請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99357完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐瑋勵 | zh_TW |
| dc.contributor.advisor | Wei-Li Hsu | en |
| dc.contributor.author | 陳彥宇 | zh_TW |
| dc.contributor.author | Yan-Yu Chen | en |
| dc.date.accessioned | 2025-09-09T16:08:39Z | - |
| dc.date.available | 2025-09-10 | - |
| dc.date.copyright | 2025-09-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | 1.Rome, K., R.L. Ashford, and A. Evans, Non-surgical interventions for paediatric pes planus. Cochrane Database Syst Rev, 2010(7): p. CD006311.
2.Tahririan, M.A., S. Ramtin, and P. Taheri, Functional and radiographic comparison of subtalar arthroereisis and lateral calcaneal lengthening in the surgical treatment of flexible flatfoot in children. Int Orthop, 2021. 45(9): p. 2291-2298. 3.Smith, C., et al., Subtalar arthroereisis for the treatment of the symptomatic paediatric flexible pes planus: a systematic review. EFORT Open Rev, 2021. 6(2): p. 118-129. 4.Bernasconi, A., F. Lintz, and F. Sadile, The role of arthroereisis of the subtalar joint for flatfoot in children and adults. EFORT Open Rev, 2017. 2(11): p. 438-446. 5.Metcalfe, S.A., F.L. Bowling, and N.D. Reeves, Subtalar joint arthroereisis in the management of pediatric flexible flatfoot: a critical review of the literature. Foot Ankle Int, 2011. 32(12): p. 1127-39. 6.Tan, J.H.I., et al., The outcomes of subtalar arthroereisis in pes planus: a systemic review and meta-analysis. Arch Orthop Trauma Surg, 2021. 141(5): p. 761-773. 7.Ruiz-Picazo, D., et al., Radiographic and Functional Results following Subtalar Arthroereisis in Pediatric Flexible Flatfoot. Adv Orthop, 2019. 2019: p. 5061934. 8.Mazzotti, A., et al., Long-term results of subtalar arthroereisis for the treatment of symptomatic flexible flatfoot in children: an average fifteen year follow-up study. Int Orthop, 2021. 45(3): p. 657-664. 9.Shi, G.G.W., J.L.; Turner, N.S., 3rd; Kitaoka, H.B., Operative Approach to Adult Hallux Valgus Deformity: Principles and Techniques. J Am Acad Orthop Surg, 2020. 28: p. 410-418. 10.Lopez, V.S., G., Metatarsalgia: Assessment Algorithm and Decision Making. Foot Ankle Clin, 2019. 24. 11.Nunes, G.A.d.C., K.A.M.; Ferreira, G.F.; Filho, M.V.P.; Baptista, A.D.; Zambelli, R.; Vega, J., Minimally invasive Chevron Akin (MICA) osteotomy for severe hallux valgus. Arch Orthop Trauma Surg, 2023(143): p. 5507-5517. 12.Lewis, T.L.R., R.; Miller, G.; Gordon, D.J., Third-Generation Minimally Invasive Chevron and Akin Osteotomies (MICA) in Hallux Valgus Surgery: Two-Year Follow-up of 292 Cases. J Bone Joint Surg Am, 2021(103): p. 1203-1211. 13.Razak, A.H.Z., A.; Begg, R.K.; Wahab, Y., Foot plantar pressure measurement system: a review. Sensors (Basel), 2012(12): p. 9884-9912. 14.Wafai, L.Z., A.; Woulfe, J.; Aziz, S.M.; Begg, R., Identification of Foot Pathologies Based on Plantar Pressure Asymmetry. Sensors (Basel), 2015(15): p. 20392-20408. 15.Deepashini, H.O., B.; Paungmali, A.; Amaramalar, N.; Ohnmar, H.; Leonard, J., An insight into the plantar pressure distribution of the foot in clinical practice: Narrative review. Polish Annals of Medicine, 2014(21): p. 51-56. 16.Bryant, A.R.T., P.; Cole, J.H, Plantar pressure and radiographic changes to the forefoot after the Austin bunionectomy. J Am Podiatr Med Assoc, 2005(95): p. 357-365. 17.Hida, T.O., R.; Yasuda, T.; Jotoku, T.; Shima, H, Comparison of plantar pressure distribution in patients with hallux valgus and healthy matched controls. J Orthop Sci, 2017(22): p. 1054-1059. 18.Hofmann, U.K.G., M.; Wiesenreiter, K.; Müller, O.; Wünschel, M.; Mittag, F., Transfer of plantar pressure from the medial to the central forefoot in patients with hallux valgus. BMC Musculoskelet Disord, 2019(20): p. 149. 19.Wong, D.W.C., J.C.; Zhao, J.G.; Ni, M.; Yang, Z.Y., Forefoot Function after Hallux Valgus Surgery: A Systematic Review and Meta-Analysis on Plantar Load Measurement. J Clin Med, 2023(12). 20.Verdu-Roman, C.S.-R., J.; Martinez-Gimenez, E.; Carratala-Munuera, C.; Lopez-Pineda, A., Plantar pressure improvement in moderate hallux valgus with modified chevron osteotomy: Clinical and radiographic outcomes. Foot Ankle Surg, 2020(26): p. 205-208. 21.Kernozek, T.W.S., S.A., Chevron (Austin) distal metatarsal osteotomy for hallux valgus: comparison of pre- and post-surgical characteristics. Foot Ankle Int, 2002. 23. 22.Costa, J.A., A.; Kleinowski, D.; Kroth, L.; Contreras, M., Modified Chevron osteotomy: preliminary analysis of baropodometric behavior. Acta Ortopédica Brasileira, 2009(18): p. 191-196. 23.Resch, S.S., A., Evaluation of hallux valgus surgery with dynamic foot pressure registration with the Fscan system. The Foot, 1995(5): p. 115-121. 24.Mazzotti, A.A., A.; Artioli, E.; Langone, L.; Zielli, S.O.; Martini, B.; Traina, F.; Faldini, C.; Brognara, L., Hallux Valgus Plantar Pressure Distribution before and after a Distal Metatarsal Osteotomy. J Clin Med, 2024(13). 25.King, C.M.H., G.A.; Ford, L.A., Effects of the lapidus arthrodesis and chevron bunionectomy on plantar forefoot pressures. J Foot Ankle Surg, 2014(53): p. 415-419. 26.Cancilleri, F.M., A.; Martinelli, N.; Ippolito, M.; Spiezia, F.; Ronconi, P.; Denaro, V. , Comparison of plantar pressure, clinical, and radiographic changes of the forefoot after biplanar Austin osteotomy and triplanar Boc osteotomy in patients with mild hallux valgus. Foot Ankle Int, 2008(29): p. 817-824. 27.Brodsky, J.W.B., A.D.; Robinson, A.H.; Westra, S.; Negrine, J.P.; Shabat, S., Surgery for hallux valgus with proximal crescentic osteotomy causes variable postoperative pressure patterns. Clin Orthop Relat Res, 2006(443): p. 280-286. 28.Moerenhout, K.C., S.; Crevoisier, X., Outcome of the modified Lapidus procedure for hallux valgus deformity during the first year following surgery: A prospective clinical and gait analysis study. Clinical Biomechanics, 2019(61): p. 205-210. 29.Lewis, T.L.L., B.; Alkhalfan, Y.; Trowbridge, S.; Gordon, D.; Vernois, J.; Lam, P.; Ray, R., Fourth-Generation Minimally Invasive Hallux Valgus Surgery With Metaphyseal Extra-Articular Transverse and Akin Osteotomy (META): 12 Month Clinical and Radiologic Results. Foot Ankle Int, 2023(44): p. 178-191. 30.de Carvalho, K.A.M.B., A.D.; de Cesar Netto, C.; Johnson, A.H.; Dalmau-Pastor, M. , Minimally Invasive Chevron-Akin for Correction of Moderate and Severe Hallux Valgus Deformities: Clinical and Radiologic Outcomes With a Minimum 2-Year Follow-up. Foot Ankle Int, 2022(43): p. 1317-1330. 31.Tay, A.Y.W.G., G.S.; Koo, K.; Yeo, N.E.M., Third-Generation Minimally Invasive Chevron-Akin Osteotomy for Hallux Valgus Produces Similar Clinical and Radiological Outcomes as Scarf-Akin Osteotomy at 2 Years: A Matched Cohort Study. Foot Ankle Int, 2022(43): p. 321-330. 32.Holme, T.J.S., S.S.; Patel, B.; Kunasingam, K., Third-Generation Minimally Invasive Chevron Akin Osteotomy for Hallux Valgus. Foot Ankle Int, 2020(41): p. 50-56. 33.Waldecker, U., Metatarsalgia in hallux valgus deformity: a pedobarographic analysis. J Foot Ankle Surg, 2002(41): p. 300-308. 34.Noback, P.C.T., D.P.; Vosseller, J.T., Republication of "Evidence Versus Practice: Operative Treatment Preferences in Hallux Valgus". Foot Ankle Orthop, 2023(8). 35.Choi, S.M., et al., Effect of Metatarsus Adductus on Hallux Valgus Treated With Proximal Reverse Chevron Metatarsal Osteotomy. Foot Ankle Int, 2021. 42(7): p. 886-893. 36.Larholt, J. and T.E. Kilmartin, Rotational scarf and akin osteotomy for correction of hallux valgus associated with metatarsus adductus. Foot Ankle Int, 2010. 31(3): p. 220-8. 37.Sharma, J. and U. Aydogan, Algorithm for Severe Hallux Valgus Associated With Metatarsus Adductus. Foot Ankle Int, 2015. 36(12): p. 1499-503. 38.Burg, A. and E. Palmanovich, Correction of Severe Hallux Valgus with Metatarsal Adductus Applying the Concepts of Minimally Invasive Surgery. Foot Ankle Clin, 2020. 25(2): p. 337-343. 39.Kurashige, T., Minimally invasive surgery for severe hallux valgus with severe metatarsus adductus: Case reports. Foot & Ankle Surgery: Techniques, Reports & Cases, 2021. 1(1). 40.Koller, U., et al., Plantar pressure characteristics in hallux valgus feet. J Orthop Res, 2014. 32(12): p. 1688-93. 41.Wong, D.W., et al., Forefoot Function after Hallux Valgus Surgery: A Systematic Review and Meta-Analysis on Plantar Load Measurement. J Clin Med, 2023. 12(4). 42.Fishco, W.D., M.B. Ellis, and M.W. Cornwall, Influence of a metatarsus adductus foot type on plantar pressures during walking in adults using a pedobarograph. J Foot Ankle Surg, 2015. 54(3): p. 449-53. 43.Wang JH, C.C., Chuang HC, Chen YY, Long-term results of subtalar arthroereisis for symptomatic flexible flatfoot in paediatrics. Int Orthop, 2025. 49(5): p. 1175-1183. 44.Mazzotti, A., et al., Subtalar arthroereisis post-operative management in children: A literature review. Foot (Edinb), 2023. 56: p. 102037. 45.Indino, C., et al., Effectiveness of subtalar arthroereisis with endorthesis for pediatric flexible flat foot: a retrospective cross-sectional study with final follow up at skeletal maturity. Foot Ankle Surg, 2020. 26(1): p. 98-104. 46.Memeo, A., et al., Flexible Juvenile Flat Foot Surgical Correction: A Comparison Between Two Techniques After Ten Years' Experience. J Foot Ankle Surg, 2019. 58(2): p. 203-207. 47.Megremis, P. and O. Megremis, Arthroereisis for Symptomatic Flexible Flatfoot Deformity in Young Children: Radiological Assessment and Short-Term Follow-Up. J Foot Ankle Surg, 2019. 58(5): p. 904-915. 48.Wang, S., et al., Mid-term Results of Subtalar Arthroereisis with Talar-Fit Implant in Pediatric Flexible Flatfoot and Identifying the Effects of Adjunctive Procedures and Risk Factors for Sinus Tarsi Pain. Orthop Surg, 2021. 13(1): p. 175-184. 49.Neves, J.C.J., et al., Intra- and Inter-Examiner Reliability of the Viladot Method in Children. J Manipulative Physiol Ther, 2021. 44(1): p. 56-60. 50.Vogt, B., et al., Subtalar Arthroereisis for Flexible Flatfoot in Children-Clinical, Radiographic and Pedobarographic Outcome Comparing Three Different Methods. Children (Basel), 2021. 8(5). 51.Szesz, A., et al., An evaluation of subtalar titanium screw arthroereisis for the treatment of symptomatic paediatric flatfeet - early results. BMC Musculoskelet Disord, 2023. 24(1): p. 825. 52.Moraca G, M.N., Bianchi A, Filardo G, Sansone V, Subtalar arthroereisis with metallic implant is a safe and effective treatment for pediatric patients with symptomatic flexible flatfeet. A 10-year clinical and radiographic follow-up. Foot Ankle Surg, 2025. 31(1): p. 31-37. 53.Cook, E.A., J.J. Cook, and P. Basile, Identifying risk factors in subtalar arthroereisis explantation: a propensity-matched analysis. J Foot Ankle Surg, 2011. 50(4): p. 395-401. 54.Prachgosin, T., et al., Medial longitudinal arch biomechanics evaluation during gait in subjects with flexible flatfoot. Acta Bioeng Biomech, 2015. 17(4): p. 121-30. 55.Hsu, W.K., et al., Minimally Invasive Chevron Akin (MICA) Osteotomy Corrects Radiographic Parameters but Not Central Metatarsal Loading in Moderate to Severe Hallux Valgus without Metatarsalgia. Life (Basel), 2024. 14(6). 56.Redfern, D. and J. Vernois, Minimally Invasive Chevron Akin (MICA) for Correction of Hallux Valgus. Techniques in Foot & Ankle Surgery, 2016. 15(1): p. 3-11. 57.Coughlin, M.J. and C.P. Jones, Hallux valgus: demographics, etiology, and radiographic assessment. Foot Ankle Int, 2007. 28(7): p. 759-77. 58.Shi, G.G., et al., Operative Approach to Adult Hallux Valgus Deformity: Principles and Techniques. J Am Acad Orthop Surg, 2020. 28(10): p. 410-418. 59.Lewis, T.L., et al., Fourth-Generation Minimally Invasive Hallux Valgus Surgery With Metaphyseal Extra-Articular Transverse and Akin Osteotomy (META): 12 Month Clinical and Radiologic Results. Foot Ankle Int, 2023. 44(3): p. 178-191. 60.Okuda, R., et al., The shape of the lateral edge of the first metatarsal head as a risk factor for recurrence of hallux valgus. J Bone Joint Surg Am, 2007. 89(10): p. 2163-72. 61.Wagner, P. and E. Wagner, Role of Coronal Plane Malalignment in Hallux Valgus Correction. Foot Ankle Clin, 2020. 25(1): p. 69-77. 62.Agrawal, Y., A. Desai, and J. Mehta, Lateral sesamoid position in hallux valgus: correlation with the conventional radiological assessment. Foot Ankle Surg, 2011. 17(4): p. 308-11. 63.Togei, K., et al., Plantar pressure distribution in hallux valgus feet after a first metatarsal proximal crescentic osteotomy with a lesser metatarsal proximal shortening osteotomy. Foot Ankle Surg, 2021. 27(6): p. 665-672. 64.Bryant, A., K. Singer, and P. Tinley, Comparison of the reliability of plantar pressure measurements using the two-step and midgait methods of data collection. Foot Ankle Int, 1999. 20(10): p. 646-50. 65.Hofmann, U.K., et al., Transfer of plantar pressure from the medial to the central forefoot in patients with hallux valgus. BMC Musculoskelet Disord, 2019. 20(1): p. 149. 66.P Ruberto, S.C., G Bocchino, A Giuliani, R Vitiello, F Forconi, G Malerba, G Maccauro, Utilisation of the minimally invasive chevron akin (mica) osteotomy for severe hallux valgus: a systematic review. Musculoskelet Surg, 2025. 109(2): p. 133-143. 67.Lai, M.C., et al., Clinical and Radiological Outcomes Comparing Percutaneous Chevron-Akin Osteotomies vs Open Scarf-Akin Osteotomies for Hallux Valgus. Foot Ankle Int, 2018. 39(3): p. 311-317. 68.Lewis, T.L., et al., Third-Generation Minimally Invasive Chevron and Akin Osteotomies (MICA) in Hallux Valgus Surgery: Two-Year Follow-up of 292 Cases. J Bone Joint Surg Am, 2021. 103(13): p. 1203-1211. 69.Nunes, G.A., et al., Minimally invasive Chevron Akin (MICA) osteotomy for severe hallux valgus. Arch Orthop Trauma Surg, 2023. 143(9): p. 5507-5514. 70.de Carvalho, K.A.M., et al., Minimally Invasive Chevron-Akin for Correction of Moderate and Severe Hallux Valgus Deformities: Clinical and Radiologic Outcomes With a Minimum 2-Year Follow-up. Foot Ankle Int, 2022. 43(10): p. 1317-1330. 71.Tay, A.Y.W., et al., Third-Generation Minimally Invasive Chevron-Akin Osteotomy for Hallux Valgus Produces Similar Clinical and Radiological Outcomes as Scarf-Akin Osteotomy at 2 Years: A Matched Cohort Study. Foot Ankle Int, 2022. 43(3): p. 321-330. 72.Holme, T.J., et al., Third-Generation Minimally Invasive Chevron Akin Osteotomy for Hallux Valgus. Foot Ankle Int, 2020. 41(1): p. 50-56. 73.Verdu-Roman, C., et al., Plantar pressure improvement in moderate hallux valgus with modified chevron osteotomy: Clinical and radiographic outcomes. Foot Ankle Surg, 2020. 26(2): p. 205-208. 74.Kernozek, T.W. and S.A. Sterriker, Chevron (Austin) distal metatarsal osteotomy for hallux valgus: comparison of pre- and post-surgical characteristics. Foot Ankle Int, 2002. 23(6): p. 503-8. 75.Costa, J., et al., Modified Chevron osteotomy: preliminary analysis of baropodometric behavior. Acta Ortopédica Brasileira, 2009. 18: p. 191-196. 76.Resch, S. and A. Stenström, Evaluation of hallux valgus surgery with dynamic foot pressure registration with the Fscan system. The Foot, 1995. 5(3): p. 115-121. 77.Mazzotti, A., et al., Hallux Valgus Plantar Pressure Distribution before and after a Distal Metatarsal Osteotomy. J Clin Med, 2024. 13(6). 78.King, C.M., G.A. Hamilton, and L.A. Ford, Effects of the lapidus arthrodesis and chevron bunionectomy on plantar forefoot pressures. J Foot Ankle Surg, 2014. 53(4): p. 415-9. 79.Cancilleri, F., et al., Comparison of plantar pressure, clinical, and radiographic changes of the forefoot after biplanar Austin osteotomy and triplanar Boc osteotomy in patients with mild hallux valgus. Foot Ankle Int, 2008. 29(8): p. 817-24. 80.Waldecker, U., Metatarsalgia in hallux valgus deformity: a pedobarographic analysis. J Foot Ankle Surg, 2002. 41(5): p. 300-8. 81.Hida, T., et al., Comparison of plantar pressure distribution in patients with hallux valgus and healthy matched controls. J Orthop Sci, 2017. 22(6): p. 1054-1059. 82.Bryant, A.R., P. Tinley, and J.H. Cole, Plantar pressure and radiographic changes to the forefoot after the Austin bunionectomy. J Am Podiatr Med Assoc, 2005. 95(4): p. 357-65. 83.Geng, X., et al., Impact of first metatarsal shortening on forefoot loading pattern: a finite element model study. BMC Musculoskelet Disord, 2019. 20(1): p. 625. 84.E Engel, N.E., I Krems, A simplified metatarsus adductus angle. J Am Podiatry Assoc, 1983(73): p. 620-628. 85.Shima, H., et al., Operative Treatment for Hallux Valgus With Moderate to Severe Metatarsus Adductus. Foot Ankle Int, 2019. 40(6): p. 641-647. 86.Leucht, A.K., et al., The Windswept Foot: Dealing with Metatarsus Adductus and Toe Valgus. Foot Ankle Clin, 2020. 25(3): p. 413-424. 87.Neunteufel, E., et al., Minimally Invasive Distal Metatarsal Metaphyseal Osteotomy of the Lesser Toes: Clinical, Radiologic, and Pedobarographic Outcomes. Foot Ankle Int, 2022. 43(2): p. 153-163. 88.Ferraz Ferreira, G., et al., Distal Metatarsal Metaphyseal Osteotomy (DMMO) for lesser toe metatarsalgia: a case series of 195 osteotomies. Journal of the Foot & Ankle, 2022. 16(2): p. 153-156. 89.Malhotra, K., et al., Minimally invasive distal metaphyseal metatarsal osteotomy (DMMO) for symptomatic forefoot pathology - Short to medium term outcomes from a retrospective case series. Foot (Edinb), 2019. 38: p. 43-49. 90.Chomej, P., et al., Lateralising DMMO (MIS) for simultaneous correction of a pes adductus during surgical treatment of a hallux valgus. Foot (Edinb), 2020. 45: p. 101722. 91.Krenn, S., et al., Minimally Invasive Distal Metatarsal Metaphyseal Osteotomy of the Lesser Toes: Learning Curve. Foot Ankle Spec, 2018. 11(3): p. 263-268. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99357 | - |
| dc.description.abstract | 足部畸形如扁平足(flatfoot)、拇趾外翻(hallux valgus, HV)及蹠骨內收(metatarsus adductus, MA)等,都是臨床上常見的足部問題,可能對患者的生活品質與行動能力造成顯著影響。微創手術在矯正足部畸形方面具有顯著優勢,相比傳統開放手術,微創手術不僅切口小、出血少、疼痛減輕,術後恢復快,而且對患者肢體的生物力學環境影響較小。
在臨床評估中,影像學指標和生物力學評估方法密不可分。影像學指標能夠清晰顯示骨骼結構和關節排列情況,是診斷和治療規劃的重要工具。生物力學評估,特別是足底壓力分析,則提供了動態的功能性數據,有助於了解手術對足部功能的影響。 本研究將結合影像學指標和足底壓力分析,全面探討微創手術治療足部畸形的臨床和生物力學效應,以期為臨床治療提供更為科學的評估和決策依據。具體的研究目的與結果如下: 目的一: 了解兒童扁平足接受微創矯正手術的術後長期結果與其影響因子。 本研究回溯性納入自2011到2015年在彰化秀傳醫院接受距下關節限制術的扁平足患者,分析手術前後的影像學指標與足底壓力分佈(根據Viladot分類),再分析其與功能表現的相關性。 研究共納入了19位病患的38隻腳,接受手術時的平均年齡為11±1.79歲,平均追蹤時間為10±1.4年。手術後所有的足部影像學指標均有顯著的改善,而足底壓力分佈(根據Viladot分類)有71%的足部分類為正常足型。功能表現依據AOFAS-hindfoot score和FAOS score,有82%的病患有Good to excellent的評分。而後根據ROC curve分析,手術前的talonavicular coverage angle 小於28.5度、Meary’s angle 小於19.5度、以及talar declination angle 小於37.5度可以預測較佳的長期術後功能表現。 目的二:了解拇趾外翻微創矯正手術對前足壓力的影響與其原因。 本研究前瞻性納入中度到重度拇趾外翻並接受MICA手術之患者,記錄手術前與術後三個月的X光影像及動態足底壓力分析(Footscan®, RSscan International, Olen, Belgium),再分析影像學指標與足底壓力變化的相關性。 研究共納入了25位患者的31隻腳,平均年齡為50.83±12.38歲。手術前後與拇趾外翻相關的影像學指標均有顯著的改善;而第一蹠骨的長度在術後有統計學顯著地縮短了2.3mm,雖然第二蹠骨的相對長度與側面的Meary’s angle並無統計學顯著的改變。足底壓力的部分,中央蹠骨區域的最大受力、最大壓力、累積受力、與累積壓力在手術前後都沒有統計學顯著的差異。反而是第一蹠骨與拇趾區域的壓力參數,在術後三個月有統計學顯著的降低。 目的三:了解拇趾外翻與蹠骨內收微創矯正手術對前足壓力的影響與其原因 研究前瞻性納入拇趾外翻併發蹠骨內收與蹠痛症(metatarsalgia)的患者,記錄手術前與術後六個月的X光影像及動態足底壓力分析,再分析術後X光影像學指標與足底壓力改變間的相關性。數據來自2021年8月至2023年7月期間由單一醫師治療的25名患者(25隻腳),平均年齡為50.1歲。影像學分析顯示,術後六個月HVA、IMA及MA均有顯著改善。而足底壓力評估顯示,術後六個月,第2至第4蹠骨區域的最大受力、峰值壓力、受力時間積分及壓力時間積分均顯著降低。 實驗設計:回溯性研究,前瞻式介入研究 | zh_TW |
| dc.description.abstract | Deformities of the foot such as flatfoot, hallux valgus (HV), and metatarsus adductus (MA) are common clinical foot problems that can significantly impact the quality of life and mobility of patients. Minimally invasive surgery (MIS) has significant advantages in correcting foot deformities. Compared to traditional open surgery, MIS offers smaller incisions, less bleeding, reduced pain, and faster recovery. It also causes less damage to surrounding muscles and other soft tissues, thereby having a smaller impact on the biomechanical environment of the limb.
In clinical evaluations, imaging indicators and biomechanical assessment methods are closely related. Imaging indicators such as X-rays, CT scans, and MRI can clearly show the structure of bones and the alignment of joints, serving as important tools for diagnosis and treatment planning. Biomechanical assessment, especially plantar pressure analysis, an accurately measure the pressure distribution in different areas of the foot, reflecting changes in gait and weight-bearing conditions and providing important evidence for postoperative outcome evaluation. This study will combine imaging indicators and plantar pressure analysis to comprehensively explore the clinical and biomechanical effects of minimally invasive surgery for treating foot deformities, aiming to provide more scientific evaluation and decision-making basis for clinical treatment. The specific research aims are as follows: Aim 1: The aim 1 is to understand the long-term results of pediatric flat foot receiving minimally invasive correction and to determine the predictive factors. Conducted as a retrospective analysis, it included patients who underwent the procedure at Show-Chwan Memorial Hospital between 2011 and 2015. Correlations between radiographic measurements and plantar pressure distribution, as classified by the Viladot system, were also examined. A total of 19 patients (38 feet) participated in the study, with an average age of 11 ± 1.79 years at the time of surgery and a mean follow-up period of 10 ± 1.4 years. Postoperative radiographic parameters demonstrated significant improvements across all cases. Additionally, plantar pressure distribution analysis classified 71% of feet as having a normal foot type based on the Viladot classification. Functional outcomes, evaluated through the AOFAS hindfoot scale and FAOS, showed that 82% of participants achieved good to excellent results. Moreover, ROC curve analysis identified preoperative talonavicular coverage angles of less than 28.5°, Meary’s angles below 19.5°, and talar declination angles under 37.5° as predictors of more favorable long-term functional outcomes. Aim 2: The aim 2 is to understand the pedobarographic results of minimally invasive hallux valgus correction surgery and to determine its reasons. The research prospectively enrolled patients with moderate to severe hallux valgus treated with MICA. Radiographic data and dynamic plantar pressure measurements (Footscan®, RSscan International, Olen, Belgium) were collected preoperatively and three months postoperatively to explore correlations between imaging and pedobarographic parameters. A total of 25 patients (31 feet) were included, with a mean age of 50.83 ± 12.38 years. Radiographic parameters associated with hallux valgus, including HVA, IMA, DMAA, 1MTLHS, and LSG, showed statistically significant postoperative improvement. Additionally, the first metatarsal length was reduced by 2.3 mm following surgery. However, no significant changes were observed in the relative length of the second metatarsal or the lateral Meary’s angle. Regarding plantar pressure, central metatarsal regions showed no significant differences in maximum force, peak pressure, cumulative force, or cumulative pressure pre- and post-surgery. In contrast, pressure parameters in the first metatarsal and hallux regions demonstrated a significant decrease three months after surgery. Aim 3: The aim 3 is to understand the pedobarographic results of combined minimally invasive correction of hallux valgus and central metatarsals and to determine its reasons. This study prospectively included patients with hallux valgus, metatarsus adductus, and metatarsalgia, recording X-ray images and dynamic plantar pressure analysis (Footscan®, RSscan International, Olen, Belgium) preoperatively and six months postoperatively. The correlation between radiographic and pedobarographic parameters was then analyzed. Data were collected from 25 patients (25 feet) treated by a single surgeon between August 2021 and July 2023, with an average age of 50.1 years. Radiographic analysis revealed significant postoperative improvements in the hallux valgus angle (HVA), intermetatarsal angle (IMA), and metatarsus adductus angle (MA) six months after surgery. Pedobarographic evaluation showed reduced maximum force, peak pressure, force-time integral, and pressure-time integral in the second to fourth metatarsal regions six months after surgery. Study Design: Retrospective cohort study, prospective cohort study. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:08:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-09T16:08:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS
口試委員審定書 I ACKNOWLEDGEMENTS II 中文摘要 III ABSTRACT VI CONTENTS IX CHAPTER 1 INTRODUCTION 1 1.1 FLEXIBLE FLATFOOT AND SUBTALAR ARTHROEREISIS 1 1.2 HALLUX VALGUS AND PEDOBAROGRAPHIC ANALYSIS 2 1.3 HALLUX VALGUS AND METATARSUS ADDUCTUS 3 CHAPTER 2 STUDY ONE: SUBTALAR ARTHROEREISIS FOR PEDIATRIC FLEXIBLE FLAT FOOT 6 2.1 RESEARCH QUESTIONS 6 2.1.1) What is the long-term radiographic, pedobarographic, and clinical outcomes of pediatric FFF underwent STA? 6 2.1.2) Is there any perioperative radiographic or pedobarographic parameter that can predict the postoperative functional outcome of pediatric FF underwent STA? 6 2.1.3) If there is predictive factor for postoperative functional outcome, what is the cut-off value of these parameters to predict better clinical result? 6 2.2 STUDY PURPOSES 6 2.2.1) To report the long-term radiographic, pedobarographic, and clinical outcomes of pediatric FFF underwent STA in a single institute. 6 2.2.2) To explore the correlation of perioperative radiographic and pedobarographic parameters to postoperative functional outcome of pediatric FFF underwent STA. 6 2.2.3) To determine the cut-off value of parameters identified to predict better clinical result. 6 2.3 HYPOTHESIS 6 2.3.1) The perioperative radiographic and pedobarographic parameters are not statistically significantly correlated with the postoperative functional outcomes in pediatric flexible flatfoot patients who underwent subtalar arthroereisis (STA). 7 2.4 STUDY DESIGN (FIGURE 1) 7 2.5 PARTICIPANTS 7 2.5.1) Inclusion criteria 7 2.5.2) Exclusion criteria 7 2.6 SURGICAL PROCEDURES OF SUBTALAR ARTHROEREISIS (STA) 8 2.6.1) Prosthesis 8 2.6.2) Surgical techniques for Talar-fit (Figure 2) 8 2.6.3) Surgical techniques for STA-Peg 9 2.6.4) Postoperative Protocol 9 2.7 DATA COLLECTION 9 2.7.1) Demographic Data 9 2.7.2) Radiographic Parameters (Figure 3) 9 2.7.3) Pedobarographic outcome, functional performance and patient-reported outcomes 10 2.8 STATISTICAL ANALYSIS 11 2.8.1) Perioperative comparison 11 2.8.2) Factors that may affect long-term functional outcomes 11 2.8.3) Cut-off value analysis 11 2.8.4) Statistical analysis software 12 2.9 RESULTS 12 2.9.1) General Demographics 12 2.9.2) Radiographic Outcomes 12 2.9.3) Functional and patient-reported outcomes 13 2.9.4) Subgroup analysis 13 2.9.5) Correlation analysis 14 2.9.6) ROC curve 15 2.9.7) Complications 16 2.10 DISCUSSION 16 2.11 CONCLUSION 19 CHAPTER 3 STUDY TWO: PEDOBAROGRAPHIC ANALYSIS OF HALLUX VALGUS SURGERY 20 3.1 RESEARCH QUESTIONS 20 3.1.1) What is the pedobarographic change of 1st and central metatarsal after surgical correction of HV using MICA? 20 3.1.2) Do the perioperative pedobarographic changes correlate with radiographic changes? 20 3.2 STUDY PURPOSES 20 3.2.1) To report the radiographic and plantar pressure changes of HV correction using MICA. 20 3.2.2) To explore the perioperative radiographic changes and discuss their potential effects on plantar pressure changes of HV correction using MICA. 20 3.3 HYPOTHESIS 20 3.3.1) There is no statistically significant changes in plantar pressure after HV correction using MICA. 20 3.4 STUDY DESIGN (FIGURE 4) 20 3.5 PARTICIPANTS 21 3.5.1) Inclusion criteria 21 3.5.2) Exclusion criteria 21 3.6 SURGICAL TECHNIQUES AND POSTOPERATIVE PROTOCOLS 21 3.6.1) Minimally Invasive Chevron Akin (MICA) 21 3.6.2) Postoperative protocol 22 3.7 DATA COLLECTION 23 3.7.1) Radiographic parameters 23 3.7.2) Pedobarographic parameters 23 3.8 STATISTICAL ANALYSIS 24 3.8.1) Sample size estimation 25 3.9 RESULTS 25 3.9.1) Demographic data 25 3.9.2) Radiographic outcomes 26 3.9.3) Pedobarographic outcomes 26 3.10 DISCUSSION 26 3.11 CONCLUSION 28 CHAPTER 4 STUDY THREE: PEDOBAROGRAPHIC ANALYSIS OF HALLUX VALGUS AND METATARSUS ADDUCTUS SURGERY 30 4.1 RESEARCH QUESTIONS 30 4.1.1) What is the pedobarographic change of 1st and central metatarsal after surgical correction of HV and MA using MICA and PMMO? 30 4.1.2) Do the perioperative pedobarographic changes correlate with radiographic changes? 30 4.2 STUDY PURPOSES 30 4.2.1) To report the radiographic and plantar pressure changes of HV and MA correction using MICA and PMMO. 30 4.2.2) To explore the correlation of perioperative radiographic and plantar pressure changes of HV and MA correction using MICA and PMMO. 30 4.3 HYPOTHESIS 30 4.3.1) There is no statistically significant changes in plantar pressure after HV and MA correction using MICA and PMMO. 30 4.4 STUDY DESIGN (FIGURE 7) 30 4.5 PARTICIPANTS 31 4.5.1) Inclusion criteria 31 4.5.2) Exclusion criteria 31 4.6 SURGICAL TECHNIQUES AND POSTOPERATIVE PROTOCOLS 31 4.6.1) Minimally Invasive Chevron Akin (MICA) 31 4.6.2) Proximal Metatarsal Minimally invasive Osteotomy (PMMO) 32 4.6.3) Postoperative protocol 32 4.7 DATA COLLECTION 32 4.7.1) Radiographic parameters 32 4.7.2) Pedobarographic parameters 33 4.8 STATISTICAL ANALYSIS 33 4.8.1) Sample size estimation 33 4.9 RESULTS 33 4.10 DISCUSSION 34 4.11 CONCLUSION 37 CHAPTER 5 GENERAL CONCLUSION 38 REFERENCES 39 FIGURES 44 FIGURE 1: ILLUSTRATION OF THE STUDY DESIGN OF STUDY 1. 44 FIGURE 2: RADIOGRAPHS OF SUBTALAR ARTHROEREISIS BEFORE, DURING, AND AFTER THE SURGERY. 45 FIGURE 3: RADIOGRAPHIC PARAMETERS RELAVENT TO FLAT FOOT DEFORMITY. 46 FIGURE 4: ILLUSTRATION OF THE STUDY DESIGN OF STUDY 2. 47 FIGURE 5: MINIMALLY INVASIVE CHEVRON AKIN (MICA) OSTEOTOMY FOR HALLUX VALGUS CORRECTION. 48 FIGURE 6: MANUAL ADJUSTMENT OF PLANTAR ZONES USING THE RS-SCAN SYSTEM 49 FIGURE 7: ILLUSTRATION OF THE STUDY DESIGN OF STUDY 3. 50 FIGURE 8: PROXIMAL METATARSAL MINIMALLY INVASIVE OSTEOTOMY(PMMO). 51 TABLES 52 TABLE 1: DESCRIPTION OF RADIOGRAPHIC MEASUREMENTS RELEVANT TO PES PLANUS IN AIM 1 52 TABLE 2: UNIVARIATE LOGISTIC REGRESSION DETERMINED ODDS RATIOS FOR PREDICTING AOFAS AND FAOS SCORES. 53 TABLE 3: CUT-OFF VALUES FROM ROC ANALYSIS FOR KEY ANGLES 54 TABLE 4: DEMOGRAPHICS OF STUDY POPULATION OF AIM 2. (N = 31 FEET). 55 TABLE 5: PERIOPERATIVE RADIOGRAPHIC CHANGES OF AIM 2 56 TABLE 6: PERIOPERATIVE MAXIMAL PLANTAR FORCE (N) CHANGE IN DIFFERENT PLANTAR AREAS IN AIM 2. 57 TABLE 7: PERIOPERATIVE MAXIMAL PLANTAR PRESSURE (KPA) CHANGES IN DIFFERENT PLANTAR AREAS IN AIM 2 58 TABLE 8: PERIOPERATIVE FORCE–TIME INTEGRAL (NS) CHANGES IN DIFFERENT PLANTAR AREAS IN AIM 2 59 TABLE 9: PERIOPERATIVE PRESSURE–TIME INTEGRAL (KPA S) CHANGES IN DIFFERENT PLANTAR AREAS IN AIM 2 60 TABLE 10: DEMOGRAPHIC DATA IN AIM 3. 61 TABLE 11: PERIOPERATIVE RADIOGRAPHIC CHANGES IN AIM 3. 62 TABLE 12: BONE LENGTH BEFORE AND AFTER 6 MONTHS OF SURGERY IN AIM 3. 63 TABLE 13: PERIOPERATIVE MAXIMAL FORCE (N) CHANGES IN DIFFERENT PLANTAR AREAS IN AIM 3. 64 TABLE 14: PERIOPERATIVE PEAK PRESSURE (KPA) CHANGES IN DIFFERENT PLANTAR AREASIN AIM 3. 65 TABLE 15: PERIOPERATIVE FORCE–TIME INTEGRAL (NS) CHANGES IN DIFFERENT PLANTAR AREAS IN AIM 3. 66 TABLE 16: PERIOPERATIVE PRESSURE–TIME INTEGRAL (KPA∙S) CHANGES IN DIFFERENT PLANTAR IN AIM 3. 67 APPENDIX 68 APPENDIX 1: IRB CERTIFICATE FOR AIM 1. 68 APPENDIX 2: IRB CERTIFICATE FOR AIM 2. 69 APPENDIX 3: IRB CERTIFICATE FOR AIM3 70 | - |
| dc.language.iso | en | - |
| dc.subject | 拇趾外翻 | zh_TW |
| dc.subject | 蹠骨內收 | zh_TW |
| dc.subject | 微創手術 | zh_TW |
| dc.subject | 足底壓力 | zh_TW |
| dc.subject | 扁平足 | zh_TW |
| dc.subject | 距下關節限制術 | zh_TW |
| dc.subject | subtalar arthroereisis | en |
| dc.subject | flatfoot | en |
| dc.subject | plantar pressure | en |
| dc.subject | minimally invasive surgery | en |
| dc.subject | metatarsus adductus | en |
| dc.subject | hallux valgus | en |
| dc.title | 應用影像學指標與足底壓力分析探討微創手術治療足部畸形之臨床與生物力學效應 | zh_TW |
| dc.title | Application of Imaging Parameters and Plantar Pressure Analysis for the Clinical and Biomechanical Effects of Minimally Invasive Surgery in Treating Foot Deformities | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 王廷明;王禎麒;吳柏廷;蔡俊灝 | zh_TW |
| dc.contributor.oralexamcommittee | Ting-Ming Wang;Chen-Chie Wang;Po-Ting Wu;Chun-Hao Tsai | en |
| dc.subject.keyword | 扁平足,距下關節限制術,拇趾外翻,蹠骨內收,微創手術,足底壓力, | zh_TW |
| dc.subject.keyword | flatfoot,subtalar arthroereisis,hallux valgus,metatarsus adductus,minimally invasive surgery,plantar pressure, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202501861 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-16 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 物理治療學研究所 | - |
| dc.date.embargo-lift | 2025-09-10 | - |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 15.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
