Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99352
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉宴齊zh_TW
dc.contributor.advisorYan-Ci Liuen
dc.contributor.author吳永晴zh_TW
dc.contributor.authorYong-Ching Ngen
dc.date.accessioned2025-09-09T16:07:43Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-07-20-
dc.identifier.citation1. Behr LC, Simm A, Kluttig A, Grosskopf Großkopf A. 60 years of healthy aging: On definitions, biomarkers, scores and challenges. Ageing Res Rev. 2023;88: 101934.
2. Kanasi E, Ayilavarapu S, Jones J. The aging population: demographics and the biology of aging. Periodontol 2000. 2016;72(1): 13-18.
3. Pérez Palmer N, Trejo Ortega B, Joshi P. Cognitive Impairment in Older Adults: Epidemiology, Diagnosis, and Treatment. Psychiatr Clin North Am. 2022;45(4): 639-661.
4. Erickson KI, Donofry SD, Sewell KR, Brown BM, Stillman CM. Cognitive Aging and the Promise of Physical Activity. Annu Rev Clin Psychol. 2022;18: 417-442.
5. Bai W, Chen P, Cai H, Zhang Q, Su Z, Cheung T, et al. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: a meta-analysis and systematic review of epidemiology studies. Age and Ageing. 2022;51(8).
6. Domínguez-Chávez CJ, Murrock CJ, Salazar-González BC. Mild cognitive impairment: A concept analysis. Nurs Forum. 2019;54(1): 68-76.
7. Eshkoor SA, Hamid TA, Mun CY, Ng CK. Mild cognitive impairment and its management in older people. Clin Interv Aging. 2015;10: 687-693.
8. Milanović Z, Pantelić S, Trajković N, Sporiš G, Kostić R, James N. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin Interv Aging. 2013;8: 549-556.
9. Deng Y, Zhang K, Zhu J, Hu X, Liao R. Healthy aging, early screening, and interventions for frailty in the elderly. Biosci Trends. 2023;17(4): 252-261.
10. Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275(3): 214-228.
11. Sanford AM. Mild Cognitive Impairment. Clin Geriatr Med. 2017;33(3): 325-337.
12. Morat M, Morat T, Zijlstra W, Donath L. Effects of multimodal agility-like exercise training compared to inactive controls and alternative training on physical performance in older adults: a systematic review and meta-analysis. Eur Rev Aging Phys Act. 2021;18(1): 4.
13. Law CK, Lam FM, Chung RC, Pang MY. Physical exercise attenuates cognitive decline and reduces behavioural problems in people with mild cognitive impairment and dementia: a systematic review. J Physiother. 2020;66(1): 9-18.
14. Lam FM, Huang MZ, Liao LR, Chung RC, Kwok TC, Pang MY. Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: a systematic review. J Physiother. 2018;64(1): 4-15.
15. Donath L, van Dieën J, Faude O. Exercise-Based Fall Prevention in the Elderly: What About Agility? Sports Med. 2016;46(2): 143-149.
16. Sheppard JM, Young WB. Agility literature review: classifications, training and testing. J Sports Sci. 2006;24(9): 919-932.
17. Negra Y, Chaabene H, Hammami M, Amara S, Sammoud S, Mkaouer B, et al. Agility in Young Athletes: Is It a Different Ability From Speed and Power? J Strength Cond Res. 2017;31(3): 727-735.
18. Castillo de Lima V, Castaño LAA, Sampaio RAC, Sampaio PYS, Teixeira CVL, Uchida MC. Effect of agility ladder training with a cognitive task (dual task) on physical and cognitive functions: a randomized study. Front Public Health. 2023;11: 1159343.
19. Lichtenstein E, Morat M, Roth R, Donath L, Faude O. Agility-based exercise training compared to traditional strength and balance training in older adults: a pilot randomized trial. PeerJ. 2020;8: e8781.
20. Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, et al. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage. 2014;85 Pt 1(0 1): 64-71.
21. Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, et al. Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage. 2011;54(4): 2922-2936.
22. Owens CD, Pinto CB, Mukli P, Gulej R, Velez FS, Detwiler S, et al. Neurovascular coupling, functional connectivity, and cerebrovascular endothelial extracellular vesicles as biomarkers of mild cognitive impairment. Alzheimers Dement. 2024;20(8): 5590-5606.
23. Lee TL, Guo L, Chan AS. fNIRS as a biomarker for individuals with subjective memory complaints and MCI. Alzheimers Dement. 2024;20(8): 5170-5182.
24. Zhang S, Zhu T, Tian Y, Jiang W, Li D, Wang D. Early screening model for mild cognitive impairment based on resting-state functional connectivity: a functional near-infrared spectroscopy study. Neurophotonics. 2022;9(4): 045010.
25. Tan Q, Zhang M, Wang Y, Zhang M, Wang B, Xin Q, et al. Age-related alterations in phase synchronization of oxyhemoglobin concentration changes in prefrontal tissues as measured by near-infrared spectroscopy signals. Microvasc Res. 2016;103: 19-25.
26. Lu CF, Liu YC, Yang YR, Wu YT, Wang RY. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study. PLoS One. 2015;10(6): e0129390.
27. Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50(23): 1443-1450.
28. Yamada M, Tanaka B, Nagai K, Aoyama T, Ichihashi N. Rhythmic stepping exercise under cognitive conditions improves fall risk factors in community-dwelling older adults: Preliminary results of a cluster-randomized controlled trial. Aging Ment Health. 2011;15(5): 647-653.
29. Zheng J, Su X, Xu C. Effects of exercise intervention on executive function of middle-aged and elderly people: A systematic review of randomized controlled trials. Front Aging Neurosci. 2022;14: 960817.
30. Whitaker KM, Zhang D, Pettee Gabriel K, Ahrens M, Sternfeld B, Sidney S, et al. Longitudinal Associations of Midlife Accelerometer Determined Sedentary Behavior and Physical Activity With Cognitive Function: The CARDIA Study. Journal of the American Heart Association. 2021;10(3): e018350.
31. Han C, Sun W, Zhang D, Xi X, Zhang R, Gong W. Effects of different aerobic exercises on the global cognitive function of the elderly with mild cognitive impairment: a meta-analysis. BMJ Open. 2023;13(6): e067293.
32. Cai XY, Qian GP, Wang F, Zhang MY, Da YJ, Liang JH. Association between sedentary behavior and risk of cognitive decline or mild cognitive impairment among the elderly: a systematic review and meta-analysis. Front Neurosci. 2023;17: 1221990.
33. Young WB, Miller IR, Talpey SW. Physical qualities predict change-of-direction speed but not defensive agility in Australian rules football. J Strength Cond Res. 2015;29(1): 206-212.
34. Bae S, Lee S, Lee S, Jung S, Makino K, Harada K, et al. The effect of a multicomponent intervention to promote community activity on cognitive function in older adults with mild cognitive impairment: a randomized controlled trial. Complementary therapies in medicine. 2019;42: 164-169.
35. Kang S, Hwang S, Klein AB, Kim SH. Multicomponent exercise for physical fitness of community-dwelling elderly women. J Phys Ther Sci. 2015;27(3): 911-915.
36. Morat M, Faude O, Hanssen H, Ludyga S, Zacher J, Eibl A, et al. Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial. Int J Environ Res Public Health. 2020;17(6).
37. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7): 1510-1530.
38. Patel P, Lamar M, Bhatt T. Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking. Neuroscience. 2014;260: 140-148.
39. Young WB, James R, Montgomery I. Is muscle power related to running speed with changes of direction? J Sports Med Phys Fitness. 2002;42(3): 282-288.
40. Sekulic D, Spasic M, Mirkov D, Cavar M, Sattler T. Gender-specific influences of balance, speed, and power on agility performance. J Strength Cond Res. 2013;27(3): 802-811.
41. Miyamoto K, Takebayashi H, Takimoto K, Miyamoto S, Morioka S, Yagi F. A new simple performance test focused on agility in elderly people: The Ten Step Test. Gerontology. 2008;54(6): 365-372.
42. Diniz CRAF, Crestani AP. The times they are a-changin’: a proposal on how brain flexibility goes beyond the obvious to include the concepts of “upward” and “downward” to neuroplasticity. Molecular Psychiatry. 2023;28(3): 977-992.
43. Nguyen T, Kim M, Gwak J, Lee JJ, Choi KY, Lee KH, et al. Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (fNIRS) study. J Biophotonics. 2019;12(9): e201800298.
44. Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 2009;48(10): D280-298.
45. Boas DA, Gaudette T, Strangman G, Cheng X, Marota JJ, Mandeville JB. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage. 2001;13(1): 76-90.
46. Wang S, Wang W, Chen J, Yu X. Alterations in brain functional connectivity in patients with mild cognitive impairment: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. Brain Behav. 2024;14(4): e3414.
47. Baik JS, Ko MH, Ko SH, Min JH, Choi JK, Baek JY, et al. Assessment of Functional Near-infrared Spectroscopy by Comparing Prefrontal Cortex Activity: A Cognitive Impairment Screening Tool. Alzheimer Dis Assoc Disord. 2022;36(3): 266-268.
48. Yeung MK, Chan AS. Functional near-infrared spectroscopy reveals decreased resting oxygenation levels and task-related oxygenation changes in mild cognitive impairment and dementia: A systematic review. J Psychiatr Res. 2020;124: 58-76.
49. Park JH. Effects of Cognitive-Physical Dual-Task Training on Executive Function and Activity in the Prefrontal Cortex of Older Adults with Mild Cognitive Impairment. Brain Neurorehabil. 2021;14(3): e23.
50. Tsai CF, Lee WJ, Wang SJ, Shia BC, Nasreddine Z, Fuh JL. Psychometrics of the Montreal Cognitive Assessment (MoCA) and its subscales: validation of the Taiwanese version of the MoCA and an item response theory analysis. Int Psychogeriatr. 2012;24(4): 651-658.
51. Nelson ME, Layne JE, Bernstein MJ, Nuernberger A, Castaneda C, Kaliton D, et al. The effects of multidimensional home-based exercise on functional performance in elderly people. J Gerontol A Biol Sci Med Sci. 2004;59(2): 154-160.
52. Bernstein A, Nelson ME, Tucker KL, Layne J, Johnson E, Nuernberger A, et al. A home-based nutrition intervention to increase consumption of fruits, vegetables, and calcium-rich foods in community dwelling elders. J Am Diet Assoc. 2002;102(10): 1421-1427.
53. Lichtenstein E, Faude O, Zubler A, Roth R, Zahner L, Rössler R, et al. Validity and Reliability of a Novel Integrative Motor Performance Testing Course for Seniors: The "Agility Challenge for the Elderly (ACE)". Front Physiol. 2019;10: 44.
54. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. Journal of the American Geriatrics Society. 2005;53.
55. Diamond A. Executive functions. Annu Rev Psychol. 2013;64: 135-168.
56. Stoet G. PsyToolkit: A software package for programming psychological experiments using Linux. Behavior Research Methods. 2010;42(4): 1096-1104.
57. Stoet G. PsyToolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments. Teaching of Psychology. 2016;44(1): 24-31.
58. Kopp B, Lange F, Steinke A. The Reliability of the Wisconsin Card Sorting Test in Clinical Practice. Assessment. 2021;28(1): 248-263.
59. Kelly VE, Janke AA, Shumway-Cook A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Exp Brain Res. 2010;207(1-2): 65-73.
60. Rikli RE, Jones CJ. The reliability and validity of a 6-minute walk test as a measure of physical endurance in older adults. Journal of aging and physical activity. 1998;6(4): 363-375.
61. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1): 111-117.
62. Savva GM, Donoghue OA, Horgan F, O'Regan C, Cronin H, Kenny RA. Using timed up-and-go to identify frail members of the older population. J Gerontol A Biol Sci Med Sci. 2013;68(4): 441-446.
63. Alcazar J, Losa-Reyna J, Rodriguez-Lopez C, Alfaro-Acha A, Rodriguez-Mañas L, Ara I, et al. The sit-to-stand muscle power test: An easy, inexpensive and portable procedure to assess muscle power in older people. Exp Gerontol. 2018;112: 38-43.
64. Buckinx F, Croisier JL, Reginster JY, Dardenne N, Beaudart C, Slomian J, et al. Reliability of muscle strength measures obtained with a hand-held dynamometer in an elderly population. Clin Physiol Funct Imaging. 2017;37(3): 332-340.
65. Hortobágyi T, Rider P, Gruber AH, DeVita P. Age and muscle strength mediate the age-related biomechanical plasticity of gait. Eur J Appl Physiol. 2016;116(4): 805-814.
66. Fritz NE, Marasigan RE, Calabresi PA, Newsome SD, Zackowski KM. The impact of dynamic balance measures on walking performance in multiple sclerosis. Neurorehabil Neural Repair. 2015;29(1): 62-69.
67. Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol. 2001;112(4): 713-719.
68. Molavi B, Dumont GA. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol Meas. 2012;33(2): 259-270.
69. Kocsis L, Herman P, Eke A. The modified Beer-Lambert law revisited. Phys Med Biol. 2006;51(5): N91-98.
70. Kinder KT, Heim HLR, Parker J, Lowery K, McCraw A, Eddings RN, et al. Systematic review of fNIRS studies reveals inconsistent chromophore data reporting practices. Neurophotonics. 2022;9(4): 040601.
71. Labott BK, Donath L. Agility performance in healthy older adults is associated with handgrip strength and force development: results from a 1-year randomized controlled trial. Eur Geriatr Med. 2023;14(3): 547-555.
72. Aggarwal NT, Wilson RS, Beck TL, Bienias JL, Bennett DA. Motor dysfunction in mild cognitive impairment and the risk of incident Alzheimer disease. Arch Neurol. 2006;63(12): 1763-1769.
73. Wylie SA, Ridderinkhof KR, Eckerle MK, Manning CA. Inefficient response inhibition in individuals with mild cognitive impairment. Neuropsychologia. 2007;45(7): 1408-1419.
74. Franssen EH, Souren LE, Torossian CL, Reisberg B. Equilibrium and limb coordination in mild cognitive impairment and mild Alzheimer's disease. J Am Geriatr Soc. 1999;47(4): 463-469.
75. Guarino A, Giuseppe F, Jasmine G, and Casagrande M. Executive functions in the elderly with mild cognitive impairment: a systematic review on motor and cognitive inhibition, conflict control and cognitive flexibility. Aging & Mental Health. 2020;24(7): 1028-1045.
76. Yang X, Wu H, Song Y, Chen S, Ge H, Yan Z, et al. Functional MRI-specific alterations in frontoparietal network in mild cognitive impairment: an ALE meta-analysis. Front Aging Neurosci. 2023;15: 1165908.
77. Ali N, Tian H, Thabane L, Ma J, Wu H, Zhong Q, et al. The Effects of Dual-Task Training on Cognitive and Physical Functions in Older Adults with Cognitive Impairment; A Systematic Review and Meta-Analysis. J Prev Alzheimers Dis. 2022;9(2): 359-370.
78. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23(3): 329-342; quiz 472.
79. Falbo S, Condello G, Capranica L, Forte R, Pesce C. Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial. Biomed Res Int. 2016;2016: 5812092.
80. Lichtenstein E, Held S, Rappelt L, Zacher J, Eibl A, Ludyga S, et al. Agility training to integratively promote neuromuscular, cardiorespiratory and cognitive function in healthy older adults: a one-year randomized-controlled trial. European Review of Aging and Physical Activity. 2023;20(1): 21.
81. Bahureksa L, Najafi B, Saleh A, Sabbagh M, Coon D, Mohler MJ, et al. The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment. Gerontology. 2017;63(1): 67-83.
82. Montero-Odasso M, Oteng-Amoako A, Speechley M, Gopaul K, Beauchet O, Annweiler C, et al. The motor signature of mild cognitive impairment: results from the gait and brain study. J Gerontol A Biol Sci Med Sci. 2014;69(11): 1415-1421.
83. Mittelstädt V, Miller J, Leuthold H, Mackenzie IG, Ulrich R. The time-course of distractor-based activation modulates effects of speed-accuracy tradeoffs in conflict tasks. Psychonomic Bulletin & Review. 2022;29(3): 837-854.
84. Bélanger S, Belleville S, Gauthier S. Inhibition impairments in Alzheimer's disease, mild cognitive impairment and healthy aging: effect of congruency proportion in a Stroop task. Neuropsychologia. 2010;48(2): 581-590.
85. Fan C, Li H, Chen K, Yang G, Xie H, Li H, et al. Brain compensatory activation during Stroop task in patients with mild cognitive impairment: a functional near-infrared spectroscopy study. Front Aging Neurosci. 2025;17: 1470747.
86. Calamia M, Markon K, Tranel D. Scoring higher the second time around: meta-analyses of practice effects in neuropsychological assessment. Clin Neuropsychol. 2012;26(4): 543-570.
87. Nemeth D, Janacsek K, Király K, Londe Z, Németh K, Fazekas K, et al. Probabilistic sequence learning in mild cognitive impairment. Front Hum Neurosci. 2013;7: 318.
88. Vecchio F, Miraglia F, Quaranta D, Lacidogna G, Marra C, Rossini PM. Learning Processes and Brain Connectivity in A Cognitive-Motor Task in Neurodegeneration: Evidence from EEG Network Analysis. J Alzheimers Dis. 2018;66(2): 471-481.
89. Schaefer SY, Duff K. Within-session and one-week practice effects on a motor task in amnestic mild cognitive impairment. J Clin Exp Neuropsychol. 2017;39(5): 473-484.
90. Ranchet M, Morgan JC, Akinwuntan AE, Devos H. Cognitive workload across the spectrum of cognitive impairments: A systematic review of physiological measures. Neurosci Biobehav Rev. 2017;80: 516-537.
91. Palma GCS, Freitas TB, Bonuzzi GMG, Torriani-Pasin C. Does Cognitive Impairment Impact Motor Learning? A Scoping Review of Elderly Individuals With Alzheimer's Disease and Mild Cognitive Impairment. Percept Mot Skills. 2023;130(5): 1924-1951.
92. Song D, Yu DSF, Li PWC, Lei Y. The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment: A systematic review and meta-analysis. Int J Nurs Stud. 2018;79: 155-164.
93. Liang JH, Xu Y, Lin L, Jia RX, Zhang HB, Hang L. Comparison of multiple interventions for older adults with Alzheimer disease or mild cognitive impairment: A PRISMA-compliant network meta-analysis. Medicine (Baltimore). 2018;97(20): e10744.
94. Curtin A, Ayaz H, Tang Y, Sun J, Wang J, Tong S. Enhancing neural efficiency of cognitive processing speed via training and neurostimulation: An fNIRS and TMS study. Neuroimage. 2019;198: 73-82.
95. Pelicioni PHS, Tijsma M, Lord SR, Menant J. Prefrontal cortical activation measured by fNIRS during walking: effects of age, disease and secondary task. PeerJ. 2019;7: e6833.
96. Reuter-Lorenz PA, Cappell KA. Neurocognitive aging and the compensation hypothesis. Current directions in psychological science. 2008;17(3): 177-182.
97. Weng WH, Yang YR, Yeh NC, Ku PH, Wang PS, Liao YY, et al. Gait performance and prefrontal cortex activation during single and dual task walking in older adults with different cognitive levels. Front Aging Neurosci. 2023;15: 1177082.
98. Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1): 72-89.
99. Levy BJ, Wagner AD. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci. 2011;1224(1): 40-62.
100. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cogn Psychol. 2000;41(1): 49-100.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99352-
dc.description.abstract背景:隨著年齡增長,年長者的認知和身體功能皆有可能顯著下降,輕微認知受損近年來是一個備受關注的族群。輕微認知受損為介於正常認知老化和失智症之間的過渡狀態,可能對年長者執行較複雜的日常生活功能造成影響,並增加發展為失智症的風險。為了應對這些挑戰,探索有效的介入訓練至關重要;敏捷訓練作爲一種結合快速全身性運動以及速度和方向變化的運動訓練,似乎有潛力改善年長者的身體與認知功能。過去這種訓練方式大多應用於運動員或年輕人,但近年研究表明,敏捷訓練可能提升年長者的神經肌肉表現、動態平衡和認知功能。本研究旨在評估敏捷訓練對於輕微認知受損年長者動作與認知表現的影響,強調其減緩與老化相關衰退的潛力。

研究目的:探討敏捷訓練對於改善輕微認知受損年長者的身體功能、認知功能與腦部活化之成效。

研究方法:本研究共招募30位輕微認知受損之年長者,於訓練前、訓練後以及訓練結束後一個月(追蹤)共三個時間點進行評估。評估項目包含:敏捷表現、動作功能(行走表現、耐力、平衡、肌力與爆發力)、認知功能(整體認知、工作記憶、認知轉換、選擇性注意與抑制控制),同時使用功能性近紅外光頻譜儀量測腦部活化情形。受試者於前測後隨機分配至敏捷訓練組或控制組。控制組接受為期8週的健康教育指導,包括居家運動建議、老年人飲食建議與預防跌倒相關知識;敏捷訓練組則進行每週兩次、每次60分鐘、一對一的敏捷訓練,共持續8週。訓練內容涵蓋三種不同的環境配置與多樣化指令的敏捷任務,並依據受試者執行情況調整訓練強度與難度。訓練結束後一週內進行後測,並於一個月後實施追蹤測試。

結果:本研究共納入30位受試者,17位受試者分配至敏捷訓練組 (AG)、13位分配至控制組 (CG)。八週訓練後,敏捷表現出現顯著的組別 × 時間交互作用,F(1.65, 46.15) = 5.49,p = 0.007,partial η² = 0.164,其中AG呈現顯著進步(ACE總耗時由72.4 ± 8.8秒降至62.2 ± 8.9秒,p < 0.001)。在雙重任務行走下的步長亦呈現顯著的組別 × 時間交互作用,F(2, 56) = 4.65,p = 0.014,partial η² = 0.142。此外,在單一任務與雙任務行走的步速與步長,以及6分鐘行走距離,均出現顯著的時間主效應(p < 0.05)。認知表現方面,整體認知功能呈現顯著時間主效應,F(1.36, 38.08) = 20.43,p < 0.001,partial η²= 0.422,AG的MoCA分數自24.2 ± 1.3提升至27.2 ± 3.4(p < 0.001)。選擇性注意力也有改善(Stroop一致條件反應時間:F(1.53, 41.38) = 3.25,p = 0.046,partial η²= 0.107)、抑制控制能力提升(Stroop不一致條件反應時間:F(2, 54) = 8.55,p = 0.001,partial η² = 0.241),以及認知轉換能力的進步(WCST錯誤率:F(2, 54) = 3.29,p = 0.044,partial η² = 0.105)。雖然腦部活化方面的結果均未觀察到顯著變化,AG在敏捷任務中展現出前額葉皮質活化下降,並於SMA與PMC呈現活化上升,在雙重任務行走中亦維持這些區域的活化。此外,在認知任務中AG表現出較穩定的前額葉參與,表示可能有神經效率提升的作用產生。

總結:敏捷訓練可有效提升輕微認知受損年長者的敏捷表現、步態功能與整體認知功能,並可能促進與動作-認知整合相關的腦部活化調節。
zh_TW
dc.description.abstractBackground: The aging population is experiencing a notable decline in both cognitive and physical functions, with Mild Cognitive Impairment (MCI) emerging as a significant concern. MCI is a transitional state between normal cognitive aging and dementia, potentially affecting daily living and increasing the risk of progression to dementia. To address these challenges, exploring effective interventions is crucial. Agility training, which combines rapid whole-body movements with changes in speed and direction, has shown promise in improving both physical and cognitive functions. Though traditionally applied to athletes, recent studies suggest that agility training has the potential to enhance neuromuscular performance, dynamic balance, and cognitive function in older adults. This study aims to evaluate the effects of agility training on physical and cognitive function in older adults with MCI, emphasizing its potential to mitigate age-related declines and improve overall functioning.

Study purpose: The present study aims to investigate the effects of agility training on physical function, cognitive function and brain activities in elderly with MCI.

Method: The present study recruited 30 elderly individuals with MCI. Assessments were conducted at three points: pre-test, post-test, and one-month follow-up. These assessments evaluated agility, motor function (walking performance, endurance, balance, muscle power and muscle strength), cognitive functions (global cognition, working memory, mental-set shifting, selective attention, and inhibitory control), and brain activation (assessed by functional near-infrared spectroscopy, fNIRS). After the pre-test, participants were randomly assigned to an agility training group (AG) or a control group (CG). The CG received an 8-week health education guideline, which included home exercises, dietary recommendations for the elderly, and fall prevention education. The AG underwent agility training twice a week, for 60 minutes each session, over 8 weeks, conducted on a one-on-one basis. The agility training included three different environmental setups and agility exercises with varying instructions, while training intensity and difficulty was adjusted based on each participant's performance. The post-test was conducted within a week after the training ends and all the participants underwent a follow-up test one month later.

Results: Seventeen participants were assigned to the AG and 13 to the CG. After 8-week intervention, a significant group x time interaction was observed in agility performance, F(1.65, 46.15) = 5.49, p = 0.007, partial η² = 0.164, with the AG showing significant improvement (ACE total time: 72.4 ± 8.8 to 62.2 ± 8.9 s, p < 0.001). Stride length under dual-task walking also showed a significant group x time interaction, F(2, 56) = 4.65, p = 0.014, partial η² = 0.142. In addition, significant time main effects were found for gait speed and stride length under both single- and dual-task walking, as well as for 6-minute walk distance (p < 0.05). Regarding cognitive outcomes, a significant time main effect was observed for global cognition, F(1.36, 38.08) = 20.43, p < 0.001, partial η² = 0.422, with MoCA scores in the AG increasing from 24.2 ± 1.3 to 27.2 ± 3.4 (p < 0.001). Improvements were also found in selective attention (Stroop congruent reaction time: F(1.53, 41.38) = 3.25, p = 0.046, partial η² = 0.107), inhibitory control (Stroop incongruent reaction time: F(2, 54) = 8.55, p = 0.001, partial η² = 0.241), and mental set shifting (WCST error rate: F(2, 54) = 3.29, p = 0.044, partial η² = 0.105). While no significant effect was found in cortical HbO levels, the AG demonstrated activation in the PFC and increased activation in the SMA and PMC during the agility task, and sustained activation in these regions during dual-task walking. Moreover, more stable prefrontal engagement was observed across cognitive tasks in the AG, suggesting potential neural efficiency.

Conclusion: Agility training appears to be an effective intervention for improving agility, gait performance, and cognitive functions in older adults with MCI. It may also support adaptive brain activation patterns related to cognitive-motor integration.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:07:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:07:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
Preface I
中文摘要 II
Abstract IV
Contents VII
Chapter 1: Introduction 1
1. Background 1
1.2 Study purpose 2
1.3 Specific aims and hypotheses 3
Chapter 2: Literature Review 4
2.1 Aging and cognitive-physical decline 4
2.2 Mild cognitive impairment . 5
2.3 Existing interventions and limitations . 6
2.4 Agility and its components contributing . 8
2.5 The potential of agility training 9
2.6 Neuroplasticity and functional near-infrared spectroscopy (fNIRS) 11
2.7 Summary of review 12
Chapter 3: Methods 14
3.1 Participants . 14
3.2 Study procedure 14
3.2.1 Intervention protocol 15
3.3 Outcome measures 17
3.3.1 Agility 17
3.3.2 Cognitive function 17
3.3.3 Motor function 19
3.3.4 Brain activation . 20
3.4 Data analysis 22
3.5 Sample size estimation 23
Chapter 4: Results 25
4.1 Demographic characteristics 25
4.2 Agility performance 25
4.3 Physical performance 27
4.4 Cognitive performance 30
4.5 Brain activation during agility, single- and dual-task walking, and cognitive tasks 32
Chapter 5: Discussion 36
Summary of key findings 36
Training effects of agility program 36
Enhanced gait performance and endurance 39
Cognitive adaptations following agility training 42
Neurobehavioral insights into motor learning mechanisms in MCI 44
Brain activation and neuroplasticity 46
Study limitations and future directions 47
Chapter 6: Conclusion 49
Figure 50
Table 61
References 72
Appendix 85
-
dc.language.isoen-
dc.subject敏捷訓練zh_TW
dc.subject輕微認知受損zh_TW
dc.subject功能性近紅外光頻譜儀zh_TW
dc.subject身體功能zh_TW
dc.subject年長者zh_TW
dc.subject認知功能zh_TW
dc.subjectFunctional near-infrared spectroscopy (fNIRS)en
dc.subjectCognition functionen
dc.subjectPhysical functionen
dc.subjectAgility trainingen
dc.subjectElderlyen
dc.subjectMild cognitive impairment (MCI)en
dc.title敏捷訓練對於輕微認知受損年長者的敏捷能力、身體表現、認知功能以及腦部活化之影響zh_TW
dc.titleThe Effects of Agility Training on Agility, Physical Performance, Cognitive Function and Brain Activities in Elderly with Mild Cognitive Impairmenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭方瑜;廖英壹;劉昕璇zh_TW
dc.contributor.oralexamcommitteeFang-Yu Cheng;Ying-Yi Liao;Hsin-Hsuan Liuen
dc.subject.keyword輕微認知受損,年長者,敏捷訓練,身體功能,認知功能,功能性近紅外光頻譜儀,zh_TW
dc.subject.keywordMild cognitive impairment (MCI),Elderly,Agility training,Physical function,Cognition function,Functional near-infrared spectroscopy (fNIRS),en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202502097-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-22-
dc.contributor.author-college醫學院-
dc.contributor.author-dept物理治療學研究所-
dc.date.embargo-lift2025-09-10-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved