請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99368完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姚皓傑 | zh_TW |
| dc.contributor.advisor | Hau-Jie Yau | en |
| dc.contributor.author | 李珣睿 | zh_TW |
| dc.contributor.author | Syun-Ruei Lee | en |
| dc.date.accessioned | 2025-09-09T16:10:44Z | - |
| dc.date.available | 2025-09-10 | - |
| dc.date.copyright | 2025-09-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Allen, W. E., DeNardo, L. A., Chen, M. Z., Liu, C. D., Loh, K. M., Fenno, L. E., Ramakrishnan, C., Deisseroth, K., & Luo, L. (2017). Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 357(6356), 1149-1155. https://doi.org/doi:10.1126/science.aan6747
Baker, C. K., & Flannery, J. G. (2018). Innovative Optogenetic Strategies for Vision Restoration [Mini Review]. Frontiers in Cellular Neuroscience, Volume 12 - 2018. https://doi.org/10.3389/fncel.2018.00316 Barbano, M. F., Wang, H. L., Zhang, S., Miranda-Barrientos, J., Estrin, D. J., Figueroa-González, A., Liu, B., Barker, D. J., & Morales, M. (2020). VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors. Neuron, 107(2), 368-382.e368. https://doi.org/10.1016/j.neuron.2020.04.024 Barbano, M. F., Zhang, S., Chen, E., Espinoza, O., Mohammad, U., Alvarez-Bagnarol, Y., Liu, B., Hahn, S., & Morales, M. (2024). Lateral hypothalamic glutamatergic inputs to VTA glutamatergic neurons mediate prioritization of innate defensive behavior over feeding. Nat Commun, 15(1), 403. https://doi.org/10.1038/s41467-023-44633-w Barson, J. R., Mack, N. R., & Gao, W. J. (2020). The Paraventricular Nucleus of the Thalamus Is an Important Node in the Emotional Processing Network. Front Behav Neurosci, 14, 598469. https://doi.org/10.3389/fnbeh.2020.598469 Beas, S., Khan, I., Gao, C., Loewinger, G., Macdonald, E., Bashford, A., Rodriguez-Gonzalez, S., Pereira, F., & Penzo, M. A. (2024). Dissociable encoding of motivated behavior by parallel thalamo-striatal projections. Current Biology, 34(7), 1549-1560.e1543. https://doi.org/https://doi.org/10.1016/j.cub.2024.02.037 Beier, K. T., Gao, X. J., Xie, S., DeLoach, K. E., Malenka, R. C., & Luo, L. (2019). Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations. Cell Rep, 26(1), 159-167.e156. https://doi.org/10.1016/j.celrep.2018.12.040 Beier, K. T., Steinberg, E. E., DeLoach, K. E., Xie, S., Miyamichi, K., Schwarz, L., Gao, X. J., Kremer, E. J., Malenka, R. C., & Luo, L. (2015). Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell, 162(3), 622-634. https://doi.org/10.1016/j.cell.2015.07.015 Campos, C. A., Bowen, A. J., Roman, C. W., & Palmiter, R. D. (2018). Encoding of danger by parabrachial CGRP neurons. Nature, 555(7698), 617-622. https://doi.org/10.1038/nature25511 Campos, C. A., Bowen, A. J., Schwartz, M. W., & Palmiter, R. D. (2016). Parabrachial CGRP Neurons Control Meal Termination. Cell Metab, 23(5), 811-820. https://doi.org/10.1016/j.cmet.2016.04.006 Carter, M. E., Han, S., & Palmiter, R. D. (2015). Parabrachial Calcitonin Gene-Related Peptide Neurons Mediate Conditioned Taste Aversion. The Journal of Neuroscience, 35(11), 4582-4586. https://doi.org/10.1523/jneurosci.3729-14.2015 Carter, M. E., Soden, M. E., Zweifel, L. S., & Palmiter, R. D. (2013). Genetic identification of a neural circuit that suppresses appetite. Nature, 503(7474), 111-114. https://doi.org/10.1038/nature12596 Chang, Y.-T., Chen, W.-H., Shih, H.-C., Min, M.-Y., Shyu, B.-C., & Chen, C.-C. (2019). Anterior nucleus of paraventricular thalamus mediates chronic mechanical hyperalgesia. PAIN, 160(5), 1208-1223. https://doi.org/10.1097/j.pain.0000000000001497 Chen, J., Gannot, N., Li, X., Zhu, R., Zhang, C., & Li, P. (2023). Control of Emotion and Wakefulness by Neurotensinergic Neurons in the Parabrachial Nucleus. Neurosci Bull, 39(4), 589-601. https://doi.org/10.1007/s12264-022-00994-8 Chen, J. Y., Campos, C. A., Jarvie, B. C., & Palmiter, R. D. (2018). Parabrachial CGRP Neurons Establish and Sustain Aversive Taste Memories. Neuron, 100(4), 891-899.e895. https://doi.org/10.1016/j.neuron.2018.09.032 Chiang, M. C., Bowen, A., Schier, L. A., Tupone, D., Uddin, O., & Heinricher, M. M. (2019). Parabrachial Complex: A Hub for Pain and Aversion. The Journal of Neuroscience, 39(42), 8225. https://doi.org/10.1523/JNEUROSCI.1162-19.2019 Choi, E. A., Jean-Richard-Dit-Bressel, P., Clifford, C. W. G., & McNally, G. P. (2019). Paraventricular Thalamus Controls Behavior during Motivational Conflict. J Neurosci, 39(25), 4945-4958. https://doi.org/10.1523/jneurosci.2480-18.2019 Choi, E. A., & McNally, G. P. (2017). Paraventricular Thalamus Balances Danger and Reward. J Neurosci, 37(11), 3018-3029. https://doi.org/10.1523/jneurosci.3320-16.2017 Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482(7383), 85-88. https://doi.org/10.1038/nature10754 Condon, L. F., Yu, Y., Park, S., Cao, F., Pauli, J. L., Nelson, T. S., & Palmiter, R. D. (2024). Parabrachial Calca neurons drive nociplasticity. Cell Rep, 43(4), 114057. https://doi.org/10.1016/j.celrep.2024.114057 de Jong, J. W., Afjei, S. A., Pollak Dorocic, I., Peck, J. R., Liu, C., Kim, C. K., Tian, L., Deisseroth, K., & Lammel, S. (2019). A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron, 101(1), 133-151.e137. https://doi.org/10.1016/j.neuron.2018.11.005 DeNardo, L. A., Liu, C. D., Allen, W. E., Adams, E. L., Friedmann, D., Fu, L., Guenthner, C. J., Tessier-Lavigne, M., & Luo, L. (2019). Temporal evolution of cortical ensembles promoting remote memory retrieval. Nature Neuroscience, 22(3), 460-469. https://doi.org/10.1038/s41593-018-0318-7 Dong, X., Li, S., & Kirouac, G. J. (2017). Collateralization of projections from the paraventricular nucleus of the thalamus to the nucleus accumbens, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain Struct Funct, 222(9), 3927-3943. https://doi.org/10.1007/s00429-017-1445-8 Elum, J. E., Szelenyi, E. R., Juarez, B., Murry, A. D., Loginov, G., Zamorano, C. A., Gao, P., Wu, G., Ng-Evans, S., Yee, J. X., Xu, X., Golden, S. A., & Zweifel, L. S. (2024). Distinct dynamics and intrinsic properties in ventral tegmental area populations mediate reward association and motivation. Cell Rep, 43(9), 114668. https://doi.org/10.1016/j.celrep.2024.114668 Engelke, D. S., Zhang, X. O., O'Malley, J. J., Fernandez-Leon, J. A., Li, S., Kirouac, G. J., Beierlein, M., & Do-Monte, F. H. (2021). A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats. Nat Commun, 12(1), 2517. https://doi.org/10.1038/s41467-021-22730-y Gao, C., Gohel, C. A., Leng, Y., Ma, J., Goldman, D., Levine, A. J., & Penzo, M. A. (2023). Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife, 12. https://doi.org/10.7554/eLife.81818 Gao, C., Leng, Y., Ma, J., Rooke, V., Rodriguez-Gonzalez, S., Ramakrishnan, C., Deisseroth, K., & Penzo, M. A. (2020). Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nat Neurosci, 23(2), 217-228. https://doi.org/10.1038/s41593-019-0572-3 Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C., & Luo, L. (2013). Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron, 78(5), 773-784. https://doi.org/10.1016/j.neuron.2013.03.025 Huang, D., Grady, F. S., Peltekian, L., & Geerling, J. C. (2021). Efferent projections of Vglut2, Foxp2, and Pdyn parabrachial neurons in mice. J Comp Neurol, 529(4), 657-693. https://doi.org/10.1002/cne.24975 Jaramillo, A. A., Brown, J. A., & Winder, D. G. (2021). Danger and distress: Parabrachial-extended amygdala circuits. Neuropharmacology, 198, 108757. https://doi.org/10.1016/j.neuropharm.2021.108757 Kang, S. J., Liu, S., Ye, M., Kim, D. I., Pao, G. M., Copits, B. A., Roberts, B. Z., Lee, K. F., Bruchas, M. R., & Han, S. (2022). A central alarm system that gates multi-sensory innate threat cues to the amygdala. Cell Rep, 40(7), 111222. https://doi.org/10.1016/j.celrep.2022.111222 Kessler, S., Labouèbe, G., Croizier, S., Gaspari, S., Tarussio, D., & Thorens, B. (2021). Glucokinase neurons of the paraventricular nucleus of the thalamus sense glucose and decrease food consumption. iScience, 24(10), 103122. https://doi.org/https://doi.org/10.1016/j.isci.2021.103122 Kirouac, G. J., Li, S., & Li, S. (2022). Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct, 227(7), 2409-2437. https://doi.org/10.1007/s00429-022-02534-6 Kooiker, C. L., Birnie, M. T., & Baram, T. Z. (2021). The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Front Behav Neurosci, 15, 673162. https://doi.org/10.3389/fnbeh.2021.673162 Lammel, S., Lim, B. K., & Malenka, R. C. (2014). Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology, 76 Pt B(0 0), 351-359. https://doi.org/10.1016/j.neuropharm.2013.03.019 Li, S., Dong, X., & Kirouac, G. J. (2021). Extensive divergence of projections to the forebrain from neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct, 226(6), 1779-1802. https://doi.org/10.1007/s00429-021-02289-6 Li, S., & Kirouac, G. J. (2012). Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus. Brain Struct Funct, 217(2), 257-273. https://doi.org/10.1007/s00429-011-0360-7 Li, Y., Wang, H., Qi, K., Chen, X., Li, S., Sui, N., & Kirouac, G. J. (2011). Orexins in the midline thalamus are involved in the expression of conditioned place aversion to morphine withdrawal. Physiology & Behavior, 102(1), 42-50. https://doi.org/https://doi.org/10.1016/j.physbeh.2010.10.006 Liu, C., Lee, C. Y., Asher, G., Cao, L., Terakoshi, Y., Cao, P., Kobayakawa, R., Kobayakawa, K., Sakurai, K., & Liu, Q. (2021). Posterior subthalamic nucleus (PSTh) mediates innate fear-associated hypothermia in mice. Nat Commun, 12(1), 2648. https://doi.org/10.1038/s41467-021-22914-6 Lowes, D. C., Chamberlin, L. A., Kretsge, L. N., Holt, E. S., Abbas, A. I., Park, A. J., Yusufova, L., Bretton, Z. H., Firdous, A., Enikolopov, A. G., Gordon, J. A., & Harris, A. Z. (2021). Ventral tegmental area GABA neurons mediate stress-induced blunted reward-seeking in mice. Nat Commun, 12(1), 3539. https://doi.org/10.1038/s41467-021-23906-2 McGinty, J. F., & Otis, J. M. (2020). Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors [Review]. Frontiers in Behavioral Neuroscience, 14. https://doi.org/10.3389/fnbeh.2020.590528 McGovern, D. J., Polter, A. M., Prévost, E. D., Ly, A., McNulty, C. J., Rubinstein, B., & Root, D. H. (2023). Ventral tegmental area glutamate neurons establish a mu-opioid receptor gated circuit to mesolimbic dopamine neurons and regulate opioid-seeking behavior. Neuropsychopharmacology, 48(13), 1889-1900. https://doi.org/10.1038/s41386-023-01637-w McNally, G. P. (2021). Motivational competition and the paraventricular thalamus. Neuroscience & Biobehavioral Reviews, 125, 193-207. https://doi.org/https://doi.org/10.1016/j.neubiorev.2021.02.021 Mindaye, S. A., Chen, W.-H., Lin, S.-C., Chen, Y.-C., Abdelaziz, M. A., Tzeng, Y.-S., Shih, A. C.-C., Chen, S.-Y., Yang, S.-B., & Chen, C.-C. (2024). Separate anterior paraventricular thalamus projections differentially regulate sensory and affective aspects of pain. Cell Reports, 43(11). https://doi.org/10.1016/j.celrep.2024.114946 Mohebi, A., Pettibone, J. R., Hamid, A. A., Wong, J. T., Vinson, L. T., Patriarchi, T., Tian, L., Kennedy, R. T., & Berke, J. D. (2019). Dissociable dopamine dynamics for learning and motivation. Nature, 570(7759), 65-70. https://doi.org/10.1038/s41586-019-1235-y Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18(2), 73-85. https://doi.org/10.1038/nrn.2016.165 Palmiter, R. D. (2024). Parabrachial neurons promote nociplastic pain. Trends in Neurosciences, 47(9), 722-735. https://doi.org/https://doi.org/10.1016/j.tins.2024.07.002 Penzo, M. A., & Gao, C. (2021). The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends in Neurosciences, 44(7), 538-549. https://doi.org/https://doi.org/10.1016/j.tins.2021.03.001 Polter, A. M., Barcomb, K., Tsuda, A. C., & Kauer, J. A. (2018). Synaptic function and plasticity in identified inhibitory inputs onto VTA dopamine neurons. Eur J Neurosci, 47(10), 1208-1218. https://doi.org/10.1111/ejn.13879 Roman, C. W., Sloat, S. R., & Palmiter, R. D. (2017). A tale of two circuits: CCK(NTS) neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. Neuroscience, 358, 316-324. https://doi.org/10.1016/j.neuroscience.2017.06.049 Shima, Y., Skibbe, H., Sasagawa, Y., Fujimori, N., Iwayama, Y., Isomura-Matoba, A., Yano, M., Ichikawa, T., Nikaido, I., Hattori, N., & Kato, T. (2023). Distinctiveness and continuity in transcriptome and connectivity in the anterior-posterior axis of the paraventricular nucleus of the thalamus. Cell Reports, 42(10), 113309. https://doi.org/https://doi.org/10.1016/j.celrep.2023.113309 Torres-Rodriguez, J. M., Wilson, T. D., Singh, S., Torruella-Suárez, M. L., Chaudhry, S., Adke, A. P., Becker, J. J., Neugebauer, B., Lin, J. L., Martinez Gonzalez, S., Soler-Cedeño, O., & Carrasquillo, Y. (2024). The parabrachial to central amygdala pathway is critical to injury-induced pain sensitization in mice. Neuropsychopharmacology, 49(3), 508-520. https://doi.org/10.1038/s41386-023-01673-6 Tsou, J. H., Lee, S. R., Chiang, C. Y., Yang, Y. J., Guo, F. Y., Ni, S. Y., & Yau, H. J. (2023). Negative Emotions Recruit the Parabrachial Nucleus Efferent to the VTA to Disengage Instrumental Food Seeking. J Neurosci, 43(44), 7276-7293. https://doi.org/10.1523/jneurosci.2114-22.2023 Wang, F., Chen, Y., Lin, Y., Wang, X., Li, K., Han, Y., Wu, J., Shi, X., Zhu, Z., Long, C., Hu, X., Duan, S., & Gao, Z. (2023). A parabrachial to hypothalamic pathway mediates defensive behavior. eLife, 12. https://doi.org/10.7554/eLife.85450 Watabe-Uchida, M., Zhu, L., Ogawa, Sachie K., Vamanrao, A., & Uchida, N. (2012). Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons. Neuron, 74(5), 858-873. https://doi.org/https://doi.org/10.1016/j.neuron.2012.03.017 Yu, X., Ba, W., Zhao, G., Ma, Y., Harding, E. C., Yin, L., Wang, D., Li, H., Zhang, P., Shi, Y., Yustos, R., Vyssotski, A. L., Dong, H., Franks, N. P., & Wisden, W. (2021). Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry, 26(9), 5213-5228. https://doi.org/10.1038/s41380-020-0810-9 Yu, X., Zhao, G., Wang, D., Wang, S., Li, R., Li, A., Wang, H., Nollet, M., Chun, Y. Y., Zhao, T., Yustos, R., Li, H., Zhao, J., Li, J., Cai, M., Vyssotski, A. L., Li, Y., Dong, H., Franks, N. P., & Wisden, W. (2022). A specific circuit in the midbrain detects stress and induces restorative sleep. Science, 377(6601), 63-72. https://doi.org/10.1126/science.abn0853 Zell, V., Steinkellner, T., Hollon, N. G., Warlow, S. M., Souter, E., Faget, L., Hunker, A. C., Jin, X., Zweifel, L. S., & Hnasko, T. S. (2020). VTA Glutamate Neuron Activity Drives Positive Reinforcement Absent Dopamine Co-release. Neuron, 107(5), 864-873.e864. https://doi.org/10.1016/j.neuron.2020.06.011 Zhang, F. C., Weng, R. X., Li, D., Li, Y. C., Dai, X. X., Hu, S., Sun, Q., Li, R., & Xu, G. Y. (2024). A vagus nerve dominant tetra-synaptic ascending pathway for gastric pain processing. Nat Commun, 15(1), 9824. https://doi.org/10.1038/s41467-024-54056-w Zhang, R., Huang, D., Gasparini, S., & Geerling, J. C. (2024). Efferent projections of Nps-expressing neurons in the parabrachial region. Journal of Comparative Neurology, 532(6), e25629. https://doi.org/https://doi.org/10.1002/cne.25629 Zhao, J., Liu, C., Zhang, F., Zheng, Z., Luo, F., Xia, J., Wang, Y., Zhang, Z., Tang, J., Song, Z., Li, S., Xu, K., Chen, M., Jiang, C., He, C., Tang, L., Hu, Z., Gao, D., & Ren, S. (2022). A paraventricular thalamus to central amygdala neural circuit modulates acute stress-induced heightened wakefulness. Cell Rep, 41(11), 111824. https://doi.org/10.1016/j.celrep.2022.111824 Zhao, Z., Chen, Y., Xuan, Y., Zhou, G., & Qiu, W. (2023). Parabrachial nucleus neuron circuits that control feeding behavior and energy balance. Obesity Medicine, 42, 100509. https://doi.org/https://doi.org/10.1016/j.obmed.2023.100509 Zhou, K., Zhu, L., Hou, G., Chen, X., Chen, B., Yang, C., & Zhu, Y. (2021). The Contribution of Thalamic Nuclei in Salience Processing [Mini Review]. Frontiers in Behavioral Neuroscience, 15. https://doi.org/10.3389/fnbeh.2021.634618 Zhou, Z., Liu, X., Chen, S., Zhang, Z., Liu, Y., Montardy, Q., Tang, Y., Wei, P., Liu, N., Li, L., Song, R., Lai, J., He, X., Chen, C., Bi, G., Feng, G., Xu, F., & Wang, L. (2019). A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive Responses. Neuron, 103(3), 473-488.e476. https://doi.org/https://doi.org/10.1016/j.neuron.2019.05.027 Zhu, Y.-B., Wang, Y., Hua, X.-X., Xu, L., Liu, M.-Z., Zhang, R., Liu, P.-F., Li, J.-B., Zhang, L., & Mu, D. (2022). PBN-PVT projections modulate negative affective states in mice. eLife, 11, e68372. https://doi.org/10.7554/eLife.68372 Zhu, Y., Nachtrab, G., Keyes, P. C., Allen, W. E., Luo, L., & Chen, X. (2018). Dynamic salience processing in paraventricular thalamus gates associative learning. Science, 362(6413), 423-429. https://doi.org/doi:10.1126/science.aat0481 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99368 | - |
| dc.description.abstract | 臂旁核(parabrachial nucleus, PBN)整合來自外界的厭惡性刺激與生物內在的狀態,進而透過不同的下游腦區來驅動相應的行為反應。過往研究指出,PBN投射至腹側被蓋區(ventral tegmental area, VTA)以及前側丘腦室旁核(anterior part of the paraventricular nucleus of the thalamus, aPVT),這兩個區域皆與動機性行為的調控有關。然而,PBN如何透過與此兩腦區的神經連結來調控行為仍是未知。在本研究中,我運用Targeted Recombination in Active Populations(TRAP)技術發現,PBN神經輸入所活化的VTA神經元主要為非多巴胺性神經元,且對這些標定到的特定VTA細胞進行光遺傳刺激會引發厭惡反應,並足以中斷小鼠正在進行的尋食行為。相較之下,活化PBN投射至aPVT的神經連結則抑制輕度的進食動機,但不會引發厭惡感而是提升小鼠的警覺程度。研究結果顯示出PBN透過兩下游連結之相異神經機制來調控小鼠進食行為。此外,我也發現腹側海馬迴(ventral hippocampus, vHip)為aPVT的另一上游腦區,並揭示了PBN與vHip投射至aPVT的兩神經迴路在解剖連結與行為功能上的差異。 | zh_TW |
| dc.description.abstract | The parabrachial nucleus (PBN) integrates aversive stimuli and internal states to subsequently guide coping responses via different downstream regions. Previous studies have showed that the PBN projects to both the ventral tegmental area (VTA) and the anterior part of the paraventricular nucleus of the thalamus (aPVT), two regions implicated in the modulation of motivational behaviors. However, the functional roles of these two pathways remain elusive. In the present study, using the Targeted Recombination in Active Populations (TRAP) approach, I deciphered that PBN afferents activation recruited non-dopaminergic neurons in the VTA, and photoactivation of the TRAPed VTA cells induced aversion and was sufficient to disengage ongoing food-seeking behavior. In contrast, photoactivation of PBN-to-aPVT connection disrupted mild food intake motivation, and enhanced arousal without inducing aversion. Additionally, I identified the ventral hippocampus (vHip) as an upstream input to the aPVT, and revealed distinct anatomical connections and behavioral functions between the PBN-to-aPVT and vHip-to-aPVT pathways. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:10:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-09T16:10:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract v Table of Contents vii List of Figures x Chapter 1: Introduction 1 Parabrachial nucleus (PBN) conveys negative stimuli and emotions 1 PBN recruits downstream regions to drive coping responses 1 Ventral tegmental area (VTA) modulates adaptive behaviors 3 Paraventricular nucleus of the thalamus (PVT) encodes salience and valence processing 4 PBN-to-pPVT connection relays negative emotions 5 Chapter 2: Results of characterizing the PBN-to-VTA connection 7 Activation of PBN afferent inputs mostly recruits VTA non-DA cells 8 PBN-to-VTA axonal terminals activation disrupts food self-administration 9 Postsynaptic photoactivation of TRAPed VTA neurons replicates the feeding regulation effect of PBN afferent activation 11 Activation of PBN-recruited VTA neurons encodes negative valence 12 Downstream mapping of TRAPed VTA cells 13 Chapter 3: Discussion on PBN-to-VTA connection 14 Negative affective regulation of feeding behavior by the PBN-to-VTA pathway 14 Downstream mapping of PBN-to-VTA connection 16 Chapter 4: Results of characterizing the PBN-to-aPVT connection 18 PBN sends projections to both aPVT and pPVT 18 PBN and vHip afferents innervate distinct aPVT cell population 19 Distinct functional roles of PBN- and vHip-to-aPVT pathways 20 Downstream mapping of PBN and vHip-to-aPVT connection 22 Cellular phenotyping of PBN-innervated aPVT neurons 23 Chapter 5: Discussion on PBN-to-aPVT connection 26 Non-valence-driven feeding regulation by the PBN-to-aPVT pathway 26 Anatomical and functional differentiation of PBN- and vHip-innervated aPVT neurons 28 Downstream mapping of PBN- and vHip-to-aPVT connections 29 Significance 32 Materials and Methods 33 Mice 33 Stereotaxic surgeries 33 Viruses 35 4-OHT preparation and TRAPing 37 In vivo optogenetic manipulation 37 Behavioral assays 38 Histology 43 Immunocytochemistry 43 RNA in situ hybridization 44 Microscopy and image analysis 46 Statistical analysis 47 Figures 48 Supplementary 70 References 71 | - |
| dc.language.iso | en | - |
| dc.subject | 適應性行為 | zh_TW |
| dc.subject | 臂旁核(parabrachial nucleus | zh_TW |
| dc.subject | PBN) | zh_TW |
| dc.subject | 丘腦室旁核(paraventricular nucleus of the thalamus | zh_TW |
| dc.subject | PVT) | zh_TW |
| dc.subject | 腹側海馬迴(ventral hippocampus | zh_TW |
| dc.subject | vHip) | zh_TW |
| dc.subject | 腹側被蓋區(ventral tegmental area | zh_TW |
| dc.subject | VTA) | zh_TW |
| dc.subject | ventral hippocampus | en |
| dc.subject | adaptive behavior | en |
| dc.subject | parabrachial nucleus (PBN) | en |
| dc.subject | ventral tegmental area (VTA) | en |
| dc.subject | paraventricular nucleus of the thalamus (PVT) | en |
| dc.title | 探討臂旁核相異神經輸出之迴路特性與行為功能 | zh_TW |
| dc.title | Investigating the circuitry properties and behavioral functions of different parabrachial nucleus efferent connections | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林士傑;連正章 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Chieh Lin;Cheng-Chang Lien | en |
| dc.subject.keyword | 適應性行為,臂旁核(parabrachial nucleus, PBN),丘腦室旁核(paraventricular nucleus of the thalamus, PVT),腹側海馬迴(ventral hippocampus, vHip),腹側被蓋區(ventral tegmental area, VTA), | zh_TW |
| dc.subject.keyword | adaptive behavior,parabrachial nucleus (PBN),paraventricular nucleus of the thalamus (PVT),ventral hippocampus,ventral tegmental area (VTA), | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202503346 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 腦與心智科學研究所 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 腦與心智科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
