Antivirals—an increasingly healthy investment. Nat Biotechnol 25, 1390–1393 (2007). 38.Halpern, V. et al. Effectiveness of cellulose sulfate vaginal gel for the prevention of HIV infection: results of a Phase III trial in Nigeria. PLoS One 3, e3784 (2008). 39.Bondar, O. V., Saifullina, D. V., Shakhmaeva, I. I., Mavlyutova, I. I. & Abdullin, T. I. Monitoring of the Zeta Potential of Human Cells upon Reduction in Their Viability and Interaction with Polymers. Acta Naturae 4, 78–81 (2012). 40.Lee, D. W., Lim, C., Israelachvili, J. N. & Hwang, D. S. Strong Adhesion and Cohesion of Chitosan in Aqueous Solutions. Langmuir 29, 14222–14229 (2013). 41.Aggarwal, N. et al. Effect of Molecular Composition of Heparin and Cellulose Sulfate on Multilayer Formation and Cell Response. Langmuir 29, 13853–13864 (2013). 42.Gül, A. et al. Effects of methylene blue, indigo carmine solution, and autologous erythrocyte suspension on the formation of adhesions after injection into rats. J Reprod Fertil 120, 225–229 (2000). 43.Zhang, X. et al. Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties. Carbohydr Polym 309, 120702 (2023). 44.Kononova, S. V. et al. Polyelectrolyte complexes of sulfoethyl cellulose–chitosan: effect of the structure on separation properties of multilayer membranes. Cellulose 25, 7239–7259 (2018). 45.Wang, P. Y. Evidence of hydrophobic interaction in adhesion to tissue. Nature 249, 367–368 (1974). 46.Wang, K., Yu, Y., Li, W., Li, D. & Li, H. Preparation of fully bio-based multilayers composed of heparin-like carboxymethylcellulose sodium and chitosan to functionalize poly (l-lactic acid) film for cardiovascular implant applications. International Journal of Biological Macromolecules 231, 123285 (2023). 47.Kennedy, R., Costain, D. J., McAlister, V. C. & Lee, T. D. G. Prevention of experimental postoperative peritoneal adhesions by N, O-carboxymethyl chitosan. Surgery 120, 866–870 (1996). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99373 | - |
| dc.description.abstract | 術後沾黏為外科手術常見的併發症,可能導致慢性疼痛、腸阻塞,甚至需再次手術。然而,目前市售的抗沾黏產品如Seprafilm與Interceed,雖具備一定的物理屏障效果,卻常因機械性質不佳、效果有限或無法同時調控免疫反應而導致療效有限。因此,開發兼具穩定黏附性與生物功能性的抗沾黏材料,為術後併發症預防的重要課題。
本研究設計一種具不對稱結構之Janus雙層抗沾黏薄膜,作為手術後的物理屏障。此雙層薄膜之抗沾黏層以硫酸纖維素構成,利用其帶負電性質與帶正電的細胞因子進行中和,並結合其類肝素特性達到抗發炎特性,來減緩手術部位的發炎反應,以達到抗沾黏的效果;而沾黏層以殼聚醣為基底,考量其良好的生物相容性、生物可降解性及其官能基使其可以附著於組織表面,避免位移或脫落。此外,具胺基的陽離子特性,能有效與陰離子層形成穩定結構,經由層間界面離子交聯,維持層與層之間的穩定性。 在本研究中,通過傅立葉轉換紅外光譜、核磁共振光譜以及掃描式顯微鏡等儀器確認材料結構與雙層界面,並評估其機械性質以及黏附能力,進一步以蛋白吸附、細胞因子吸附與細胞貼附試驗探討材料表面之選擇性貼附行為,再透過溶血試驗與細胞毒性分析確認其血液與細胞相容性,確定此薄膜不會對生物造成毒性反應。最後藉由大鼠盲腸腹壁缺損模型來評分,並以病理切片與西方墨點法來驗證其在降低沾黏形成及抑制術後發炎方面的潛力。 綜合以上結果,此具不對稱設計之Janus薄膜不僅展現優異的物理屏障功能,結合主動生物調節。亦具備良好的組織相容性與生物活性,可以有效預防術後沾黏生成,具備作為腹部手術後抗沾黏材料的應用潛力。 | zh_TW |
| dc.description.abstract | Postoperative adhesions are a common complication of surgical procedures and can lead to chronic pain, bowel obstruction, and even the need for reoperation. However, commercially available anti-adhesive products, such as Seprafilm and Interceed, have a certain physical barrier effect, but their efficacy is often limited due to poor mechanical properties, limited effectiveness, or inability to modulate immune responses. Therefore, the development of anti-adhesive materials with stabilized adhesive properties and biofunctionality is an important issue in the prevention of postoperative complications.
In this study, a Janus dual-layer anti-adhesion film with an asymmetric structure was developed to serve as a physical barrier after surgery. The anti-adhesive layer was composed of sulfated cellulose, which possesses negatively charged functional groups capable of neutralizing positively charged cytokines, thereby mitigating local inflammatory responses. Additionally, its heparin-mimetic properties confer anti-inflammatory effects, further enhancing its anti-adhesive performance. The adhesive layer was based on chitosan, chosen for its excellent biocompatibility, biodegradability, and functional groups that facilitate adhesion to tissue surfaces, thereby preventing displacement or detachment. Furthermore, the cationic nature of chitosan, attributed to its abundant amine groups, enables strong electrostatic interaction with the anionic sulfated cellulose layer. This interfacial ionic crosslinking promotes structural integrity and stability between the two layers. In this study, the structure and dual-layer interface of the fabricated film were characterized using Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). Its mechanical properties and adhesion ability were also evaluated. To investigate the selective adhesion behavior of the film surface, protein adsorption, cytokine-binding, and cell attachment assays were performed. In addition, hemolysis testing and cytotoxicity analysis were conducted to assess the blood and cellular compatibility, confirming that the film did not elicit toxic responses. Finally, the anti-adhesion and anti-inflammatory potential of the film was validated using a rat cecum-abdominal wall defect model, supported by histological examination and Western blot analysis. In conclusion, the asymmetric design of the Janus film not only functions as an effective physical barrier but also integrates active biological modulation. It exhibits excellent tissue compatibility and bioactivity, effectively preventing postoperative adhesion formation. These characteristics underscore its strong potential for application as an anti-adhesion material following abdominal surgery. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:05:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:05:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Table of Contents vi List of Figures ix List of Tables xi Chapter Ⅰ Introduction 1 1.1 Postoperative adhesion (POA) 1 1.2 Prevention of POA 4 1.3 Janus film 8 1.4 Sulfated cellulose 11 1.5 Chitosan 13 1.6 Motivation and Aims 14 Chapter ⅠⅠ Materials and Methods 16 2.1 Materials 16 2.2 Methods 20 2.2.1 Preparation of sulfated cellulose (SCell) 20 2.2.2 Fabrication of SCell-CS film 20 2.2.3 Characterization of SCell 21 2.2.4 Spectroscopic and microscopic characterization of the SCell-CS film 21 2.2.5 Water contact angle 21 2.2.6 Degradation rate 22 2.2.7 Biocompatibility test 22 2.2.8 Hemolysis assay 23 2.2.9 In vitro anticoagulant activity of the SCell-CS film 23 2.2.10 Adhesion property of the SCell-CS film 24 2.2.11 Protein adsorption test 25 2.2.12 Cytokine adsorption test 26 2.2.13 In vivo evaluation of anti-adhesion performance in a rat cecum-abdominal wall defect model 27 2.2.14 Gross observation and pathological evaluation 28 2.2.15 Western blot 28 2.3 Statistical Analysis 29 Chapter ⅠⅠⅠ Results 31 3.1 Characterization of SCell 31 3.2 Characterization of SCell-CS film 32 3.3 Biocompatibility test 35 3.4 Hemolysis assay 36 3.5 In vitro anticoagulant activity of the SCell-CS film 36 3.6 Adhesive property of the SCell-CS film 38 3.7 Protein adsorption test 41 3.8 Cytokine adsorption test 42 3.9 In vivo anti-adhesion evaluation in a rat cecum-abdominal wall defect model 43 3.10 Pathological evaluation 46 3.11 Western blot 50 Chapter ⅠⅤ Discussion 52 4.1 Structural and physicochemical characterization of the SCell-CS film 52 4.2 In vitro biocompatibility assessment 54 4.3 Adhesion and protein adsorption behavior of the SCell-CS film 54 4.4 In vivo anti-adhesion performance and inflammatory modulation 57 4.5 Limitations and future perspectives 59 Chapter Ⅴ Conclusions 62 Chapter ⅤⅠ Supplementary 64 6.1 Methods 64 6.1.1 Characterization of SCell 64 6.1.2 Fabrication of SCell-CS/CS-DA film 64 6.1.3 Standards for in vivo experiments 66 6.2 Results 67 References 69 | - |
| dc.language.iso | en | - |
| dc.subject | 硫酸纖維素 | zh_TW |
| dc.subject | 殼聚醣 | zh_TW |
| dc.subject | Janus膜 | zh_TW |
| dc.subject | 抗沾黏 | zh_TW |
| dc.subject | Chitosan | en |
| dc.subject | Janus film | en |
| dc.subject | Sulfated cellulose | en |
| dc.subject | Anti-adhesion | en |
| dc.title | 針對術後沾黏的預防:殼聚醣與硫酸化多醣抗沾黏膜的設計與應用 | zh_TW |
| dc.title | Prevention of Postoperative Adhesions: Design and Application of a Dual-Layer Anti-Adhesion Film Based on Chitosan and Sulfated Polysaccharides | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪智煌;李亦宸 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Huang Hung;Yi-Chen Li | en |
| dc.subject.keyword | 硫酸纖維素,殼聚醣,Janus膜,抗沾黏, | zh_TW |
| dc.subject.keyword | Sulfated cellulose,Chitosan,Janus film,Anti-adhesion, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202502985 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
