Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99354
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王興國zh_TW
dc.contributor.advisorHsing-Kuo Wangen
dc.contributor.author洪瑋zh_TW
dc.contributor.authorWei Hungen
dc.date.accessioned2025-09-09T16:08:04Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation1.Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001.
2.Bigland-Ritchie B, Cafarelli E, Vøllestad N. Fatigue of submaximal static contractions. Acta physiologica Scandinavica. Supplementum. 1986;556:137-148.
3.Westerblad H, Allen DG. The contribution of [Ca2+]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. J Physiol. 1993;468:729-740.
4.Sesboüé B, Guincestre JY. Muscular fatigue. Ann Phys Rehabil Med. 2006;49:348-354.
5.Enoka RM, Baudry S, Rudroff T, Farina D, Klass M, Duchateau J. Unraveling the neurophysiology of muscle fatigue. J Electromyogr Kinesiol. 2011;21:208-219.
6.Gandevia SC, Herbert RD, Leeper JB. Voluntary activation of human elbow flexor muscles during maximal concentric contractions. J Physiol. 1998;512 ( Pt 2):595-602.
7.Babault N, Desbrosses K, Fabre MS, Michaut A, Pousson M. Neuromuscular fatigue development during maximal concentric and isometric knee extensions. J Appl Physiol (1985). 2006;100:780-785.
8.Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol (1985). 2017;122:1068-1076.
9.Vernillo G, Temesi J, Martin M, Krüger RL, Millet GY. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task. J Neurophysiol. 2020;124:763-773.
10.Pincivero DM, Gandhi V, Timmons MK, Coelho AJ. Quadriceps femoris electromyogram during concentric, isometric and eccentric phases of fatiguing dynamic knee extensions. J Biomech. 2006;39:246-254.
11.Travnik L, Pernus F, Erzen I. Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles. J Anat. 1995;187 ( Pt 2):403-411.
12.Vaz MA, Zhang YT, Herzog W, Guimaraes AC, MacIntosh BR. The behavior of rectus femoris and vastus lateralis during fatigue and recovery: an electromyographic and vibromyographic study. Electromyogr Clin Neurophysiol. 1996;36:221-230.
13.Miller RG, Giannini D, Milner-Brown HS, et al. Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery. Muscle Nerve. 1987;10:810-821.
14.HÄkkinen K, Komi PV. Effects of fatigue and recovery on electromyographic and isometric force- and relaxation-time characteristics of human skeletal muscle. Eur J Appl Physiol Occup Physiol. 1986;55:588-596.
15.Linnamo V, Bottas R, Komi P. Force and EMG power spectrum during and after eccentric and concentric fatigue. J Electromyogr Kinesiol. 2000;10:293-300.
16.Larivière C, Gravel D, Arsenault AB, Gagnon D, Loisel P. Muscle recovery from a short fatigue test and consequence on the reliability of EMG indices of fatigue. Eur J Appl Physiol. 2003;89:171-176.
17.Rodriguez-Falces J, Malanda A, Lavilla-Oiz A, Navallas J. Recovery of the first and second phases of the M wave after prolonged maximal voluntary contractions. J Electromyogr Kinesiol. 2020;50:102385.
18.Rodriguez-Falces J, Place N. Different recoveries of the first and second phases of the M-wave after intermittent maximal voluntary contractions. Eur J Appl Physiol. 2017;117:607-618.
19.Neyroud D, Cheng AJ, Bourdillon N, Kayser B, Place N, Westerblad H. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles. Front Physiol. 2016;7:252.
20.Vøllestad NK. Measurement of human muscle fatigue. J Neurosci Methods. 1997;74:219-227.
21.Hody S, Rogister B, Leprince P, Wang F, Croisier JL. Muscle fatigue experienced during maximal eccentric exercise is predictive of the plasma creatine kinase (CK) response. Scand J Med Sci Sports. 2013;23:501-507.
22.Vanin AA, Verhagen E, Barboza SD, Costa LOP, Leal-Junior ECP. Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med Sci. 2018;33:181-214.
23.Johansson PH, Lindström L, Sundelin G, Lindström B. The effects of preexercise stretching on muscular soreness, tenderness and force loss following heavy eccentric exercise. Scand J Med Sci Sports. 1999;9:219-225.
24.Trajano G, Pinho C, Costa P, Oliveira C. Static stretching increases muscle fatigue during submaximal sustained isometric contractions. J Sports Med Phys Fitness. 2015;55:43-50.
25.Ribeiro AS, Avelar A, Schoenfeld BJ, et al. Effect of 16 weeks of resistance training on fatigue resistance in men and women. J Hum Kinet. 2014;42:165-174.
26.Salvador E, Ritti-Dias R, Gurjão A, Avelar A, Pinto G, Cyrino E. Effect of eight weeks of strength training on fatigue resistance in men and women. Isokinet Exerc Sci. 2009;17:101-106.
27.Afsharnezhad T, Khorsandi Kolur M. The Effects of Pre-Exercise Massage on muscle Activity During Sustained Contraction. Sport Science. 2019;12:53-60.
28.Weerapong P, Hume PA, Kolt GS. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 2005;35:235-256.
29.Hohenauer E, Stoop R, Clarys P, Clijsen R, Deliens T, Taeymans J. The effect of pre-exercise cooling on performance characteristics: A systematic review and meta-analysis. Int J Clin Med. 2018;9:117-141.
30.Algafly AA, George KP. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med. 2007;41:365-369; discussion 369.
31.Peiffer JJ, Abbiss CR, Nosaka K, Peake JM, Laursen PB. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport. 2009;12:91-96.
32.Sabapathy M, Tan F, Al Hussein S, et al. Effect of heat pre-conditioning on recovery following exercise-induced muscle damage. Curr Res Physiol. 2021;4:155-162.
33.Nosaka K, Muthalib M, Lavender A, Laursen PB. Attenuation of muscle damage by preconditioning with muscle hyperthermia 1-day prior to eccentric exercise. Eur J Appl Physiol. 2007;99:183-192.
34.Kim K, Kuang S, Song Q, Gavin TP, Roseguini BT. Impact of heat therapy on recovery after eccentric exercise in humans. J Appl Physiol (1985). 2019;126:965-976.
35.Pereira WM, Ferreira LAB, Rossi LP, et al. Influence of heat on fatigue and electromyographic activity of the biceps brachii muscle. J Bodyw Mov Ther. 2011;15:478-484.
36.Jeon JK, Kim SS, Kang DH, et al. Change of Isometric Contractile Force and Muscle Activity Applying Heat according to the Time on Biceps Brachii Muscle. J Int Acad Phys Ther Res. 2013;4:505-509.
37.Dompe C, Moncrieff L, Matys J, et al. Photobiomodulation-Underlying Mechanism and Clinical Applications. J Clin Med. 2020;9.
38.Mantineo M, Pinheiro JP, Morgado AM. Low-level laser therapy on skeletal muscle inflammation: evaluation of irradiation parameters. J Biomed Opt. 2014;19:98002.
39.Tsuk S, Lev YH, Fox O, Carasso R, Dunsky A. Does Photobiomodulation Therapy Enhance Maximal Muscle Strength and Muscle Recovery? J Hum Kinet. 2020;73:135-144.
40.Oliveira MX, Toma RL, Jones BJ, et al. Effects of photobiomodulation therapy (pulsed LASER 904 nm) on muscle oxygenation and performance in exercise-induced skeletal muscle fatigue in young women: A pilot study. Paper presented at: Mechanisms of Photobiomodulation Therapy XII2017.
41.De Marchi T, Schmitt VM, Machado GP, et al. Does photobiomodulation therapy is better than cryotherapy in muscle recovery after a high-intensity exercise? A randomized, double-blind, placebo-controlled clinical trial. Lasers Med Sci. 2017;32:429-437.
42.Antonialli FC, De Marchi T, Tomazoni SS, et al. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci. 2014;29:1967-1976.
43.Miranda EF, Vanin AA, Tomazoni SS, et al. Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests. J Athl Train. 2016;51:129-135.
44.Pinto HD, Vanin AA, Miranda EF, et al. Photobiomodulation Therapy Improves Performance and Accelerates Recovery of High-Level Rugby Players in Field Test: A Randomized, Crossover, Double-Blind, Placebo-Controlled Clinical Study. J Strength Cond Res. 2016;30:3329-3338.
45.Witte RS, Kim K, Martin BJ, O'Donnell M. Effect of fatigue on muscle elasticity in the human forearm using ultrasound strain imaging. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4490-4493.
46.Stamborowski SF, de Oliveira Spinelli BM, Lima FPS, et al. The influence of photobiomodulation on the temperature of the brachial biceps during muscle fatigue protocol. Lasers Med Sci. 2021;36:1741-1749.
47.Orssatto LB, Rossato M, Vargas M, Diefenthaeler F, De La Rocha Freitas C. Photobiomodulation therapy effects on resistance training volume and discomfort in well-trained adults: a randomized, double-blind, placebo-controlled trial. Photobiomodul Photomed Laser Surg. 2020;38:720-726.
48.Dos Reis FA, da Silva BA, Laraia EM, et al. Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomed Laser Surg. 2014;32:106-112.
49.Ferraresi C, de Brito Oliveira T, de Oliveira Zafalon L, et al. Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci. 2011;26:349-358.
50.Pekyavas NO, Baltaci G. Short-term effects of high-intensity laser therapy, manual therapy, and Kinesio taping in patients with subacromial impingement syndrome. Lasers Med Sci. 2016;31:1133-1141.
51.Renwick SM, Renwick AI, Brodbelt DC, Ferguson J, Abreu H. Influence of class IV laser therapy on the outcomes of tibial plateau leveling osteotomy in dogs. Vet Surg. 2018;47:507-515.
52.Zati A, Valent A. Laser therapy in Medicine. Physical Therapy: New Technologies in Rehabilitation Medicine. 2006:162-185.
53.Akaltun MS, Altindag O, Turan N, Gursoy S, Gur A. Efficacy of high intensity laser therapy in knee osteoarthritis: a double-blind controlled randomized study. Clin Rheumatol. 2021;40:1989-1995.
54.Song HJ, Seo H-J, Lee Y, Kim SK. Effectiveness of high-intensity laser therapy in the treatment of musculoskeletal disorders: A systematic review and meta-analysis of randomized controlled trials. Medicine. 2018;97:e13126.
55.Santamato A, Solfrizzi V, Panza F, et al. Short-term effects of high-intensity laser therapy versus ultrasound therapy in the treatment of people with subacromial impingement syndrome: a randomized clinical trial. Phys Ther. 2009;89:643-652.
56.Ordahan B, Karahan AY, Kaydok E. The effect of high-intensity versus low-level laser therapy in the management of plantar fasciitis: a randomized clinical trial. Lasers Med Sci. 2018;33:1363-1369.
57.Brandl A, Egner C, Reisser U, Lingenfelder C, Schleip R. Influence of high-energy laser therapy to the patellar tendon on its ligamentous microcirculation: An experimental intervention study. PloS one. 2023;18:e0275883.
58.Zielińska P, Nicpoń J, Kiełbowicz Z, Soroko M, Dudek K, Zaborski D. Effects of high intensity laser therapy in the treatment of tendon and ligament injuries in performance horses. Animals. 2020;10:1327.
59.Crow JA, Stauffer JW, Levine D, Dale RB, Borsa PA. Therapeutic Photobiomodulation Before Strenuous Exercise Attenuates Shoulder Muscle Fatigue. J Athl Train. 2023.
60.Larkin-Kaiser KA, Christou E, Tillman M, George S, Borsa PA. Near-infrared light therapy to attenuate strength loss after strenuous resistance exercise. J Athl Train. 2015;50:45-50.
61.De Marchi T, Schmitt VM, Danúbia da Silva Fabro C, et al. Phototherapy for Improvement of Performance and Exercise Recovery: Comparison of 3 Commercially Available Devices. J Athl Train. 2017;52:429-438.
62.Rossato M, Dellagrana RA, Sakugawa RL, Baroni BM, Diefenthaeler F. Dose–response effect of photobiomodulation therapy on muscle performance and fatigue during a multiple-set knee extension exercise: a randomized, crossover, double-blind placebo-controlled trial. Photobiomodul Photomed Laser Surg. 2020;38:758-765.
63.Kim S, Jeong S. Effects of temperature-dependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy. Lasers Med Sci. 2014;29:637-644.
64.Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M. Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med. 2000;27:427-437.
65.Ihsan FR. Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg. 2005;23:289-294.
66.Larkin KA, Martin JS, Zeanah EH, True JM, Braith RW, Borsa PA. Limb blood flow after class 4 laser therapy. J Athl Train. 2012;47:178-183.
67.Fitts R. Mechanisms of muscular fatigue. Med Sci Sports Exerc. 2004;46:279-300.
68.Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88:287-332.
69.Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev. 2000;80:1215-1265.
70.Karic V, Chandran R, Abrahamse H. 940 nm diode laser induced differentiation of human adipose derived stem cells to temporomandibular joint disc cells. BMC Biotechnology. 2022;22:23.
71.Balbi M, Lai R, Stigliani S, et al. Efficacy and Safety of Visible and Near-Infrared Photobiomodulation Therapy on Astenospermic Human Sperm: Wavelength-Dependent Regulation of Nitric Oxide Levels and Mitochondrial Energetics. Biology. 2025;14:491.
72.Sommer AP, Haddad M, Fecht HJ. Light Effect on Water Viscosity: Implication for ATP Biosynthesis. Sci Rep. 2015;5:12029.
73.Sleep SL, Skelly D, Love RM, George R. Bioenergetics of photobiomodulated osteoblast mitochondrial cells derived from human pulp stem cells: systematic review. Lasers Med Sci. 2022:1-11.
74.Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B. 1995;27:219-223.
75.Morimoto Y, Arai T, Kikuchi M, Nakajima S, Nakamura H. Effect of low-intensity argon laser irradiation on mitochondrial respiration. Lasers Surg Med. 1994;15:191-199.
76.Alayat MS, Atya AM, Ali MM, Shosha TM. Long-term effect of high-intensity laser therapy in the treatment of patients with chronic low back pain: a randomized blinded placebo-controlled trial. Lasers Med Sci. 2014;29:1065-1073.
77.Astri SW, Murdhana N, Nusdwinuringtyas N, Kekalih A, Sunarjo P, Soewito F. The Comparison Of The Low-Level Laser Therapy And High Intensity Laser Therapy On Pain And Functional Ability In Knee Osteoarthritis. J Indon Med Assoc. 2022;72:275-283.
78.Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech (Bristol, Avon). 2009;24:327-340.
79.Al-Mulla MR, Sepulveda F, Colley M. sEMG Techniques to Detect and Predict Localised Muscle Fatigue. In: Mark S, ed. EMG Methods for Evaluating Muscle and Nerve Function. Rijeka: IntechOpen; 2012:Ch. 9.
80.Merletti R, Roy S. Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions. J Orthop Sports Phys Ther. 1996;24:342-353.
81.Viitasalo JH, Komi PV. Signal characteristics of EMG during fatigue. Eur J Appl Physiol Occup Physiol. 1977;37:111-121.
82.Merletti R, Knaflitz M, De Luca CJ. Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. J Appl Physiol (1985). 1990;69:1810-1820.
83.Mathur S, Eng JJ, MacIntyre DL. Reliability of surface EMG during sustained contractions of the quadriceps. J Electromyogr Kinesiol. 2005;15:102-110.
84.Rocha da Silva C, de Oliveira Silva D, Valdir Briani R, Ferraz Pazzinatto M, Ferrari D, Mícolis de Azevedo F. Test-retest reliability of electromyographic signal parameters used to evaluate neuromuscular fatigue in quadriceps femoris muscle. Kinesiology. 2016;48:174-181.
85.Vøllestad N. Changes in Activation, Contractile Speed, and Electrolyte Balance During Fatigue of Sustained and Repeated Contractions. LUNG BIOLOGY IN HEALTH AND DISEASE. 1995;85:235-235.
86.Thorstensson A, Karlsson J. Fatiguability and fibre composition of human skeletal muscle. Acta Physiol Scand. 1976;98:318-322.
87.Sangnier S, Tourny-Chollet C. Comparison of the decrease in strength between hamstrings and quadriceps during isokinetic fatigue testing in semiprofessional soccer players. Int J Sports Med. 2007:952-957.
88.Sangnier S, Tourny-Chollet C. Study of the fatigue curve in quadriceps and hamstrings of soccer players during isokinetic endurance testing. J Strength Cond Res. 2008;22:1458-1467.
89.Patton RW, Hinson MM, Arnold BR, Jr., Lessard B. Fatigue curves of isokinetic contractions. Arch Phys Med Rehabil. 1978;59:507-509.
90.Bosquet L, Maquet D, Forthomme B, Nowak N, Lehance C, Croisier JL. Effect of the lengthening of the protocol on the reliability of muscle fatigue indicators. Int J Sports Med. 2010;31:82-88.
91.Rohmert W. Ermittlung von Erholungspausen für statische Arbeit des Menschen. Eur J Appl Physiol Occup Physiol. 1960;18:123-164.
92.Peñailillo L, Blazevich A, Numazawa H, Nosaka K. Rate of force development as a measure of muscle damage. Scand J Med Sci Sports. 2015;25:417-427.
93.Viitasalo JT, Komi PV. Effects of fatigue on isometric force- and relaxation-time characteristics in human muscle. Acta Physiol Scand. 1981;111:87-95.
94.D’Emanuele S, Maffiuletti NA, Tarperi C, Rainoldi A, Schena F, Boccia G. Rate of force development as an indicator of neuromuscular fatigue: a scoping review. Front Hum Neurosci. 2021;15:701916.
95.Montgomery LC, Douglass LW, Deuster PA. Reliability of an isokinetic test of muscle strength and endurance. J Orthop Sports Phys Ther. 1989;10:315-322.
96.Burdett RG, van Swearingen J. Reliability of isokinetic muscle endurance tests. J Orthop Sports Phys Ther. 1987;8:484-488.
97.Orizio C, Gobbo M, Diemont B, Esposito F, Veicsteinas A. The surface mechanomyogram as a tool to describe the influence of fatigue on biceps brachii motor unit activation strategy. Historical basis and novel evidence. Eur J Appl Physiol. 2003;90:326-336.
98.Orizio C. Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies. Crit Rev Biomed Eng. 1993;21:201-243.
99.Al-Mulla MR, Sepulveda F, Colley M. A review of non-invasive techniques to detect and predict localised muscle fatigue. Sensors (Basel). 2011;11:3545-3594.
100.Barry DT, Hill T, Im D. Muscle fatigue measured with evoked muscle vibrations. Muscle Nerve. 1992;15:303-309.
101.Longo S, Cè E, Rampichini S, Devoto M, Limonta E, Esposito F. Mechanomyogram amplitude correlates with human gastrocnemius medialis muscle and tendon stiffness both before and after acute passive stretching. Exp Physiol. 2014;99:1359-1369.
102.Mohamad Ismail MR, Lam CK, Sundaraj K, Rahiman MHF. Fatigue effect on cross-talk in mechanomyography signals of extensor and flexor forearm muscles during maximal voluntary isometric contractions. J Musculoskelet Neuronal Interact. 2021;21:481-494.
103.Camic CL, Housh TJ, Zuniga JM, et al. Electromyographic and mechanomyographic responses across repeated maximal isometric and concentric muscle actions of the leg extensors. J Electromyogr Kinesiol. 2013;23:342-348.
104.Perry‐Rana SR, Housh TJ, Johnson GO, Bull AJ, Berning JM, Cramer JT. MMG and EMG responses during fatiguing isokinetic muscle contractions at different velocities. Muscle Nerve. 2002;26:367-373.
105.Al-Zahrani E, Gunasekaran C, Callaghan M, Gaydecki P, Benitez D, Oldham J. Within-day and between-days reliability of quadriceps isometric muscle fatigue using mechanomyography on healthy subjects. J Electromyogr Kinesiol. 2009;19:695-703.
106.Grassi B, Rossiter HB, Hogan MC, et al. Faster O₂ uptake kinetics in canine skeletal muscle in situ after acute creatine kinase inhibition. J Physiol. 2011;589:221-233.
107.Jones S, Chiesa ST, Chaturvedi N, Hughes AD. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Res. 2016;16:25-33.
108.Kubo K, Ikebukuro T, Tsunoda N, Kanehisa H. Noninvasive measures of blood volume and oxygen saturation of human Achilles tendon by red laser lights. Acta Physiol (Oxf). 2008;193:257-264.
109.Muthalib M, Millet GY, Quaresima V, Nosaka K. Reliability of near-infrared spectroscopy for measuring biceps brachii oxygenation during sustained and repeated isometric contractions. J Biomed Opt. 2010;15:017008.
110.Austin KG, Daigle KA, Patterson P, Cowman J, Chelland S, Haymes EM. Reliability of near-infrared spectroscopy for determining muscle oxygen saturation during exercise. Res Q Exerc Sport. 2005;76:440-449.
111. Scano A, Pirovano I, Manunza ME, et al. Sustained fatigue assessment during isometric exercises with time-domain near infrared spectroscopy and surface electromyography signals. Biomed Opt Express. 2020;11:7357-7375.
112.Guo W, Sheng X, Zhu X. Assessment of muscle fatigue by simultaneous sEMG and NIRS: From the perspective of electrophysiology and hemodynamics. Paper presented at: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)2017.
113.Taelman J, Vanderhaegen J, Robijns M, Naulaers G, Spaepen A, Van Huffel S. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy. Adv Exp Med Biol. 2011;701:353-359.
114. Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Appl Physiol (1985). 1994;77:2740-2747.
115. Cook CR. Ultrasound imaging of the musculoskeletal system. Vet Clin North Am Small Anim Pract. 2016;46:355-371.
116.Shi J, Zheng Y-P, Chen X, Huang Q-H. Assessment of muscle fatigue using sonomyography: Muscle thickness change detected from ultrasound images. Med Eng Phys. 2007;29:472-479.
117.Mademli L, Arampatzis A. Behaviour of the human gastrocnemius muscle architecture during submaximal isometric fatigue. Eur J Appl Physiol. 2005;94:611-617.
118.Brancaccio P, Limongelli FM, D'Aponte A, Narici M, Maffulli N. Changes in skeletal muscle architecture following a cycloergometer test to exhaustion in athletes. J Sci Med Sport. 2008;11:538-541.
119. Csapo R, Alegre LM, Baron R. Time kinetics of acute changes in muscle architecture in response to resistance exercise. J Sci Med Sport. 2011;14:270-274.
120.Lännergren J, Westerblad H. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle. J Physiol. 1991;434:307-322.
121.Thornton GM, Shrive NG, Frank CB. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. J Orthop Res. 2002;20:967-974.
122.Huang QH, Zheng YP, Chena X, He JF, Shi J. A system for the synchronized recording of sonomyography, electromyography and joint angle. Open Biomed Eng J. 2007;1:77-84.
123. Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for Muscle Biomechanics: Toward the Estimation of Individual Muscle Force. Exerc Sport Sci Rev. 2015;43:125-133.
124.Taljanovic MS, Gimber LH, Becker GW, et al. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. Radiographics. 2017;37:855-870.
125.Bravo-Sánchez A, Abián P, Sánchez-Infante J, Esteban-Gacía P, Jiménez F, Abián-Vicén J. Objective Assessment of Regional Stiffness in Vastus Lateralis with Different Measurement Methods: A Reliability Study. Sensors (Basel). 2021;21.
126.Alfuraih AM, O'Connor P, Hensor E, Tan AL, Emery P, Wakefield RJ. The effect of unit, depth, and probe load on the reliability of muscle shear wave elastography: Variables affecting reliability of SWE. J Clin Ultrasound. 2018;46:108-115.
127.Zardi EM, Franceschetti E, Giorgi C, Palumbo A, Franceschi F. Reliability of quantitative point shear-wave ultrasound elastography on vastus medialis muscle and quadriceps and patellar tendons. Med Ultrason. 2019;21:50-55.
128.Heales LJ, Badya R, Ziegenfuss B, et al. Shear-wave velocity of the patellar tendon and quadriceps muscle is increased immediately after maximal eccentric exercise. Eur J Appl Physiol. 2018;118:1715-1724.
129.Akagi R, Fukui T, Kubota M, Nakamura M, Ema R. Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction. Front Physiol. 2017;8:708.
130.Siracusa J, Charlot K, Malgoyre A, et al. Resting Muscle Shear Modulus Measured With Ultrasound Shear-Wave Elastography as an Alternative Tool to Assess Muscle Fatigue in Humans. Front Physiol. 2019;10:626.
131.Fitts RH. The cross-bridge cycle and skeletal muscle fatigue. J Appl Physiol (1985). 2008;104:551-558.
132.Frich LH, Lambertsen KL, Hjarbaek J, Dahl JS, Holsgaard-Larsen A. Musculoskeletal application and validation of speckle-tracking ultrasonography. BMC Musculoskelet Disord. 2019;20:192.
133.Peterson G, Leary SO, Nilsson D, et al. Ultrasound imaging of dorsal neck muscles with speckle tracking analyses - the relationship between muscle deformation and force. Sci Rep. 2019;9:13688.
134.Sheng Z, Sharma N, Kim K. Quantitative assessment of changes in muscle contractility due to fatigue during nmes: An ultrasound imaging approach. IEEE Trans Biomed Eng. 2019;67:832-841.
135.Huxley HE. The Mechanism of Muscular Contraction. Science. 1969;164:1356-1366.
136.Koh TJ, Herzog W. Excursion is important in regulating sarcomere number in the growing rabbit tibialis anterior. J Physiol. 1998;508:267-280.
137.Lieber RL, Fridén J. Clinical significance of skeletal muscle architecture. Clin Orthop Relat Res. 2001;383:140-151.
138.Matthiasdottir S, Hahn M, Yaraskavitch M, Herzog W. Muscle and fascicle excursion in children with cerebral palsy. Clin Biomech (Bristol). 2014;29:458-462.
139.Jeon SH, Chung MS, Baek GH, Lee YH, Gong HS. The effect of muscle excursion on muscle recovery after tendon repair in a neglected tendon injury: a study in rabbit soleus muscles. J Orthop Res. 2011;29:74-78.
140.An KN. Tendon excursion and gliding: clinical impacts from humble concepts. J Biomech. 2007;40:713-718.
141.Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Effects of repeated muscle contractions on the tendon structures in humans. Eur J Appl Physiol. 2001;84:162-166.
142.Andonian P, Viallon M, Le Goff C, et al. Shear-wave elastography assessments of quadriceps stiffness changes prior to, during and after prolonged exercise: a longitudinal study during an extreme mountain ultra-marathon. PloS one. 2016;11:e0161855.
143.Giovanelli N, Taboga P, Rejc E, Simunic B, Antonutto G, Lazzer S. Effects of an Uphill Marathon on Running Mechanics and Lower-Limb Muscle Fatigue. Int J Sports Physiol Perform. 2016;11:522-529.
144.García-Manso JM, Rodríguez-Ruiz D, Rodríguez-Matoso D, de Saa Y, Sarmiento S, Quiroga M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J Sports Sci. 2011;29:619-625.
145.Montgomery S, Worswick S. Photosensitizing drug reactions. Clin Dermatol. 2022;40:57-63.
146.Uddin Z, MacDermid JC. Quantitative Sensory Testing in Chronic Musculoskeletal Pain. Pain Med. 2016;17:1694-1703.
147.Dundar U, Turkmen U, Toktas H, Ulasli AM, Solak O. Effectiveness of high-intensity laser therapy and splinting in lateral epicondylitis; a prospective, randomized, controlled study. Lasers Med Sci. 2015;30:1097-1107.
148.Varanoske AN, Coker NA, Johnson B-AD, Belity T, Wells AJ. Influence of muscle depth and thickness on ultrasound echo intensity of the vastus lateralis. Acta Radiologica. 2021;62:1178-1187.
149.Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10:361-374.
150.Babault N, Desbrosses K, Fabre M-S, Michaut A, Pousson M. Neuromuscular fatigue development during maximal concentric and isometric knee extensions. J Appl Physiol. 2006;100:780-785.
151.Kennedy MD, Haykowsky MJ, Boliek CA, Esch BT, Scott JM, Warburton DE. Regional muscle oxygenation differences in vastus lateralis during different modes of incremental exercise. Dyn Med. 2006;5:1-8.
152.Paillard T, Lizin C, Rousseau M, Cebellan M. Time to task failure influences the postural alteration more than the extent of muscles fatigued. Gait Posture. 2014;39:540-546.
153.Jo D, Bilodeau M. Rating of perceived exertion (RPE) in studies of fatigue-induced postural control alterations in healthy adults: Scoping review of quantitative evidence. Gait Posture. 2021;90:167-178.
154.Flairty JE, Scheadler CM. Perceived and Heart Rate-based Intensities during Self-paced Walking: Magnitudes and Comparison. Int J Exerc Sci. 2020;13:677-688.
155.Ruiz AM. Validity and Reliability of the Apple Series 6 and 7 Smartwatches and Polar H-10 Monitor on Heart Rate, The University of Texas at El Paso; 2022.
156.Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126:1763-1768.
157.Weppler CH, Magnusson SP. Increasing Muscle Extensibility: A Matter of Increasing Length or Modifying Sensation? Phys Ther. 2010;90:438-449.
158.Draper DO, Jutte LS, Knight KL. Therapeutic Modalities: The Art and Science, 3e: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2021.
159.Pires D, Xavier M, Araújo T, Silva JA, Jr., Aimbire F, Albertini R. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci. 2011;26:85-94.
160.Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg. 2010;28:653-658.
161.Hong S, Chen L, Feng S, et al. Effects of Photobiomodulation therapy on relieving peripheral and central fatigue in the grip exercise. Paper presented at: Proceedings of the 2022 11th International Conference on Bioinformatics and Biomedical Science2022.
162.Bigland-Ritchie B, Johansson R, Lippold O, Woods J. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol. 1983;50:313-324.
163.Assis L, Yamashita F, Magri AM, Fernandes KR, Yamauchi L, Renno AC. Effect of low-level laser therapy (808 nm) on skeletal muscle after endurance exercise training in rats. Braz J Phys Ther. 2015;19:457-465.
164.Felismino AS, Costa EC, Aoki MS, Ferraresi C, de Araújo Moura Lemos TM, de Brito Vieira WH. Effect of low-level laser therapy (808 nm) on markers of muscle damage: a randomized double-blind placebo-controlled trial. Lasers Med Sci. 2014;29:933-938.
165.Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose Response. 2011;9:602-618.
166.Song J, Choi Y-S, Lee S, Park D, Park J. Changes in muscle oxygenation and activity during cumulative isometric muscle contraction: new insight into muscle fatigue. Front Physiol. 2025;Volume 16 - 2025.
167.Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999;49:1-17.
168.Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, et al. Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci. 2015;30:59-66.
169.Hultman E, Sjöholm H. Electromyogram, force and relaxation time during and after continuous electrical stimulation of human skeletal muscle in situ. J Physiol. 1983;339:33-40.
170.Pournot H, Tindel J, Testa R, Mathevon L, Lapole T. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness. J Sports Sci Med. 2016;15:142-147.
171. Sadeghi S, Newman C, Cortes DH. Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study. PeerJ. 2018;6:e4469.
172.Axelson HW, Hagbarth KE. Human motor control consequences of thixotropic changes in muscular short-range stiffness. J Physiol. 2001;535:279-288.
173.Howell JN, Chila AG, Ford G, David D, Gates T. An electromyographic study of elbow motion during postexercise muscle soreness. J Appl Physiol (1985). 1985;58:1713-1718.
174.Ørtenblad N, Stephenson DG. A novel signalling pathway originating in mitochondria modulates rat skeletal muscle membrane excitability. J Physiol. 2003;548:139-145.
175.Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018;94:199-212.
176.Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243-1276.
177.Avni D, Levkovitz S, Maltz L, Oron U. Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg. 2005;23:273-277.
178.Ribeiro BG, Alves AN, Dos Santos LA, et al. Red and Infrared Low-Level Laser Therapy Prior to Injury with or without Administration after Injury Modulate Oxidative Stress during the Muscle Repair Process. PLoS One. 2016;11:e0153618.
179.C. F. Rizzi JLM, D. S. F. Corrêa, et al. RETRACTION: Effects of Low-Level Laser Therapy (LLLT) on the Nuclear Factor (NF)-κB Signaling Pathway in Traumatized Muscle. Lasers Surg Med. 2025.
180.Morshedzadeh G, Aslroosta H, Vafaei M. Effect of GaAlAs 940 nm Photobiomodulation on palatal wound healing after free gingival graft surgery: a split mouth randomized controlled clinical trial. BMC Oral Health. 2022;22:202.
181.Illescas-Montes R, Melguizo-Rodríguez L, García-Martínez O, et al. Human Fibroblast Gene Expression Modulation Using 940 NM Diode Laser. Sci Rep. 2019;9:12037.
182.Leal Junior EC, Lopes-Martins RA, Baroni BM, et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci. 2009;24:857-863.
183.Leal ECP, Lopes-Martins RÁB, Frigo L, et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther. 2010;40:524-532.
184.Trajano GS, Nosaka K, L BS, Blazevich AJ. Intermittent stretch reduces force and central drive more than continuous stretch. Med Sci Sports Exerc. 2014;46:902-910.
185.Ammar A, Riemann BL, Abdelkarim O, Driss T, Hökelmann A. Effect of 2- vs. 3-Minute Interrepetition Rest Period on Maximal Clean Technique and Performance. J Strength Cond Res. 2020;34:2548-2556.
186.Khalkhal E, Razzaghi M, Rostami-Nejad M, Rezaei-Tavirani M, Heidari Beigvand H, Rezaei Tavirani M. Evaluation of Laser Effects on the Human Body After Laser Therapy. J Lasers Med Sci. 2020;11:91-97.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99354-
dc.description.abstract研究背景:肌肉疲勞指急性運動中或後肌肉力量或功率的下降,易增加受傷風險,因此運動前的肌肉疲勞預防策略至關重要。高能雷射治療已被證實可減少疲勞後的力量流失,同時可是一種可以用於操控肌肉疲勞的工具。評估肌肉疲勞的非侵入性量測工具中,超音波斑點追蹤技術是一種能即時量測深層肌肉在動態主動收縮下位移特徵的工具,並能定量評估疲勞狀態下肌肉被動伸展的移行特徵。目前已有文獻發現,疲勞後肌肉在收縮時會出現主動收縮位移量下降的現象。然而,目前針對高能雷射是否是一種可以用於操控疲勞後肌肉主動收縮之收縮位移量以及被動伸展之移行量的研究仍相對有限,此外,也無相關研究證實,以上肌肉收縮位移量以及肌肉被動移行量恢復到疲勞前狀態,在時序上,與其他可用於監測肌肉疲勞的神經肌肉量測工具相比,是否有所不同。改善以上現況除可探討高能雷射治療對肌肉收縮位移量與肌肉被動移行量的影響外,並有助於解釋肌肉疲勞恢復到疲勞前狀態的過程中,神經肌肉依序恢復的順序。
研究目的:本研究旨在探討高能雷射治療在減緩或操控肌肉疲勞後肌肉收縮位移量與被動移行量的效果,以及分析各項監測肌肉疲勞之工具,其有關神經肌肉之數據,在恢復到肌肉疲勞前狀態的時序,以及肌力與各量測工具結果之相關性。本研究企圖透過肌肉收縮位移量定量評估疲勞狀態下肌肉的主動收縮能力,並以肌肉被動移行量測量肌肉在被伸展之條件下其被動延展之大小。本研究同時量測肌肉的力量輸出、神經肌肉活化程度及肌肉微循環的變化,以分析有無高能雷射治療介入時,在肌肉疲勞時與後,以上數據的特徵及恢復的作用,並且分析肌力與肌肉收縮位移量、被動移行量與其他動態生理指標(如表面肌電訊號之中位頻率變化、峰值力矩等)之間的相關性,以確認超音波影像技術在運動疲勞評估中的適用性。
研究方法:本研究採隨機、交叉、虛假療法對照實驗設計,預計收錄20位健康生理男性,將隨機分為A、B兩組,並進行兩次間隔15天的等速向心收縮運動(疲勞運動),其中A組會先接受高能雷射介入,15天後接受虛假雷射介入;B組則是先接受虛假雷射介入,15天後接受高能雷射介入。兩組均以等速向心運動誘發疲勞,兩組均於運動前、運動後立即、5、10、20分鐘測量:股外側肌肌肉收縮位移量、股外側肌肌肉被動移行量、膝伸直最大自主等長收縮力矩、表面肌電訊號、肌肉微循環。
結果:肌肉組織在經由高能雷射介入的條件下,在肌肉疲勞後,於等長收縮時,向近端移動的收縮位移量顯著大於虛假雷射(高能雷射介入:8.61 ± 3.15 mm、虛假雷射介入:5.71 ± 2.82 mm,P 值 < 0.001),且發現在高能雷射介入條件下,其肌肉收縮位移量在疲勞前後的變化量顯著小於虛假雷射介入(高能雷射介入:2.56 ± 2.12 mm、虛假雷射介入:5.30 ± 2.41 mm,P 值 < 0.001);此外,於被動屈曲時,向遠端移動的被動移行量顯著大於較虛假雷射(高能雷射介入:16.01 ± 5.05 mm、虛假雷射介入:13.89 ± 6.16 mm,P 值 < 0.001),同時發現在高能雷射介入條件下,其肌肉被動移行量在疲勞前後的變化量顯著大於虛假雷射介入(高能雷射介入:3.56 ± 2.17 mm、虛假雷射介入:1.48 ± 2.46 mm,P 值 < 0.001)。同時發現在中位頻率、膝伸直力矩、帶氧血紅素、氧飽和度等數據,皆在高能雷射介入後,其結果下降或改變之幅度顯著低於虛假雷射介入。針對以上各項參數恢復到疲勞前狀態之時序,發現在高能雷射介入後,肌肉收縮位移量與膝伸直力矩於運動後5分鐘內恢復到疲勞前狀態,早於虛假雷射介入;中位頻率、帶氧血紅素與氧飽和度在兩個介入條件中皆於5分鐘內恢復,且中位頻率於20分鐘後顯著上升;肌肉被動移行量則在兩個介入條件中皆未於20分鐘內恢復。最後,透過皮爾森相關性分析發現肌肉收縮位移量的變化量與峰值力矩變化量呈現低度負相關(r = -0.238,P值 = 0.005)。
結論:高能雷射治療介入可有效減緩肌肉疲勞後在肌肉機械行為與神經生理參數上的變化,並加速肌肉收縮位移量與膝伸直力矩的恢復。其潛在機制可能包括促進局部血液循環、提升粒線體活化、加速代謝副產物的清除,以及增強神經肌肉活化表現。整體而言,本研究結果發現高能雷射治療介入具作為非侵入性疲勞恢復介入方式的可能途徑,並提出以超音波斑點追蹤技術作為監測肌肉動態收縮與疲勞狀態工具的可行性。
zh_TW
dc.description.abstractBackground: Muscle fatigue is defined as a decline in muscle force or power during or after acute exercise, which increases the risk of injury and highlights the importance of implementing preventive strategies before exercise. High-intensity laser therapy (HILT) has been shown to attenuate strength loss induced by fatigue and may serve as a potential tool for modulating muscle fatigue; however, its effects on muscle contractile behaviors—specifically muscle shortening and displacement during fatigue—remain unclear. Several non-invasive tools are available to assess muscle fatigue, each providing unique insights into the fatigue process. Among these, speckle tracking ultrasonography is a promising technique that allows real-time, quantitative measurement of muscle displacement during dynamic active contractions. It can also evaluate muscle contractility and passive excursion during fatigue. However, limited research has investigated the effects of HILT on muscle displacement and muscle excursion. Moreover, limited research has examined whether the recovery timeline of these parameters differs from other neuromuscular indicators used to monitor muscle fatigue. Addressing these knowledge gaps not only helps to clarify the biomechanical and neurophysiological mechanisms of HILT during recovery but also contributes to understanding the chronological recovery processes of neuromuscular function following fatigue.
Purpose: This study aimed to investigate the effects of high-intensity laser therapy (HILT) on the modulation of muscle displacement and muscle excursion after fatigue. Additionally, analyze the recovery timelines of neuromuscular parameters in comparison with baseline states. Moreover, correlation among muscle strength and various fatigue-related indicators were explored. Muscle displacement was quantitatively assessed to evaluate active contractile capacity under fatigued conditions, while muscle excursion was measured to assess passive mobility. Simultaneously, muscle force output, neuromuscular activation, and microcirculatory changes were measured to characterize the fatigue response and recovery process, with and without HILT. Correlations between muscle force output, muscle displacement, muscle excursion and other physiological indicator – such as surface electromyography (median frequency) and peak torque – were examined to evaluate the feasibility of ultrasound imaging for fatigue monitoring.
Methods: A randomized, crossover, sham-controlled design was employed with 20 healthy male participants. Each participant was randomly assigned to two group (Group A and Group B) and completed two fatigue protocols, 15 days apart, receiving either HILT or a sham laser (SHAM) intervention in a randomized order. Measurements were taken at baseline and at multiple time points post-fatigue (immediately, and at 5, 10, and 20 minutes), including vastus lateralis muscle displacement, muscle excursion, maximal isometric knee extension torque, neuromuscular activation, and microcirculation.
Results: Under the HILT conditions, the muscle displacement during maximal voluntary isometric contraction testing at immediately post-fatigue significantly greater than SHAM (HILT: 8.61 ± 3.15 mm; sham: 5.71 ± 2.82 mm). The study also found that under HILT conditions, the change in muscle displacement before and immediately after fatigue was significantly smaller than that under SHAM conditions (HILT: 2.56 ± 2.12 mm, SHAM: 5.30 ± 2.41 mm). Moreover, during the passive knee flexion testing, muscle excursion was significantly greater than SHAM (HILT: 16.01 ± 5.05 mm; sham: 13.89 ± 6.16 mm; P < 0.001). Also, under HILT conditions, the change in muscle excursion before and immediately after fatigue was significantly greater than that under SHAM conditions (HILT: 3.56 ± 2.17 mm, SHAM: 1.48 ± 2.46 mm). Additionally, HILT resulted in significantly attenuated reduction or changes in peak torque, median frequency, oxygenated hemoglobin, and oxygen saturation compared to SHAM. Regarding recovery timelines, muscle displacement and torque returned to baseline within 5 minutes post-exercise under HILT, earlier than under SHAM. Median frequency, oxygenated hemoglobin, and oxygen saturation recovered within 5 minutes under both conditions. However, muscle excursion did not fully recover within 20 minutes. A weak negative correlation was found between the change of muscle displacement and peak torque (r = -0.238, P = 0.005).
Conclusion: HILT effectively attenuates alterations in muscle mechanical behavior and neurophysiological parameters following muscle fatigue, and accelerates the recovery of muscle displacement and knee extension torque. The underlying mechanisms may involve enhanced local blood circulation, improved mitochondria activation, accelerated clearance of metabolic byproducts, and enhanced neuromuscular activation. Overall, these findings highlight the potential of HILT as a non-invasive intervention to promote fatigue recovery and support the use of speckle tracking ultrasonography as a reliable tool for monitoring dynamic muscle contraction to provide real-time information on muscle fatigue.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:08:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:08:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 …………………………………………………………………… i
誌謝 ………………………………………………………………………………… ii
中文摘要 …………………………………………………………………………… iii
英文摘要 …………………………………………………………………………… vi
目次 ………………………………………………………………………………… ix
圖次 ………………………………………………………………………………… xii
表次 ………………………………………………………………………………… xiii
第一章 前言 ……………………………………………………………………… 1
第一節 研究背景 …………………………………………………………… 1
第二節 研究目的 …………………………………………………………… 1
第二章 文獻回顧 ………………………………………………………………… 3
第一節 神經肌肉疲勞 ……………………………………………………… 3
第二節 由肌纖維及肌肉收縮角度探討肌肉疲勞機制 …………………… 3
第三節 由不同運動引發的疲勞 …………………………………………… 5
第四節 不同肌肉間以力量探討肌肉疲勞及恢復 ………………………… 6
第五節 運動前減緩運動相關肌肉疲勞的物理治療方法 ………………… 12
第一項 運動介入對肌肉疲勞的效果 ………………………………… 12
第二項 徒手介入對肌肉疲勞的效果 ………………………………… 14
第三項 儀器治療對肌肉疲勞的效果 ………………………………… 14
第四項 雷射治療應用於肌肉疲勞的效果 …………………………… 17
第一款 使用光生物調節治療於肌肉疲勞之效果 ……………… 17
第二款 高能雷射應用於肌肉疲勞之效果 ……………………… 21
第六節 使用非侵入性量測工具探討肌肉疲勞的不同面向 ……………… 28
第一項 疲勞對於神經肌肉電訊號之影響:表面肌電圖訊號 ……… 28
第二項 以力量輸出探討肌肉疲勞:使用等速測力儀量測 ………… 30
第三項 疲勞對肌肉振動之影響:以肌動圖量測 …………………… 33
第四項 疲勞對於肌肉微循環的影響:以近紅外光譜儀量測 ……… 35
第五項 疲勞對於肌肉形態學之影響:以超音波影像量測 ………… 37
第六項 疲勞對組織機械特性之影響:超音波剪力波彈性成像 …… 40
第七項 疲勞對肌肉收縮性之影響:以超音波斑點追蹤技術量測 … 42
第八項 肌肉被動移行之臨床應用 …………………………………… 44
第三章 研究方法學 ……………………………………………………………… 47
第一節 理論架構 …………………………………………………………… 47
第二節 研究假說 …………………………………………………………… 48
第三節 參數與操作型定義 ………………………………………………… 50
第四節 研究對象 …………………………………………………………… 53
第五節 研究方法 …………………………………………………………… 56
第六節 統計分析 …………………………………………………………… 71
第四章 研究結果 ………………………………………………………………… 74
第一節 高能雷射於肌肉疲勞之效應—以超音波斑點追蹤技術評估 …… 74
第二節 高能雷射於疲勞後力矩變化、神經肌肉活化、微循環之效應 … 77
第五章 討論 ……………………………………………………………………… 82
第一節 運動前高能雷射介入於肌肉收縮位移量之效應 ………………… 82
第二節 肌肉疲勞與被動肌肉被動移行量之效應 ………………………… 85
第三節 運動前高能雷射介入於肌肉被動移行量之效應 ………………… 86
第四節 高能雷射於膝伸直力矩、神經肌肉活化、肌肉微循環之效應 … 87
第五節 肌肉疲勞後之恢復時序 …………………………………………… 91
第六節 高能雷射對肌肉疲勞恢復機制之探討 …………………………… 94
第七節 疲勞預防策略之比較 ……………………………………………… 98
第八節 相關性分析之討論 ………………………………………………… 99
第九節 本研究之臨床應用性……………………………………………… 100
第十節 本研究之限制與未來研究方向…………………………………… 102
第六章 結論……………………………………………………………………… 104
第七章 參考資料………………………………………………………………… 106
附錄一、基本資料問卷…………………………………………………………… 121
附錄二、自覺用力量表…………………………………………………………… 122
附錄三、臨床試驗研究受試者說明暨同意書…………………………………… 123
附錄四、研究倫理委員會臨床試驗研究許可書………………………………… 141
附錄五、ClinicalTrials.gov 登錄(編號:NCT07102602) …………………… 143
附錄六、研究結果表格…………………………………………………………… 147
-
dc.language.isozh_TW-
dc.subject高能雷射治療介入zh_TW
dc.subject肌肉疲勞zh_TW
dc.subject超音波斑點追蹤技術zh_TW
dc.subject肌肉被動移行量zh_TW
dc.subject肌肉收縮位移量zh_TW
dc.subjectMuscle displacementen
dc.subjectMuscle excursionen
dc.subjectSpeckle tracking ultrasonographyen
dc.subjectHigh-intensity laser therapyen
dc.subjectMuscle fatigueen
dc.title高能雷射治療對運動引發疲勞後肌肉位移特徵與被動移行量的改變zh_TW
dc.titleHigh-Intensity Laser Therapy Alters Muscle Displacement and Excursion Following Exercise-Induced Fatigueen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林居正;相子元zh_TW
dc.contributor.oralexamcommitteeJiu-Jenq Lin;Tzyy-Yuang Shiangen
dc.subject.keyword肌肉疲勞,高能雷射治療介入,肌肉收縮位移量,肌肉被動移行量,超音波斑點追蹤技術,zh_TW
dc.subject.keywordMuscle fatigue,High-intensity laser therapy,Muscle displacement,Muscle excursion,Speckle tracking ultrasonography,en
dc.relation.page154-
dc.identifier.doi10.6342/NTU202503760-
dc.rights.note未授權-
dc.date.accepted2025-08-06-
dc.contributor.author-college醫學院-
dc.contributor.author-dept物理治療學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
16.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved