Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99368
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姚皓傑zh_TW
dc.contributor.advisorHau-Jie Yauen
dc.contributor.author李珣睿zh_TW
dc.contributor.authorSyun-Ruei Leeen
dc.date.accessioned2025-09-09T16:10:44Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citationAllen, W. E., DeNardo, L. A., Chen, M. Z., Liu, C. D., Loh, K. M., Fenno, L. E., Ramakrishnan, C., Deisseroth, K., & Luo, L. (2017). Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 357(6356), 1149-1155. https://doi.org/doi:10.1126/science.aan6747
Baker, C. K., & Flannery, J. G. (2018). Innovative Optogenetic Strategies for Vision Restoration [Mini Review]. Frontiers in Cellular Neuroscience, Volume 12 - 2018. https://doi.org/10.3389/fncel.2018.00316
Barbano, M. F., Wang, H. L., Zhang, S., Miranda-Barrientos, J., Estrin, D. J., Figueroa-González, A., Liu, B., Barker, D. J., & Morales, M. (2020). VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors. Neuron, 107(2), 368-382.e368. https://doi.org/10.1016/j.neuron.2020.04.024
Barbano, M. F., Zhang, S., Chen, E., Espinoza, O., Mohammad, U., Alvarez-Bagnarol, Y., Liu, B., Hahn, S., & Morales, M. (2024). Lateral hypothalamic glutamatergic inputs to VTA glutamatergic neurons mediate prioritization of innate defensive behavior over feeding. Nat Commun, 15(1), 403. https://doi.org/10.1038/s41467-023-44633-w
Barson, J. R., Mack, N. R., & Gao, W. J. (2020). The Paraventricular Nucleus of the Thalamus Is an Important Node in the Emotional Processing Network. Front Behav Neurosci, 14, 598469. https://doi.org/10.3389/fnbeh.2020.598469
Beas, S., Khan, I., Gao, C., Loewinger, G., Macdonald, E., Bashford, A., Rodriguez-Gonzalez, S., Pereira, F., & Penzo, M. A. (2024). Dissociable encoding of motivated behavior by parallel thalamo-striatal projections. Current Biology, 34(7), 1549-1560.e1543. https://doi.org/https://doi.org/10.1016/j.cub.2024.02.037
Beier, K. T., Gao, X. J., Xie, S., DeLoach, K. E., Malenka, R. C., & Luo, L. (2019). Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations. Cell Rep, 26(1), 159-167.e156. https://doi.org/10.1016/j.celrep.2018.12.040
Beier, K. T., Steinberg, E. E., DeLoach, K. E., Xie, S., Miyamichi, K., Schwarz, L., Gao, X. J., Kremer, E. J., Malenka, R. C., & Luo, L. (2015). Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell, 162(3), 622-634. https://doi.org/10.1016/j.cell.2015.07.015
Campos, C. A., Bowen, A. J., Roman, C. W., & Palmiter, R. D. (2018). Encoding of danger by parabrachial CGRP neurons. Nature, 555(7698), 617-622. https://doi.org/10.1038/nature25511
Campos, C. A., Bowen, A. J., Schwartz, M. W., & Palmiter, R. D. (2016). Parabrachial CGRP Neurons Control Meal Termination. Cell Metab, 23(5), 811-820. https://doi.org/10.1016/j.cmet.2016.04.006
Carter, M. E., Han, S., & Palmiter, R. D. (2015). Parabrachial Calcitonin Gene-Related Peptide Neurons Mediate Conditioned Taste Aversion. The Journal of Neuroscience, 35(11), 4582-4586. https://doi.org/10.1523/jneurosci.3729-14.2015
Carter, M. E., Soden, M. E., Zweifel, L. S., & Palmiter, R. D. (2013). Genetic identification of a neural circuit that suppresses appetite. Nature, 503(7474), 111-114. https://doi.org/10.1038/nature12596
Chang, Y.-T., Chen, W.-H., Shih, H.-C., Min, M.-Y., Shyu, B.-C., & Chen, C.-C. (2019). Anterior nucleus of paraventricular thalamus mediates chronic mechanical hyperalgesia. PAIN, 160(5), 1208-1223. https://doi.org/10.1097/j.pain.0000000000001497
Chen, J., Gannot, N., Li, X., Zhu, R., Zhang, C., & Li, P. (2023). Control of Emotion and Wakefulness by Neurotensinergic Neurons in the Parabrachial Nucleus. Neurosci Bull, 39(4), 589-601. https://doi.org/10.1007/s12264-022-00994-8
Chen, J. Y., Campos, C. A., Jarvie, B. C., & Palmiter, R. D. (2018). Parabrachial CGRP Neurons Establish and Sustain Aversive Taste Memories. Neuron, 100(4), 891-899.e895. https://doi.org/10.1016/j.neuron.2018.09.032
Chiang, M. C., Bowen, A., Schier, L. A., Tupone, D., Uddin, O., & Heinricher, M. M. (2019). Parabrachial Complex: A Hub for Pain and Aversion. The Journal of Neuroscience, 39(42), 8225. https://doi.org/10.1523/JNEUROSCI.1162-19.2019
Choi, E. A., Jean-Richard-Dit-Bressel, P., Clifford, C. W. G., & McNally, G. P. (2019). Paraventricular Thalamus Controls Behavior during Motivational Conflict. J Neurosci, 39(25), 4945-4958. https://doi.org/10.1523/jneurosci.2480-18.2019
Choi, E. A., & McNally, G. P. (2017). Paraventricular Thalamus Balances Danger and Reward. J Neurosci, 37(11), 3018-3029. https://doi.org/10.1523/jneurosci.3320-16.2017
Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482(7383), 85-88. https://doi.org/10.1038/nature10754
Condon, L. F., Yu, Y., Park, S., Cao, F., Pauli, J. L., Nelson, T. S., & Palmiter, R. D. (2024). Parabrachial Calca neurons drive nociplasticity. Cell Rep, 43(4), 114057. https://doi.org/10.1016/j.celrep.2024.114057
de Jong, J. W., Afjei, S. A., Pollak Dorocic, I., Peck, J. R., Liu, C., Kim, C. K., Tian, L., Deisseroth, K., & Lammel, S. (2019). A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron, 101(1), 133-151.e137. https://doi.org/10.1016/j.neuron.2018.11.005
DeNardo, L. A., Liu, C. D., Allen, W. E., Adams, E. L., Friedmann, D., Fu, L., Guenthner, C. J., Tessier-Lavigne, M., & Luo, L. (2019). Temporal evolution of cortical ensembles promoting remote memory retrieval. Nature Neuroscience, 22(3), 460-469. https://doi.org/10.1038/s41593-018-0318-7
Dong, X., Li, S., & Kirouac, G. J. (2017). Collateralization of projections from the paraventricular nucleus of the thalamus to the nucleus accumbens, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain Struct Funct, 222(9), 3927-3943. https://doi.org/10.1007/s00429-017-1445-8
Elum, J. E., Szelenyi, E. R., Juarez, B., Murry, A. D., Loginov, G., Zamorano, C. A., Gao, P., Wu, G., Ng-Evans, S., Yee, J. X., Xu, X., Golden, S. A., & Zweifel, L. S. (2024). Distinct dynamics and intrinsic properties in ventral tegmental area populations mediate reward association and motivation. Cell Rep, 43(9), 114668. https://doi.org/10.1016/j.celrep.2024.114668
Engelke, D. S., Zhang, X. O., O'Malley, J. J., Fernandez-Leon, J. A., Li, S., Kirouac, G. J., Beierlein, M., & Do-Monte, F. H. (2021). A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats. Nat Commun, 12(1), 2517. https://doi.org/10.1038/s41467-021-22730-y
Gao, C., Gohel, C. A., Leng, Y., Ma, J., Goldman, D., Levine, A. J., & Penzo, M. A. (2023). Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife, 12. https://doi.org/10.7554/eLife.81818
Gao, C., Leng, Y., Ma, J., Rooke, V., Rodriguez-Gonzalez, S., Ramakrishnan, C., Deisseroth, K., & Penzo, M. A. (2020). Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nat Neurosci, 23(2), 217-228. https://doi.org/10.1038/s41593-019-0572-3
Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C., & Luo, L. (2013). Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron, 78(5), 773-784. https://doi.org/10.1016/j.neuron.2013.03.025
Huang, D., Grady, F. S., Peltekian, L., & Geerling, J. C. (2021). Efferent projections of Vglut2, Foxp2, and Pdyn parabrachial neurons in mice. J Comp Neurol, 529(4), 657-693. https://doi.org/10.1002/cne.24975
Jaramillo, A. A., Brown, J. A., & Winder, D. G. (2021). Danger and distress: Parabrachial-extended amygdala circuits. Neuropharmacology, 198, 108757. https://doi.org/10.1016/j.neuropharm.2021.108757
Kang, S. J., Liu, S., Ye, M., Kim, D. I., Pao, G. M., Copits, B. A., Roberts, B. Z., Lee, K. F., Bruchas, M. R., & Han, S. (2022). A central alarm system that gates multi-sensory innate threat cues to the amygdala. Cell Rep, 40(7), 111222. https://doi.org/10.1016/j.celrep.2022.111222
Kessler, S., Labouèbe, G., Croizier, S., Gaspari, S., Tarussio, D., & Thorens, B. (2021). Glucokinase neurons of the paraventricular nucleus of the thalamus sense glucose and decrease food consumption. iScience, 24(10), 103122. https://doi.org/https://doi.org/10.1016/j.isci.2021.103122
Kirouac, G. J., Li, S., & Li, S. (2022). Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct, 227(7), 2409-2437. https://doi.org/10.1007/s00429-022-02534-6
Kooiker, C. L., Birnie, M. T., & Baram, T. Z. (2021). The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Front Behav Neurosci, 15, 673162. https://doi.org/10.3389/fnbeh.2021.673162
Lammel, S., Lim, B. K., & Malenka, R. C. (2014). Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology, 76 Pt B(0 0), 351-359. https://doi.org/10.1016/j.neuropharm.2013.03.019
Li, S., Dong, X., & Kirouac, G. J. (2021). Extensive divergence of projections to the forebrain from neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct, 226(6), 1779-1802. https://doi.org/10.1007/s00429-021-02289-6
Li, S., & Kirouac, G. J. (2012). Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus. Brain Struct Funct, 217(2), 257-273. https://doi.org/10.1007/s00429-011-0360-7
Li, Y., Wang, H., Qi, K., Chen, X., Li, S., Sui, N., & Kirouac, G. J. (2011). Orexins in the midline thalamus are involved in the expression of conditioned place aversion to morphine withdrawal. Physiology & Behavior, 102(1), 42-50. https://doi.org/https://doi.org/10.1016/j.physbeh.2010.10.006
Liu, C., Lee, C. Y., Asher, G., Cao, L., Terakoshi, Y., Cao, P., Kobayakawa, R., Kobayakawa, K., Sakurai, K., & Liu, Q. (2021). Posterior subthalamic nucleus (PSTh) mediates innate fear-associated hypothermia in mice. Nat Commun, 12(1), 2648. https://doi.org/10.1038/s41467-021-22914-6
Lowes, D. C., Chamberlin, L. A., Kretsge, L. N., Holt, E. S., Abbas, A. I., Park, A. J., Yusufova, L., Bretton, Z. H., Firdous, A., Enikolopov, A. G., Gordon, J. A., & Harris, A. Z. (2021). Ventral tegmental area GABA neurons mediate stress-induced blunted reward-seeking in mice. Nat Commun, 12(1), 3539. https://doi.org/10.1038/s41467-021-23906-2
McGinty, J. F., & Otis, J. M. (2020). Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors [Review]. Frontiers in Behavioral Neuroscience, 14. https://doi.org/10.3389/fnbeh.2020.590528
McGovern, D. J., Polter, A. M., Prévost, E. D., Ly, A., McNulty, C. J., Rubinstein, B., & Root, D. H. (2023). Ventral tegmental area glutamate neurons establish a mu-opioid receptor gated circuit to mesolimbic dopamine neurons and regulate opioid-seeking behavior. Neuropsychopharmacology, 48(13), 1889-1900. https://doi.org/10.1038/s41386-023-01637-w
McNally, G. P. (2021). Motivational competition and the paraventricular thalamus. Neuroscience & Biobehavioral Reviews, 125, 193-207. https://doi.org/https://doi.org/10.1016/j.neubiorev.2021.02.021
Mindaye, S. A., Chen, W.-H., Lin, S.-C., Chen, Y.-C., Abdelaziz, M. A., Tzeng, Y.-S., Shih, A. C.-C., Chen, S.-Y., Yang, S.-B., & Chen, C.-C. (2024). Separate anterior paraventricular thalamus projections differentially regulate sensory and affective aspects of pain. Cell Reports, 43(11). https://doi.org/10.1016/j.celrep.2024.114946
Mohebi, A., Pettibone, J. R., Hamid, A. A., Wong, J. T., Vinson, L. T., Patriarchi, T., Tian, L., Kennedy, R. T., & Berke, J. D. (2019). Dissociable dopamine dynamics for learning and motivation. Nature, 570(7759), 65-70. https://doi.org/10.1038/s41586-019-1235-y
Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18(2), 73-85. https://doi.org/10.1038/nrn.2016.165
Palmiter, R. D. (2024). Parabrachial neurons promote nociplastic pain. Trends in Neurosciences, 47(9), 722-735. https://doi.org/https://doi.org/10.1016/j.tins.2024.07.002
Penzo, M. A., & Gao, C. (2021). The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends in Neurosciences, 44(7), 538-549. https://doi.org/https://doi.org/10.1016/j.tins.2021.03.001
Polter, A. M., Barcomb, K., Tsuda, A. C., & Kauer, J. A. (2018). Synaptic function and plasticity in identified inhibitory inputs onto VTA dopamine neurons. Eur J Neurosci, 47(10), 1208-1218. https://doi.org/10.1111/ejn.13879
Roman, C. W., Sloat, S. R., & Palmiter, R. D. (2017). A tale of two circuits: CCK(NTS) neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. Neuroscience, 358, 316-324. https://doi.org/10.1016/j.neuroscience.2017.06.049
Shima, Y., Skibbe, H., Sasagawa, Y., Fujimori, N., Iwayama, Y., Isomura-Matoba, A., Yano, M., Ichikawa, T., Nikaido, I., Hattori, N., & Kato, T. (2023). Distinctiveness and continuity in transcriptome and connectivity in the anterior-posterior axis of the paraventricular nucleus of the thalamus. Cell Reports, 42(10), 113309. https://doi.org/https://doi.org/10.1016/j.celrep.2023.113309
Torres-Rodriguez, J. M., Wilson, T. D., Singh, S., Torruella-Suárez, M. L., Chaudhry, S., Adke, A. P., Becker, J. J., Neugebauer, B., Lin, J. L., Martinez Gonzalez, S., Soler-Cedeño, O., & Carrasquillo, Y. (2024). The parabrachial to central amygdala pathway is critical to injury-induced pain sensitization in mice. Neuropsychopharmacology, 49(3), 508-520. https://doi.org/10.1038/s41386-023-01673-6
Tsou, J. H., Lee, S. R., Chiang, C. Y., Yang, Y. J., Guo, F. Y., Ni, S. Y., & Yau, H. J. (2023). Negative Emotions Recruit the Parabrachial Nucleus Efferent to the VTA to Disengage Instrumental Food Seeking. J Neurosci, 43(44), 7276-7293. https://doi.org/10.1523/jneurosci.2114-22.2023
Wang, F., Chen, Y., Lin, Y., Wang, X., Li, K., Han, Y., Wu, J., Shi, X., Zhu, Z., Long, C., Hu, X., Duan, S., & Gao, Z. (2023). A parabrachial to hypothalamic pathway mediates defensive behavior. eLife, 12. https://doi.org/10.7554/eLife.85450
Watabe-Uchida, M., Zhu, L., Ogawa, Sachie K., Vamanrao, A., & Uchida, N. (2012). Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons. Neuron, 74(5), 858-873. https://doi.org/https://doi.org/10.1016/j.neuron.2012.03.017
Yu, X., Ba, W., Zhao, G., Ma, Y., Harding, E. C., Yin, L., Wang, D., Li, H., Zhang, P., Shi, Y., Yustos, R., Vyssotski, A. L., Dong, H., Franks, N. P., & Wisden, W. (2021). Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry, 26(9), 5213-5228. https://doi.org/10.1038/s41380-020-0810-9
Yu, X., Zhao, G., Wang, D., Wang, S., Li, R., Li, A., Wang, H., Nollet, M., Chun, Y. Y., Zhao, T., Yustos, R., Li, H., Zhao, J., Li, J., Cai, M., Vyssotski, A. L., Li, Y., Dong, H., Franks, N. P., & Wisden, W. (2022). A specific circuit in the midbrain detects stress and induces restorative sleep. Science, 377(6601), 63-72. https://doi.org/10.1126/science.abn0853
Zell, V., Steinkellner, T., Hollon, N. G., Warlow, S. M., Souter, E., Faget, L., Hunker, A. C., Jin, X., Zweifel, L. S., & Hnasko, T. S. (2020). VTA Glutamate Neuron Activity Drives Positive Reinforcement Absent Dopamine Co-release. Neuron, 107(5), 864-873.e864. https://doi.org/10.1016/j.neuron.2020.06.011
Zhang, F. C., Weng, R. X., Li, D., Li, Y. C., Dai, X. X., Hu, S., Sun, Q., Li, R., & Xu, G. Y. (2024). A vagus nerve dominant tetra-synaptic ascending pathway for gastric pain processing. Nat Commun, 15(1), 9824. https://doi.org/10.1038/s41467-024-54056-w
Zhang, R., Huang, D., Gasparini, S., & Geerling, J. C. (2024). Efferent projections of Nps-expressing neurons in the parabrachial region. Journal of Comparative Neurology, 532(6), e25629. https://doi.org/https://doi.org/10.1002/cne.25629
Zhao, J., Liu, C., Zhang, F., Zheng, Z., Luo, F., Xia, J., Wang, Y., Zhang, Z., Tang, J., Song, Z., Li, S., Xu, K., Chen, M., Jiang, C., He, C., Tang, L., Hu, Z., Gao, D., & Ren, S. (2022). A paraventricular thalamus to central amygdala neural circuit modulates acute stress-induced heightened wakefulness. Cell Rep, 41(11), 111824. https://doi.org/10.1016/j.celrep.2022.111824
Zhao, Z., Chen, Y., Xuan, Y., Zhou, G., & Qiu, W. (2023). Parabrachial nucleus neuron circuits that control feeding behavior and energy balance. Obesity Medicine, 42, 100509. https://doi.org/https://doi.org/10.1016/j.obmed.2023.100509
Zhou, K., Zhu, L., Hou, G., Chen, X., Chen, B., Yang, C., & Zhu, Y. (2021). The Contribution of Thalamic Nuclei in Salience Processing [Mini Review]. Frontiers in Behavioral Neuroscience, 15. https://doi.org/10.3389/fnbeh.2021.634618
Zhou, Z., Liu, X., Chen, S., Zhang, Z., Liu, Y., Montardy, Q., Tang, Y., Wei, P., Liu, N., Li, L., Song, R., Lai, J., He, X., Chen, C., Bi, G., Feng, G., Xu, F., & Wang, L. (2019). A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive Responses. Neuron, 103(3), 473-488.e476. https://doi.org/https://doi.org/10.1016/j.neuron.2019.05.027
Zhu, Y.-B., Wang, Y., Hua, X.-X., Xu, L., Liu, M.-Z., Zhang, R., Liu, P.-F., Li, J.-B., Zhang, L., & Mu, D. (2022). PBN-PVT projections modulate negative affective states in mice. eLife, 11, e68372. https://doi.org/10.7554/eLife.68372
Zhu, Y., Nachtrab, G., Keyes, P. C., Allen, W. E., Luo, L., & Chen, X. (2018). Dynamic salience processing in paraventricular thalamus gates associative learning. Science, 362(6413), 423-429. https://doi.org/doi:10.1126/science.aat0481
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99368-
dc.description.abstract臂旁核(parabrachial nucleus, PBN)整合來自外界的厭惡性刺激與生物內在的狀態,進而透過不同的下游腦區來驅動相應的行為反應。過往研究指出,PBN投射至腹側被蓋區(ventral tegmental area, VTA)以及前側丘腦室旁核(anterior part of the paraventricular nucleus of the thalamus, aPVT),這兩個區域皆與動機性行為的調控有關。然而,PBN如何透過與此兩腦區的神經連結來調控行為仍是未知。在本研究中,我運用Targeted Recombination in Active Populations(TRAP)技術發現,PBN神經輸入所活化的VTA神經元主要為非多巴胺性神經元,且對這些標定到的特定VTA細胞進行光遺傳刺激會引發厭惡反應,並足以中斷小鼠正在進行的尋食行為。相較之下,活化PBN投射至aPVT的神經連結則抑制輕度的進食動機,但不會引發厭惡感而是提升小鼠的警覺程度。研究結果顯示出PBN透過兩下游連結之相異神經機制來調控小鼠進食行為。此外,我也發現腹側海馬迴(ventral hippocampus, vHip)為aPVT的另一上游腦區,並揭示了PBN與vHip投射至aPVT的兩神經迴路在解剖連結與行為功能上的差異。zh_TW
dc.description.abstractThe parabrachial nucleus (PBN) integrates aversive stimuli and internal states to subsequently guide coping responses via different downstream regions. Previous studies have showed that the PBN projects to both the ventral tegmental area (VTA) and the anterior part of the paraventricular nucleus of the thalamus (aPVT), two regions implicated in the modulation of motivational behaviors. However, the functional roles of these two pathways remain elusive. In the present study, using the Targeted Recombination in Active Populations (TRAP) approach, I deciphered that PBN afferents activation recruited non-dopaminergic neurons in the VTA, and photoactivation of the TRAPed VTA cells induced aversion and was sufficient to disengage ongoing food-seeking behavior. In contrast, photoactivation of PBN-to-aPVT connection disrupted mild food intake motivation, and enhanced arousal without inducing aversion. Additionally, I identified the ventral hippocampus (vHip) as an upstream input to the aPVT, and revealed distinct anatomical connections and behavioral functions between the PBN-to-aPVT and vHip-to-aPVT pathways.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:10:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:10:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
Abstract v
Table of Contents vii
List of Figures x
Chapter 1: Introduction 1
Parabrachial nucleus (PBN) conveys negative stimuli and emotions 1
PBN recruits downstream regions to drive coping responses 1
Ventral tegmental area (VTA) modulates adaptive behaviors 3
Paraventricular nucleus of the thalamus (PVT) encodes salience and valence processing 4
PBN-to-pPVT connection relays negative emotions 5
Chapter 2: Results of characterizing the PBN-to-VTA connection 7
Activation of PBN afferent inputs mostly recruits VTA non-DA cells 8
PBN-to-VTA axonal terminals activation disrupts food self-administration 9
Postsynaptic photoactivation of TRAPed VTA neurons replicates the feeding regulation effect of PBN afferent activation 11
Activation of PBN-recruited VTA neurons encodes negative valence 12
Downstream mapping of TRAPed VTA cells 13
Chapter 3: Discussion on PBN-to-VTA connection 14
Negative affective regulation of feeding behavior by the PBN-to-VTA pathway 14
Downstream mapping of PBN-to-VTA connection 16
Chapter 4: Results of characterizing the PBN-to-aPVT connection 18
PBN sends projections to both aPVT and pPVT 18
PBN and vHip afferents innervate distinct aPVT cell population 19
Distinct functional roles of PBN- and vHip-to-aPVT pathways 20
Downstream mapping of PBN and vHip-to-aPVT connection 22
Cellular phenotyping of PBN-innervated aPVT neurons 23
Chapter 5: Discussion on PBN-to-aPVT connection 26
Non-valence-driven feeding regulation by the PBN-to-aPVT pathway 26
Anatomical and functional differentiation of PBN- and vHip-innervated aPVT neurons 28
Downstream mapping of PBN- and vHip-to-aPVT connections 29
Significance 32
Materials and Methods 33
Mice 33
Stereotaxic surgeries 33
Viruses 35
4-OHT preparation and TRAPing 37
In vivo optogenetic manipulation 37
Behavioral assays 38
Histology 43
Immunocytochemistry 43
RNA in situ hybridization 44
Microscopy and image analysis 46
Statistical analysis 47
Figures 48
Supplementary 70
References 71
-
dc.language.isoen-
dc.subject適應性行為zh_TW
dc.subject臂旁核(parabrachial nucleuszh_TW
dc.subjectPBN)zh_TW
dc.subject丘腦室旁核(paraventricular nucleus of the thalamuszh_TW
dc.subjectPVT)zh_TW
dc.subject腹側海馬迴(ventral hippocampuszh_TW
dc.subjectvHip)zh_TW
dc.subject腹側被蓋區(ventral tegmental areazh_TW
dc.subjectVTA)zh_TW
dc.subjectventral hippocampusen
dc.subjectadaptive behavioren
dc.subjectparabrachial nucleus (PBN)en
dc.subjectventral tegmental area (VTA)en
dc.subjectparaventricular nucleus of the thalamus (PVT)en
dc.title探討臂旁核相異神經輸出之迴路特性與行為功能zh_TW
dc.titleInvestigating the circuitry properties and behavioral functions of different parabrachial nucleus efferent connectionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林士傑;連正章zh_TW
dc.contributor.oralexamcommitteeShih-Chieh Lin;Cheng-Chang Lienen
dc.subject.keyword適應性行為,臂旁核(parabrachial nucleus, PBN),丘腦室旁核(paraventricular nucleus of the thalamus, PVT),腹側海馬迴(ventral hippocampus, vHip),腹側被蓋區(ventral tegmental area, VTA),zh_TW
dc.subject.keywordadaptive behavior,parabrachial nucleus (PBN),paraventricular nucleus of the thalamus (PVT),ventral hippocampus,ventral tegmental area (VTA),en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202503346-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college醫學院-
dc.contributor.author-dept腦與心智科學研究所-
dc.date.embargo-lift2030-08-05-
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved