Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99351
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳月霞zh_TW
dc.contributor.advisorYueh-Hsia Chenen
dc.contributor.author王翊國zh_TW
dc.contributor.authorYi-Guo Wangen
dc.date.accessioned2025-09-09T16:07:29Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation1. Theodoulou MH, Ravine M. Anatomic and Biomechanical Considerations of Flatfoot Deformity. Clin Podiatr Med Surg 2023;40:239-46.10.1016/j.cpm.2022.11.001.
2. Peeters K, Schreuer J, Burg F, Behets C, Van Bouwel S, Dereymaeker G, et al. Alterated talar and navicular bone morphology is associated with pes planus deformity: a CT-scan study. J Orthop Res 2013;31:282-7.10.1002/jor.22225.
3. Sangeorzan A, Sangeorzan B. Subtalar Joint Biomechanics: From Normal to Pathologic. Foot Ankle Clin 2018;23:341-52.10.1016/j.fcl.2018.04.002.
4. Nambiar S, Alagesan J. Prevalence and incidence of flat foot among Middle East and Asian Population:An Overview. International Journal of Pharmaceutical Sciences and Health 2017;7:1-12.
5. Bhoir M, Anap D, Diwate A. Prevalence of flat foot among 18 -25 years old physiotherapy students: cross sectional study. Indian Journal of Basic and Applied Medical Research 2014;3:272-8.
6. Pita-Fernandez S, Gonzalez-Martin C, Alonso-Tajes F, Seoane-Pillado T, Pertega-Diaz S, Perez-Garcia S, et al. Flat Foot in a Random Population and its Impact on Quality of Life and Functionality. J Clin Diagn Res 2017;11:Lc22-lc7.10.7860/jcdr/2017/24362.9697.
7. Kosashvili Y, Fridman T, Backstein D, Safir O, Bar Ziv Y. The correlation between pes planus and anterior knee or intermittent low back pain. Foot Ankle Int 2008;29:910-3.10.3113/fai.2008.0910.
8. Atik A, Ozyurek S. Flexible flatfoot. North Clin Istanb 2014;1:57-64.10.14744/nci.2014.29292.
9. Nigg B, Behling A-V, Hamill J. Foot pronation. Footwear Science 2019;11:131-4.10.1080/19424280.2019.1673489.
10. Houck JR, Tome JM, Nawoczenski DA. Subtalar neutral position as an offset for a kinematic model of the foot during walking. Gait & Posture 2008;28:29-37.https://doi.org/10.1016/j.gaitpost.2007.09.008.
11. Hunt AE, Smith RM. Mechanics and control of the flat versus normal foot during the stance phase of walking. Clin Biomech (Bristol, Avon) 2004;19:391-7.10.1016/j.clinbiomech.2003.12.010.
12. Levinger P, Murley GS, Barton CJ, Cotchett MP, Mcsweeney SR, Menz HB. A comparison of foot kinematics in people with normal- and flat-arched feet using the Oxford Foot Model. Gait Posture 2010;32:519-23.10.1016/j.gaitpost.2010.07.013.
13. Powell DW, Long B, Milner CE, Zhang S. Frontal plane multi-segment foot kinematics in high- and low-arched females during dynamic loading tasks. Hum Mov Sci 2011;30:105-14.10.1016/j.humov.2010.08.015.
14. Dodelin D, Tourny C, L'hermette M. The biomechanical effects of pronated foot function on gait. An experimental study. Scand J Med Sci Sports 2020;30:2167-77.10.1111/sms.13785.
15. Menz HB, Dufour AB, Riskowski JL, Hillstrom HJ, Hannan MT. Association of planus foot posture and pronated foot function with foot pain: the Framingham foot study. Arthritis Care Res (Hoboken) 2013;65:1991-9.10.1002/acr.22079.
16. Tong JW, Kong PW. Association between foot type and lower extremity injuries: systematic literature review with meta-analysis. J Orthop Sports Phys Ther 2013;43:700-14.10.2519/jospt.2013.4225.
17. Chuter VH, Janse De Jonge XA. Proximal and distal contributions to lower extremity injury: a review of the literature. Gait Posture 2012;36:7-15.10.1016/j.gaitpost.2012.02.001.
18. Mei Q, Kim HK, Xiang L, Shim V, Wang A, Baker JS, et al. Toward improved understanding of foot shape, foot posture, and foot biomechanics during running: A narrative review. Front Physiol 2022;13:1062598.10.3389/fphys.2022.1062598.
19. Mootanah R, Song J, Lenhoff MW, Hafer JF, Backus SI, Gagnon D, et al. Foot Type Biomechanics Part 2: are structure and anthropometrics related to function? Gait Posture 2013;37:452-6.10.1016/j.gaitpost.2012.09.008.
20. Morag E, Cavanagh PR. Structural and functional predictors of regional peak pressures under the foot during walking. J Biomech 1999;32:359-70.10.1016/s0021-9290(98)00188-2.
21. Cavanagh PR, Morag E, Boulton AJ, Young MJ, Deffner KT, Pammer SE. The relationship of static foot structure to dynamic foot function. J Biomech 1997;30:243-50.10.1016/s0021-9290(96)00136-4.
22. Dowling GJ, Murley GS, Munteanu SE, Smith MM, Neal BS, Griffiths IB, et al. Dynamic foot function as a risk factor for lower limb overuse injury: a systematic review. J Foot Ankle Res 2014;7:53.10.1186/s13047-014-0053-6.
23. Hillstrom HJ, Song J, Kraszewski AP, Hafer JF, Mootanah R, Dufour AB, et al. Foot type biomechanics part 1: structure and function of the asymptomatic foot. Gait Posture 2013;37:445-51.10.1016/j.gaitpost.2012.09.007.
24. Chuckpaiwong B, Nunley JA, Mall NA, Queen RM. The effect of foot type on in-shoe plantar pressure during walking and running. Gait Posture 2008;28:405-11.10.1016/j.gaitpost.2008.01.012.
25. Han JT, Koo HM, Jung JM, Kim YJ, Lee JH. Differences in Plantar Foot Pressure and COP between Flat and Normal Feet During Walking. Journal of Physical Therapy Science 2011;23:683-5.10.1589/jpts.23.683.
26. Song J, Hillstrom HJ, Secord D, Levitt J. Foot type biomechanics. comparison of planus and rectus foot types. J Am Podiatr Med Assoc 1996;86:16-23.10.7547/87507315-86-1-16.
27. Mckeon PO, Hertel J, Bramble D, Davis I. The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med 2015;49:290.10.1136/bjsports-2013-092690.
28. Ozyalvac ON, Aydin CG, Akpinar E, Bayhan AI, Yildirim T. Isokinetic Analysis of Flexible Flatfoot: Is It a Weakness of Proprioception and Muscle Strength? J Am Podiatr Med Assoc 2022;112.10.7547/20-045.
29. Huang TH, Chou LW, Huang CY, Wei SW, Tsai YJ, Chen YJ. H-reflex in abductor hallucis and postural performance between flexible flatfoot and normal foot. Phys Ther Sport 2019;37:27-33.10.1016/j.ptsp.2019.02.004.
30. Lee JH, Cynn HS, Yoon TL, Choi SA, Kang TW. Differences in the angle of the medial longitudinal arch and muscle activity of the abductor hallucis and tibialis anterior during sitting short-foot exercises between subjects with pes planus and subjects with neutral foot. J Back Musculoskelet Rehabil 2016;29:809-15.10.3233/bmr-160693.
31. Lee JE, Park GH, Lee YS, Kim MK. A Comparison of Muscle Activities in the Lower Extremity between Flat and Normal Feet during One-leg Standing. J Phys Ther Sci 2013;25:1059-61.10.1589/jpts.25.1059.
32. Chang JS, Kwon YH, Kim CS, Ahn S-H, Park SH. Differences of ground reaction forces and kinematics of lower extremity according to landing height between flat and normal feet. Journal of Back and Musculoskeletal Rehabilitation 2012;25:21-6.10.3233/BMR-2012-0306.
33. Angin S, Mickle KJ, Nester CJ. Contributions of foot muscles and plantar fascia morphology to foot posture. Gait Posture 2018;61:238-42.10.1016/j.gaitpost.2018.01.022.
34. Okamura K, Egawa K, Ikeda T, Fukuda K, Kanai S. Relationship between foot muscle morphology and severity of pronated foot deformity and foot kinematics during gait: A preliminary study. Gait Posture 2021;86:273-7.10.1016/j.gaitpost.2021.03.034.
35. Zhang X, Pauel R, Deschamps K, Jonkers I, Vanwanseele B. Differences in foot muscle morphology and foot kinematics between symptomatic and asymptomatic pronated feet. Scand J Med Sci Sports 2019;29:1766-73.10.1111/sms.13512.
36. Shin Y, Ahn SY, Bok SK. Relationships Between Relative Ankle Muscle Ratios, Severity of Symptoms, and Radiologic Parameters in Adolescent Patients With Symptomatic Flexible Flat Feet. Ann Rehabil Med 2021;45:123-30.10.5535/arm.20174.
37. Mckeon PO, Fourchet F. Freeing the foot: integrating the foot core system into rehabilitation for lower extremity injuries. Clin Sports Med 2015;34:347-61.10.1016/j.csm.2014.12.002.
38. Herteil J, Denegar CR. A Rehabilitation Paradigm for Restoring Neuromuscular Control Following Athletic Injury. Athletic Therapy Today 1998;3:12-6.
39. Huang C, Chen LY, Liao YH, Masodsai K, Lin YY. Effects of the Short-Foot Exercise on Foot Alignment and Muscle Hypertrophy in Flatfoot Individuals: A Meta-Analysis. Int J Environ Res Public Health 2022;19.10.3390/ijerph191911994.
40. Hara S, Kitano M, Kudo S. The effects of short foot exercises to treat flat foot deformity: A systematic review. J Back Musculoskelet Rehabil 2023;36:21-33.10.3233/bmr-210374.
41. Namsawang J, Eungpinichpong W, Vichiansiri R, Rattanathongkom S. Effects of the Short Foot Exercise With Neuromuscular Electrical Stimulation on Navicular Height in Flexible Flatfoot in Thailand: A Randomized Controlled Trial. J Prev Med Public Health 2019;52:250-7.10.3961/jpmph.19.072.
42. Jung D, Yi C, Choi WJ, You JSH. Effect of dynamic guidance-tubing short foot gait exercise on muscle activity and navicular movement in people with flexible flatfeet. NeuroRehabilitation 2020;47:217-26.10.3233/nre-203106.
43. Unver B, Erdem EU, Akbas E. Effects of Short-Foot Exercises on Foot Posture, Pain, Disability, and Plantar Pressure in Pes Planus. J Sport Rehabil 2020;29:436-40.10.1123/jsr.2018-0363.
44. Utsahachant N, Sakulsriprasert P, Sinsurin K, Jensen MP, Sungkue S. Effects of short foot exercise combined with lower extremity training on dynamic foot function in individuals with flexible flatfoot: A randomized controlled trial. Gait Posture 2023;104:109-15.10.1016/j.gaitpost.2023.06.013.
45. Boon AJ, Harper CM. Needle EMG of abductor hallucis and peroneus tertius in normal subjects. Muscle Nerve 2003;27:752-6.10.1002/mus.10356.
46. Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med 2012;85:201-15.
47. Duncan D, Dinev I. Noninvasive Induction of Muscle Fiber Hypertrophy and Hyperplasia: Effects of High-Intensity Focused Electromagnetic Field Evaluated in an In-Vivo Porcine Model: A Pilot Study. Aesthet Surg J 2020;40:568-74.10.1093/asj/sjz244.
48. Goldberg DJ, Enright KM, Goldfarb R, Katz B, Gold M. The role and clinical benefits of high-intensity focused electromagnetic devices for non-invasive lipolysis and beyond: A narrative review and position paper. J Cosmet Dermatol 2021;20:2096-101.10.1111/jocd.14203.
49. Kent DE, Jacob CI. Simultaneous Changes in Abdominal Adipose and Muscle Tissues Following Treatments by High-Intensity Focused Electromagnetic (HIFEM) Technology-Based Device: Computed Tomography Evaluation. J Drugs Dermatol 2019;18:1098-102.
50. Kinney BM, Lozanova P. High intensity focused electromagnetic therapy evaluated by magnetic resonance imaging: Safety and efficacy study of a dual tissue effect based non-invasive abdominal body shaping. Lasers Surg Med 2019;51:40-6.10.1002/lsm.23024.
51. Palm M. Magnetic Resonance Imaging Evaluation of Changes in Gluteal Muscles After Treatments With the High-Intensity Focused Electromagnetic Procedure. Dermatol Surg 2021;47:386-91.10.1097/dss.0000000000002764.
52. Katz B, Duncan D. Lifting and Toning of Arms and Calves Using High-Intensity Focused Electromagnetic Field (HIFEM) Procedure Documented by Ultrasound Assessment. J Drugs Dermatol 2021;20:755-9.10.36849/jdd.5878.
53. Bustamante V, López De Santa María E, Gorostiza A, Jiménez U, Gáldiz JB. Muscle training with repetitive magnetic stimulation of the quadriceps in severe COPD patients. Respir Med 2010;104:237-45.10.1016/j.rmed.2009.10.001.
54. Samuels JB, Pezzella A, Berenholz J, Alinsod R. Safety and Efficacy of a Non-Invasive High-Intensity Focused Electromagnetic Field (HIFEM) Device for Treatment of Urinary Incontinence and Enhancement of Quality of Life. Lasers Surg Med 2019;51:760-6.10.1002/lsm.23106.
55. Silantyeva E, Zarkovic D, Astafeva E, Soldatskaia R, Orazov M, Belkovskaya M, et al. A Comparative Study on the Effects of High-Intensity Focused Electromagnetic Technology and Electrostimulation for the Treatment of Pelvic Floor Muscles and Urinary Incontinence in Parous Women: Analysis of Posttreatment Data. Female Pelvic Med Reconstr Surg 2021;27:269-73.10.1097/spv.0000000000000807.
56. Kelly LA, Cresswell AG, Racinais S, Whiteley R, Lichtwark G. Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch. J R Soc Interface 2014;11:20131188.10.1098/rsif.2013.1188.
57. Okamura K, Kanai S, Hasegawa M, Otsuka A, Oki S. The effect of additional activation of the plantar intrinsic foot muscles on foot dynamics during gait. Foot (Edinb) 2018;34:1-5.10.1016/j.foot.2017.08.002.
58. Kokubo T, Hashimoto T, Nagura T, Nakamura T, Suda Y, Matsumoto H, et al. Effect of the posterior tibial and peroneal longus on the mechanical properties of the foot arch. Foot Ankle Int 2012;33:320-5.10.3113/fai.2012.0320.
59. Sorrentino R, Carlson KJ, Orr CM, Pietrobelli A, Figus C, Li S, et al. Morphological and evolutionary insights into the keystone element of the human foot’s medial longitudinal arch. Communications Biology 2023;6:1061.10.1038/s42003-023-05431-8.
60. Henry JK, Shakked R, Ellis SJ. Adult-Acquired Flatfoot Deformity. Foot Ankle Orthop 2019;4:2473011418820847.10.1177/2473011418820847.
61. Smyth NA, Aiyer AA, Kaplan JR, Carmody CA, Kadakia AR. Adult-acquired flatfoot deformity. Eur J Orthop Surg Traumatol 2017;27:433-9.10.1007/s00590-017-1945-5.
62. Myerson MS, Thordarson DB, Johnson JE, Hintermann B, Sangeorzan BJ, Deland JT, et al. Classification and Nomenclature: Progressive Collapsing Foot Deformity. Foot Ankle Int 2020;41:1271-6.10.1177/1071100720950722.
63. Sheikh Taha AM, Feldman DS. Painful Flexible Flatfoot. Foot Ankle Clin 2015;20:693-704.10.1016/j.fcl.2015.07.011.
64. Aenumulapalli A, Kulkarni MM, Gandotra AR. Prevalence of Flexible Flat Foot in Adults: A Cross-sectional Study. J Clin Diagn Res 2017;11:Ac17-ac20.10.7860/jcdr/2017/26566.10059.
65. Toullec E. Adult flatfoot. Orthop Traumatol Surg Res 2015;101:S11-7.10.1016/j.otsr.2014.07.030.
66. Neal BS, Griffiths IB, Dowling GJ, Murley GS, Munteanu SE, Franettovich Smith MM, et al. Foot posture as a risk factor for lower limb overuse injury: a systematic review and meta-analysis. J Foot Ankle Res 2014;7:55.10.1186/s13047-014-0055-4.
67. Banwell HA, Paris ME, Mackintosh S, Williams CM. Paediatric flexible flat foot: how are we measuring it and are we getting it right? A systematic review. J Foot Ankle Res 2018;11:21.10.1186/s13047-018-0264-3.
68. Razeghi M, Batt ME. Foot type classification: a critical review of current methods. Gait Posture 2002;15:282-91.10.1016/s0966-6362(01)00151-5.
69. Zammit GV, Menz HB, Munteanu SE. Reliability of the TekScan MatScan(R) system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults. J Foot Ankle Res 2010;3:11.10.1186/1757-1146-3-11.
70. Cavanagh PR, Rodgers MM. The arch index: a useful measure from footprints. J Biomech 1987;20:547-51.10.1016/0021-9290(87)90255-7.
71. Hollander K, Zech A, Rahlf AL, Orendurff MS, Stebbins J, Heidt C. The relationship between static and dynamic foot posture and running biomechanics: A systematic review and meta-analysis. Gait Posture 2019;72:109-22.10.1016/j.gaitpost.2019.05.031.
72. Langley B, Cramp M, Morrison SC. Selected static foot assessments do not predict medial longitudinal arch motion during running. Journal of Foot and Ankle Research 2015;8:56.10.1186/s13047-015-0113-6.
73. Pohl M, Farr L. A comparison of foot arch measurement reliability using both digital photography and calliper methods. Journal of foot and ankle research 2010;3:14.10.1186/1757-1146-3-14.
74. Williams DS, Mcclay IS. Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys Ther 2000;80:864-71.
75. Zuil-Escobar JC, Martínez-Cepa CB, Martín-Urrialde JA, Gómez-Conesa A. Evaluating the Medial Longitudinal Arch of the Foot: Correlations, Reliability, and Accuracy in People With a Low Arch. Phys Ther 2019;99:364-72.10.1093/ptj/pzy149.
76. Shultz SJ, Nguyen AD, Windley TC, Kulas AS, Botic TL, Beynnon BD. Intratester and intertester reliability of clinical measures of lower extremity anatomic characteristics: implications for multicenter studies. Clin J Sport Med 2006;16:155-61.10.1097/00042752-200603000-00012.
77. Cote KP, Brunet ME, Gansneder BM, Shultz SJ. Effects of Pronated and Supinated Foot Postures on Static and Dynamic Postural Stability. J Athl Train 2005;40:41-6.
78. Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: the Foot Posture Index. Clin Biomech (Bristol, Avon) 2006;21:89-98.10.1016/j.clinbiomech.2005.08.002.
79. Cornwall MW, Mcpoil TG, Lebec M, Vicenzino B, Wilson J. Reliability of the modified Foot Posture Index. J Am Podiatr Med Assoc 2008;98:7-13.10.7547/0980007.
80. Mclaughlin P, Vaughan B, Shanahan J, Martin J, Linger G. Inexperienced examiners and the Foot Posture Index: A reliability study. Man Ther 2016;26:238-40.10.1016/j.math.2016.06.009.
81. Stephen U. Plantar pressure-measurement sensors. Measurement Science and Technology 1999;10:R16.10.1088/0957-0233/10/1/017.
82. Savelberg HH, Schaper NC, Willems PJ, De Lange TL, Meijer K. Redistribution of joint moments is associated with changed plantar pressure in diabetic polyneuropathy. BMC Musculoskelet Disord 2009;10:16.10.1186/1471-2474-10-16.
83. Buldt AK, Allan JJ, Landorf KB, Menz HB. The relationship between foot posture and plantar pressure during walking in adults: A systematic review. Gait Posture 2018;62:56-67.10.1016/j.gaitpost.2018.02.026.
84. Rao S, Song J, Kraszewski A, Backus S, Ellis SJ, Deland JT, et al. The effect of foot structure on 1st metatarsophalangeal joint flexibility and hallucal loading. Gait Posture 2011;34:131-7.10.1016/j.gaitpost.2011.02.028.
85. Ledoux WR, Hillstrom HJ. The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait Posture 2002;15:1-9.10.1016/s0966-6362(01)00165-5.
86. Cornwall MW, Mcpoil TG. Reliability and validity of center-of-pressure quantification. J Am Podiatr Med Assoc 2003;93:142-9.10.7547/87507315-93-2-142.
87. Mcpoil TG, Jr., Adrian M, Pidcoe P. Effects of foot orthoses on center-of-pressure patterns in women. Phys Ther 1989;69:149-54.10.1093/ptj/69.2.149.
88. Buldt AK, Forghany S, Landorf KB, Murley GS, Levinger P, Menz HB. Centre of pressure characteristics in normal, planus and cavus feet. J Foot Ankle Res 2018;11:3.10.1186/s13047-018-0245-6.
89. Wong L, Hunt A, Burns J, Crosbie J. Effect of foot morphology on center-of-pressure excursion during barefoot walking. J Am Podiatr Med Assoc 2008;98:112-7.10.7547/0980112.
90. Okamura K, Fukuda K, Oki S, Ono T, Tanaka S, Kanai S. Effects of plantar intrinsic foot muscle strengthening exercise on static and dynamic foot kinematics: A pilot randomized controlled single-blind trial in individuals with pes planus. Gait Posture 2020;75:40-5.10.1016/j.gaitpost.2019.09.030.
91. Buldt AK, Levinger P, Murley GS, Menz HB, Nester CJ, Landorf KB. Foot posture is associated with kinematics of the foot during gait: A comparison of normal, planus and cavus feet. Gait Posture 2015;42:42-8.10.1016/j.gaitpost.2015.03.004.
92. Shin HS, Lee JH, Kim EJ, Kyung MG, Yoo HJ, Lee DY. Flatfoot deformity affected the kinematics of the foot and ankle in proportion to the severity of deformity. Gait Posture 2019;72:123-8.10.1016/j.gaitpost.2019.06.002.
93. Paterson KL, Clark RA, Mullins A, Bryant AL, Mentiplay BF. Predicting Dynamic Foot Function From Static Foot Posture: Comparison Between Visual Assessment, Motion Analysis, and a Commercially Available Depth Camera. J Orthop Sports Phys Ther 2015;45:789-98.10.2519/jospt.2015.5616.
94. Cavanagh PR, Morag E, Boulton AJM, Young MJ, Deffner KT, Pammer SE. The relationship of static foot structure to dynamic foot function. Journal of Biomechanics 1997;30:243-50.https://doi.org/10.1016/S0021-9290(96)00136-4.
95. Jonely H, Brismée JM, Sizer PS, Jr., James CR. Relationships between clinical measures of static foot posture and plantar pressure during static standing and walking. Clin Biomech (Bristol, Avon) 2011;26:873-9.10.1016/j.clinbiomech.2011.04.008.
96. Janda V, Vávrová M. Sensory motor stimulation. In Rehabilitation of the Spine – a Practitioner’s Manual (pp. 319-28). Williams & Wilkins; 1996.
97. Nurse MA, Nigg BM. Quantifying a relationship between tactile and vibration sensitivity of the human foot with plantar pressure distributions during gait. Clin Biomech (Bristol, Avon) 1999;14:667-72.10.1016/s0268-0033(99)00020-0.
98. Kim J-S, Moon D-C. A comparison of selective muscle activity in the abductor hallucis between flat feet and normal feet during single mini-squat exercise. Isokinetics and Exercise Science 2021;29:233-8.10.3233/IES-203202.
99. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol 1983;338:37-49.10.1113/jphysiol.1983.sp014658.
100. Latey PJ, Burns J, Nightingale EJ, Clarke JL, Hiller CE. Reliability and correlates of cross-sectional area of abductor hallucis and the medial belly of the flexor hallucis brevis measured by ultrasound. J Foot Ankle Res 2018;11:28.10.1186/s13047-018-0259-0.
101. Soysa A, Hiller C, Refshauge K, Burns J. Importance and challenges of measuring intrinsic foot muscle strength. J Foot Ankle Res 2012;5:29.10.1186/1757-1146-5-29.
102. Sauer LD, Beazell JR, Hertel J. Considering the Intrinsic Foot Musculature in Evaluation and Rehabilitation for Lower Extremity Injuries: A Case Review. Athletic Training & Sports Health Care 2011;3:43-7.
103. Gooding TM, Feger MA, Hart JM, Hertel J. Intrinsic Foot Muscle Activation During Specific Exercises: A T2 Time Magnetic Resonance Imaging Study. J Athl Train 2016;51:644-50.10.4085/1062-6050-51.10.07.
104. Kelly LA, Kuitunen S, Racinais S, Cresswell AG. Recruitment of the plantar intrinsic foot muscles with increasing postural demand. Clin Biomech (Bristol, Avon) 2012;27:46-51.10.1016/j.clinbiomech.2011.07.013.
105. Ramachandra P, Kumar P, Kamath A, Maiya AG. Effect of intrinsic and extrinsic foot muscle strengthening exercises on foot parameters and foot dysfunctions in pregnant women: a randomised controlled trial. International Journal of Therapy and Rehabilitation 2019;26:1-11.10.12968/ijtr.2018.0027.
106. Kim EK, Kim JS. The effects of short foot exercises and arch support insoles on improvement in the medial longitudinal arch and dynamic balance of flexible flatfoot patients. J Phys Ther Sci 2016;28:3136-9.10.1589/jpts.28.3136.
107. Kısacık P, Tunay VB, Bek N, Atay Ö A, Selfe J, Karaduman AA. Short foot exercises have additional effects on knee pain, foot biomechanics, and lower extremity muscle strength in patients with patellofemoral pain. J Back Musculoskelet Rehabil 2021;34:1093-104.10.3233/bmr-200255.
108. Brijwasi T, Borkar P. A comprehensive exercise program improves foot alignment in people with flexible flat foot: a randomised trial. J Physiother 2023;69:42-6.10.1016/j.jphys.2022.11.011.
109. Jung DY, Koh EK, Kwon OY. Effect of foot orthoses and short-foot exercise on the cross-sectional area of the abductor hallucis muscle in subjects with pes planus: a randomized controlled trial. J Back Musculoskelet Rehabil 2011;24:225-31.10.3233/bmr-2011-0299.
110. Roth BJ, Basser PJ. A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Trans Biomed Eng 1990;37:588-97.10.1109/10.55662.
111. Dowling JJ, Konert E, Ljucovic P, Andrews DM. Are humans able to voluntarily elicit maximum muscle force? Neurosci Lett 1994;179:25-8.10.1016/0304-3940(94)90926-1.
112. Alizadeh Z, Halabchi F, Bodaghabadi Z, Zarandi MM, Abolhasani M, Seifi V, et al. Non-invasive Body Contouring Technologies: An Updated Narrative Review. Aesthetic Plast Surg 2023.10.1007/s00266-023-03647-x.
113. Giesse S. A German Prospective Study of the Safety and Efficacy of a Non-Invasive, High-intensity, Electromagnetic Abdomen and Buttock Contouring Device. J Clin Aesthet Dermatol 2021;14:30-3.
114. Jacob CI, Paskova K. Safety and efficacy of a novel high-intensity focused electromagnetic technology device for noninvasive abdominal body shaping. J Cosmet Dermatol 2018;17:783-7.10.1111/jocd.12779.
115. Kinney BM, Kent DE. MRI and CT Assessment of Abdominal Tissue Composition in Patients After High-Intensity Focused Electromagnetic Therapy Treatments: One-Year Follow-Up. Aesthet Surg J 2020;40:Np686-np93.10.1093/asj/sjaa052.
116. Jacob C, Kinney B, Busso M, Chilukuri S, Mccoy JD, Bailey C, et al. High Intensity Focused Electro-Magnetic Technology (HIFEM) for Non-Invasive Buttock Lifting and Toning of Gluteal Muscles: A Multi-Center Efficacy and Safety Study. J Drugs Dermatol 2018;17:1229-32.
117. Halaas Y, Duncan D, Bernardy J, Ondrackova P, Dinev I. Activation of Skeletal Muscle Satellite Cells by a Device Simultaneously Applying High-Intensity Focused Electromagnetic Technology and Novel RF Technology: Fluorescent Microscopy Facilitated Detection of NCAM/CD56. Aesthet Surg J 2021;41:Np939-np47.10.1093/asj/sjab002.
118. Fujimura K, Kagaya H, Tanikawa H. Kinematic Analysis for Repetitive Peripheral Magnetic Stimulation of the Intrinsic Muscles of the Hand. Applied Sciences 2022;12:9015.
119. Redmond AC, Crane YZ, Menz HB. Normative values for the Foot Posture Index. Journal of Foot and Ankle Research 2008;1:6.10.1186/1757-1146-1-6.
120. Cavanagh PR, Hewitt FG, Perry JE. In-shoe plantar pressure measurement: a review. The Foot 1992;2:185-94.https://doi.org/10.1016/0958-2592(92)90047-S.
121. Mueller MJ, Sinacore DR, Hoogstrate S, Daly L. Hip and ankle walking strategies: effect on peak plantar pressures and implications for neuropathic ulceration. Arch Phys Med Rehabil 1994;75:1196-200.10.1016/0003-9993(94)90004-3.
122. Mcpoil T, Cornwall M, Yamada W. A comparison of two in-shoe plantar pressure measurement systems. Lower Extremity 1995;2:95-103.
123. Ahroni JH, Boyko EJ, Forsberg R. Reliability of F-scan in-shoe measurements of plantar pressure. Foot Ankle Int 1998;19:668-73.10.1177/107110079801901004.
124. O'sullivan K, Kennedy N, O'neill E, Ni Mhainin U. The effect of low-dye taping on rearfoot motion and plantar pressure during the stance phase of gait. BMC Musculoskelet Disord 2008;9:111.10.1186/1471-2474-9-111.
125. Branthwaite H, Aitkins C, Lindley S, Chockalingam N. Surface electromyography of the foot: A protocol for sensor placement. The Foot 2019;41:24-9.https://doi.org/10.1016/j.foot.2019.07.001.
126. Crofts G, Angin S, Mickle KJ, Hill S, Nester CJ. Reliability of ultrasound for measurement of selected foot structures. Gait Posture 2014;39:35-9.10.1016/j.gaitpost.2013.05.022.
127. Samuels JB, Katz B, Weiss RA. Radiofrequency Heating and High-Intensity Focused Electromagnetic Treatment Delivered Simultaneously: The First Sham-Controlled Randomized Trial. Plast Reconstr Surg 2022;149:893e-900e.10.1097/prs.0000000000009030.
128. Perry J, K ST, Davids JR. Gait Analysis: Normal and Pathological Function. Journal of Pediatric Orthopaedics 1992;12.
129. Neumann DA. Kinesiology of the musculoskeletal system : foundations for physical rehabilitation. First edition. St. Louis : Mosby, [2002] ©2002; 2002.
130. Melai T, Schaper NC, Ijzerman TH, De Lange TLH, Willems PJB, Meijer K, et al. Increased forefoot loading is associated with an increased plantar flexion moment. Human Movement Science 2013;32:785-93.https://doi.org/10.1016/j.humov.2013.05.001.
131. Massé-Alarie H, Beaulieu LD, Preuss R, Schneider C. Repetitive peripheral magnetic neurostimulation of multifidus muscles combined with motor training influences spine motor control and chronic low back pain. Clin Neurophysiol 2017;128:442-53.10.1016/j.clinph.2016.12.020.
132. Yan T, Liang M, Peng J, Yu Q, Li Y, Yang J, et al. Cortical Mechanisms Underlying Effects of Repetitive Peripheral Magnetic Stimulation on Dynamic and Static Postural Control in Patients with Chronic Non-Specific Low Back Pain: A Double-Blind Randomized Clinical Trial. Pain Ther 2024;13:953-70.10.1007/s40122-024-00613-6.
133. Redmond AC, Landorf KB, Keenan AM. Contoured, prefabricated foot orthoses demonstrate comparable mechanical properties to contoured, customised foot orthoses: a plantar pressure study. J Foot Ankle Res 2009;2:20.10.1186/1757-1146-2-20.
134. Reed L, Bennett PJ. Changes in foot function with the use of Root and Blake orthoses. J Am Podiatr Med Assoc 2001;91:184-93.10.7547/87507315-91-4-184.
135. Aminian G, Safaeepour Z, Farhoodi M, Pezeshk AF, Saeedi H, Majddoleslam B. The effect of prefabricated and proprioceptive foot orthoses on plantar pressure distribution in patients with flexible flatfoot during walking. Prosthet Orthot Int 2013;37:227-32.10.1177/0309364612461167.
136. Huang YP, Peng HT, Wang X, Chen ZR, Song CY. The arch support insoles show benefits to people with flatfoot on stance time, cadence, plantar pressure and contact area. PLoS One 2020;15:e0237382.10.1371/journal.pone.0237382.
137. Brund RBK, Rasmussen S, Nielsen RO, Kersting UG, Laessoe U, Voigt M. Medial shoe-ground pressure and specific running injuries: A 1-year prospective cohort study. J Sci Med Sport 2017;20:830-4.10.1016/j.jsams.2017.04.001.
138. Wilzman AR, Tenforde AS, Troy KL, Hunt K, Fogel N, Roche MD, et al. Medical and Biomechanical Risk Factors for Incident Bone Stress Injury in Collegiate Runners: Can Plantar Pressure Predict Injury? Orthop J Sports Med 2022;10:23259671221104793.10.1177/23259671221104793.
139. Van Ginckel A, Thijs Y, Hesar NG, Mahieu N, De Clercq D, Roosen P, et al. Intrinsic gait-related risk factors for Achilles tendinopathy in novice runners: a prospective study. Gait Posture 2009;29:387-91.10.1016/j.gaitpost.2008.10.058.
140. Loudon JK, Dolphino MR. Use of foot orthoses and calf stretching for individuals with medial tibial stress syndrome. Foot Ankle Spec 2010;3:15-20.10.1177/1938640009355659.
141. Hsieh RL, Peng HL, Lee WC. Short-term effects of customized arch support insoles on symptomatic flexible flatfoot in children: A randomized controlled trial. Medicine (Baltimore) 2018;97:e10655.10.1097/md.0000000000010655.
142. Lynch DM, Goforth WP, Martin JE, Odom RD, Preece CK, Kotter MW. Conservative treatment of plantar fasciitis. A prospective study. J Am Podiatr Med Assoc 1998;88:375-80.10.7547/87507315-88-8-375.
143. Naderi A, Degens H, Sakinepoor A. Arch-support foot-orthoses normalize dynamic in-shoe foot pressure distribution in medial tibial stress syndrome. Eur J Sport Sci 2019;19:247-57.10.1080/17461391.2018.1503337.
144. Melai T, Th IJ, Schaper NC, De Lange TL, Willems PJ, Meijer K, et al. Calculation of plantar pressure time integral, an alternative approach. Gait Posture 2011;34:379-83.10.1016/j.gaitpost.2011.06.005.
145. Ünver B, Bek N. Effects of Different External Supports on Plantar Pressure-Time Integral and Contact Area in Flexible Flatfoot. J Am Podiatr Med Assoc 2021;111.10.7547/17-214.
146. Tomaro J, Burdett RG. The effects of foot orthotics on the EMG activity of selected leg muscles during gait. J Orthop Sports Phys Ther 1993;18:532-6.10.2519/jospt.1993.18.4.532.
147. Pandy MG, Lin YC, Kim HJ. Muscle coordination of mediolateral balance in normal walking. J Biomech 2010;43:2055-64.10.1016/j.jbiomech.2010.04.010.
148. Jacob CI, Rank B. Abdominal Remodeling in Postpartum Women by Using a High-intensity Focused Electromagnetic (HIFEM) Procedure: An Investigational Magnetic Resonance Imaging (MRI) Pilot Study. J Clin Aesthet Dermatol 2020;13:S16-s20.
149. Ebrecht F, Sichting F. Does neuromuscular electrostimulation have the potential to increase intrinsic foot muscle strength? Foot (Edinb) 2018;35:56-62.10.1016/j.foot.2018.01.006.
150. Taddei UT, Matias AB, Ribeiro FIA, Bus SA, Sacco ICN. Effects of a foot strengthening program on foot muscle morphology and running mechanics: A proof-of-concept, single-blind randomized controlled trial. Phys Ther Sport 2020;42:107-15.10.1016/j.ptsp.2020.01.007.
151. Kelly LA, Racinais S, Cresswell AG. Discharge properties of abductor hallucis before, during, and after an isometric fatigue task. J Neurophysiol 2013;110:891-8.10.1152/jn.00944.2012.
152. Hryvniak D, Wilder RP, Jenkins J, Statuta SM. 15 - Therapeutic Exercise. In Cifu DX (Ed.), Braddom's Physical Medicine and Rehabilitation (Sixth Edition) (pp. 291-315.e4). Elsevier; 2021.
153. Van Wessel T, De Haan A, Van Der Laarse WJ, Jaspers RT. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 2010;110:665-94.10.1007/s00421-010-1545-0.
154. Grgic J, Homolak J, Mikulic P, Botella J, Schoenfeld BJ. Inducing hypertrophic effects of type I skeletal muscle fibers: A hypothetical role of time under load in resistance training aimed at muscular hypertrophy. Med Hypotheses 2018;112:40-2.10.1016/j.mehy.2018.01.012.
155. Abe T, Ozaki H, Abe A, Machida S, Naito H, Loenneke JP. Longitudinal changes of grip strength and forearm muscle thickness in young children. Physiol Int 2023;110:267-76.10.1556/2060.2023.00188.
156. Miyachi R, Koike N, Kodama S, Miyazaki J. Relationship between trunk muscle strength and trunk muscle mass and thickness using bioelectrical impedance analysis and ultrasound imaging. Biomed Mater Eng 2022;33:31-40.10.3233/bme-211218.
157. Santos R, Valamatos MJ, Mil-Homens P, Armada-Da-Silva PaS. Muscle thickness and echo-intensity changes of the quadriceps femoris muscle during a strength training program. Radiography (Lond) 2018;24:e75-e84.10.1016/j.radi.2018.03.010.
158. Lee DR, Choi YE. Effects of a 6-week intrinsic foot muscle exercise program on the functions of intrinsic foot muscle and dynamic balance in patients with chronic ankle instability. J Exerc Rehabil 2019;15:709-14.10.12965/jer.1938488.244.
159. Day EM, Hahn ME. Increased toe-flexor muscle strength does not alter metatarsophalangeal and ankle joint mechanics or running economy. J Sports Sci 2019;37:2702-10.10.1080/02640414.2019.1661562.
160. Shinsuke Matsumoto DF, Hiroshi Osaka. Intrinsic foot muscle training affects plantar pressure distribution during a single-group clinical trial. Kawasaki Journal of Medical Welfare 2019;24:71–6.
161. Safavynia SA, Torres-Oviedo G, Ting LH. Muscle Synergies: Implications for Clinical Evaluation and Rehabilitation of Movement. Top Spinal Cord Inj Rehabil 2011;17:16-24.10.1310/sci1701-16.
162. Ratamess N, Alvar B, Evetoch TK, Housh TJ, Kibler WB, Kraemer W. Progression models in resistance training for healthy adults [ACSM position stand]. Medicine & Science in Sports & Exercise 2009;41:687-708.
163. Kim MK, Lee YS. Kinematic analysis of the lower extremities of subjects with flat feet at different gait speeds. J Phys Ther Sci 2013;25:531-3.10.1589/jpts.25.531.
164. Goo YM, Kim TH, Lim JY. The effects of gluteus maximus and abductor hallucis strengthening exercises for four weeks on navicular drop and lower extremity muscle activity during gait with flatfoot. J Phys Ther Sci 2016;28:911-5.10.1589/jpts.28.911.
165. Akuzawa H, Morito T, Oshikawa T, Kumai T, Kaneoka K. Functional relationship between the foot intrinsic and extrinsic muscles in walking. J Electromyogr Kinesiol 2023;71:102781.10.1016/j.jelekin.2023.102781.
166. Kelly LA, Lichtwark G, Cresswell AG. Active regulation of longitudinal arch compression and recoil during walking and running. J R Soc Interface 2015;12:20141076.10.1098/rsif.2014.1076.
167. Reeser LA, Susman RL, Stern JT, Jr. Electromyographic studies of the human foot: experimental approaches to hominid evolution. Foot Ankle 1983;3:391-407.10.1177/107110078300300607.
168. Farris DJ, Kelly LA, Cresswell AG, Lichtwark GA. The functional importance of human foot muscles for bipedal locomotion. Proc Natl Acad Sci U S A 2019;116:1645-50.10.1073/pnas.1812820116.
169. Okamura K, Kanai S. Comparison of foot kinematics and ground reaction force characteristics during walking in individuals with highly and mildly pronated feet. Gait Posture 2024;107:240-5.10.1016/j.gaitpost.2023.10.011.
170. Tourillon R, Bothorel H, Mckeon PO, Gojanovic B, Fourchet F. Effects of a Single Electrical Stimulation Session on Foot Force Production, Foot Dome Stability, and Dynamic Postural Control. J Athl Train 2023;58:51-9.10.4085/1062-6050-0561.21.
171. Elena S, Dragana Z, Ramina S, Evgeniia A, Orazov M. Electromyographic Evaluation of the Pelvic Muscles Activity After High-Intensity Focused Electromagnetic Procedure and Electrical Stimulation in Women With Pelvic Floor Dysfunction. Sex Med 2020;8:282-9.10.1016/j.esxm.2020.01.004.
172. Nito M, Katagiri N, Yoshida K, Koseki T, Kudo D, Nanba S, et al. Repetitive Peripheral Magnetic Stimulation of Wrist Extensors Enhances Cortical Excitability and Motor Performance in Healthy Individuals. Front Neurosci 2021;15:632716.10.3389/fnins.2021.632716.
173. Struppler A, Binkofski F, Angerer B, Bernhardt M, Spiegel S, Drzezga A, et al. A fronto-parietal network is mediating improvement of motor function related to repetitive peripheral magnetic stimulation: A PET-H2O15 study. Neuroimage 2007;36 Suppl 2:T174-86.10.1016/j.neuroimage.2007.03.033.
174. Ramachandra P, Kumar P, Kamath A, Maiya A. Effect of intrinsic and extrinsic foot muscle strengthening exercises on foot parameters and foot dysfunctions in pregnant women: A randomised controlled trial. International Journal of Therapy and Rehabilitation 2019;26:1-11.10.12968/ijtr.2018.0027.
175. Pabón-Carrasco M, Castro-Méndez A, Vilar-Palomo S, Jiménez-Cebrián AM, García-Paya I, Palomo-Toucedo IC. Randomized Clinical Trial: The Effect of Exercise of the Intrinsic Muscle on Foot Pronation. Int J Environ Res Public Health 2020;17.10.3390/ijerph17134882.
176. De Souza TMM, De Oliveira Coutinho VG, Tessutti VD, De Oliveira NRC, Yi LC. Effects of intrinsic foot muscle strengthening on the medial longitudinal arch mobility and function: A systematic review. J Bodyw Mov Ther 2023;36:89-99.10.1016/j.jbmt.2023.05.010.
177. Lynn SK, Padilla RA, Tsang KK. Differences in static- and dynamic-balance task performance after 4 weeks of intrinsic-foot-muscle training: the short-foot exercise versus the towel-curl exercise. J Sport Rehabil 2012;21:327-33.10.1123/jsr.21.4.327.
178. Fraser J, Hertel J. Effects of a 4-Week Intrinsic Foot Muscle Exercise Program on Motor Function: A Preliminary Randomized Control Trial. Journal of Sport Rehabilitation 2018;28:1-32.10.1123/jsr.2017-0150.
179. Iaquinto JM, Wayne JS. Computational model of the lower leg and foot/ankle complex: application to arch stability. J Biomech Eng 2010;132:021009.10.1115/1.4000939.
180. Huang CK, Kitaoka HB, An KN, Chao EY. Biomechanical evaluation of longitudinal arch stability. Foot Ankle 1993;14:353-7.10.1177/107110079301400609.
181. Basmajian JV, Bentzon JW. An electromyographic study of certain muscles of the leg and foot in the standing position. Surg Gynecol Obstet 1954;98:662-6.
182. Basmajian JV, Stecko G. THE ROLE OF MUSCLES IN ARCH SUPPORT OF THE FOOT. J Bone Joint Surg Am 1963;45:1184-90.
183. Chevalier TL, Hodgins H, Chockalingam N. Plantar pressure measurements using an in-shoe system and a pressure platform: a comparison. Gait Posture 2010;31:397-9.10.1016/j.gaitpost.2009.11.016.
184. Hulshof CM, Van Netten JJ, Dekker MG, Pijnappels M, Bus SA. In-shoe plantar pressure depends on walking speed and type of weight-bearing activity in people with diabetes at high risk of foot ulceration. Clin Biomech (Bristol, Avon) 2023;105:105980.10.1016/j.clinbiomech.2023.105980.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99351-
dc.description.abstract研究背景:足部核心系統分為主動、被動和神經三個次系統,功能性扁平足族群因足部核心系統功能不足,使足部穩定性降低,增加累積性傷害的風險。足部動態功能測量能夠呈現動態情境下的生物力學特徵,因此對足部或下肢傷害可以提供更完整且客觀的評估。足部核心訓練透過徵召足掌內肌收縮,強化足部核心之神經次系統及主動次系統,然而足掌內肌選擇性收縮困難,對足弓高度改善效果有限,因此,利用神經肌肉電刺激能夠增進足部核心訓練的效果。高能量聚焦磁場技術已被證實能促進肌肉生長、增強肌肉功能,並且作用機制可避免電刺激所產生的副作用,目前尚無研究探討此技術在足掌內肌的應用。
研究目的:本研究目的為應用高能量聚焦磁場合併足部核心訓練對足掌內肌進行訓練,探討對扁平足族群足部動態功能的介入成效。另外,透過靜態量測與動態足部測量,探討高能量聚焦磁場合併足部核心訓練分別對足部核心系統主動、被動和神經次系統的效應。
研究方法:本研究招募30位功能性扁平足受試者,隨機分成三組,分別進行高能量聚焦磁場合併足部核心訓練、高能量聚焦磁場、偽高能量聚焦磁場合併足部核心訓練。高能量聚焦磁場每次20分鐘,足部核心訓練包括四種運動,每種運動一組10回、一次三組,每週兩次,總共介入六週。於介入前後,檢測行走時足底負荷與外展拇肌肌電訊號、足掌內肌型態以及靜態足部姿勢。統計方法使用廣義估計式,分析6週介入後,各組在足部負荷參數、足掌內肌型態學參數、外展拇肌肌電訊號及靜態足部姿勢的改變,顯著水平α設為0.05。
研究結果:高能量聚焦磁場合併足部核心訓練組的前足內側峰值壓力(95%CI: -20.75 N/cm2 ~ -7.09 N/cm2, p<0.001)、最大受力(95%CI: -0.72 kg ~ -0.12 kg, p=0.006)、壓力時間積分(95%CI: -0.97 N*min/cm2 ~ -0.30 N*min/cm2, p<0.001),大拇趾峰值壓力(95%CI: -18.70 N/cm2 ~ -3.47 N/cm2, p=0.004)、壓力時間積分(95%CI: -0.88 N*min/cm2 ~ -0.24 N*min/cm2, p=0.001),以及前足外側最大受力(95%CI: -0.69 kg ~ -0.11 kg, p=0.007)顯著較高能量聚焦磁場組減少,壓力中心偏移指數(95%CI: 1.14% ~ 2.68%, p<0.001)較高能量聚焦磁場組顯著增加;偽高能量聚焦磁場合併足部核心訓練組前足外側最大受力(95%CI: -0.62 kg ~ -0.04 kg, p=0.026)也顯著較高能量聚焦磁場組減少。足掌內肌型態學、外展拇肌肌電訊號及靜態足部姿勢無交互作用亦無組間差異,僅高能量聚焦磁場合併足部核心訓練組在介入後,外展拇肌肌電訊號在擺盪前期顯著提升(95%CI: 6.79% ~ 40.80%, p=0.006)。
結論:高能量聚焦磁場合併足部核心訓練較高能量聚焦磁場顯著減少足部負荷壓力,顯示足部核心訓練合併高能量聚焦磁場刺激足掌內肌,在6週訓練後,顯著活化外展拇肌,比起只有高能量聚焦磁場刺激足掌內肌可以顯著減少功能性扁平足步行時前足內側(大拇指)壓力。本研究證明功能性扁平足同時使用高能量聚焦磁場合併足部核心訓練,6週訓練對神經次系統得到明顯改善,有效促進扁平足動態功能。
zh_TW
dc.description.abstractBackground: The foot core system consists of three subsystems which are active, passive, and neural subsystems. Individuals with pronated foot suffer from compromised foot stability due to an inadequate foot core system, thereby consequently increasing the risk of cumulative injury. Dynamic foot function measurements elucidate biomechanics of the foot in dynamic situations, contributing to a more comprehensive assessment of lower limb injuries. Foot core training enhances neural and active subsystems by recruiting intrinsic foot muscles. However, it is found that the difficulty in selectively contracting the intrinsic foot muscles leads to ineffectiveness in changing arch height following foot core training. Therefore, the neuromuscular electrical stimulation is used to improve the effectiveness by selectively stimulating intrinsic foot muscles. High-intensity focused electromagnetic technology has been shown to promote muscle growth, improve muscle function, and reduce the side effects of electrical stimulation. However, there is a lack of studies investigating the application of this technology targeting the intrinsic foot muscles.
Purpose: The aims of this study were to use high-intensity focused electromagnetic technology combined with foot core training targeting the intrinsic foot muscles, to investigate the efficacy on dynamic foot function in individuals with pronated foot. Additionally, static measurements and dynamic foot function evaluation will be conducted to explore the effects of the combined intervention on the active, passive, and neural subsystems of the foot core system.
Methods: This study recruited 30 participants with pronated foot and randomly assigned them to three groups that were high-intensity focused electromagnetic combined with foot core training group, high-intensity focused electromagnetic group and sham high-intensity focused electromagnetic combined with foot core training group. High-intensity focused electromagnetic was performed 20 minutes per session, and the foot core training consisted of four exercises with 10 repetitions per set and three sets per session for each exercise. All participants received the interventions twice a week for six weeks. Plantar load and electromyographic signals of abductor hallucis during gait, ultrasonography for morphological analysis of intrinsic foot muscles, and static foot posture were evaluated at the baseline and six weeks after the intervention. Generalized estimating equations (GEE) was used to compare the pre- and the post-intervention measurements across the three groups, assessing both between-group and within-group interactions. The level of statistical significance was set at α=0.05.
Results: High-intensity focused electromagnetic combined with foot core training group showed significant reduction in peak pressure (medial forefoot: 95%CI: -20.75 N/cm2 ~ -7.09 N/cm2, p<0.001; hallux: 95%CI: -18.70 N/cm2 ~ -3.47 N/cm2, p=0.004), maximal force (medial forefoot: 95%CI: -0.72 kg ~ -0.12 kg, p=0.006; lateral forefoot: -0.69 kg ~ -0.11 kg, p=0.007), pressure-time integral (medial forefoot: 95%CI: -0.97 N*min/cm2 ~ -0.30 N*min/cm2, p<0.001; hallux: 95%CI: -0.88 N*min/cm2 ~ -0.24 N*min/cm2, p=0.001) and increase in center of pressure excursion index (95%CI: 1.14% ~ 2.68%, p<0.001) compared to high-intensity focused electromagnetic group. Sham high-intensity focused electromagnetic combined with foot core training group showed significant reduction in maximal force (lateral forefoot: 95%CI: -0.62 kg ~ -0.04 kg, p=0.026) compared to high-intensity focused electromagnetic group. There were no group-by-time interactions in electromyographic signals of the abductor hallucis, intrinsic foot muscle morphology and static foot posture. Only high-intensity focused electromagnetic combined with foot core training group showed an increase in electromyographic signals of abductor hallucis after the intervention (95%CI: 6.79% ~ 40.80%, p=0.006).
Conclusion: High-intensity focused electromagnetic combined with foot core training group showed a significant improvement in plantar load compared to high-intensity focused electromagnetic group, indicating enhancing the active and neural subsystems lead to better outcomes. High-intensity focused electromagnetic combined with foot core training group exhibited significant increases in electromyographic signals of the abductor hallucis. This demonstrated that combined approach effectively improved the active and neural subsystem respectively, thereby enhancing the dynamic foot function.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:07:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:07:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書................................................................................................ i
誌謝............................................................................................................................... ii
摘要.............................................................................................................................. iii
Abstract.......................................................................................................................... v
目次............................................................................................................................. viii
圖次............................................................................................................................ x
表次........................................................................................................................... xi
第一章 緒論................................................................................................................. 1
1.1 研究背景......................................................................................................... 1
1.2 問題陳述......................................................................................................... 3
1.3 研究目的......................................................................................................... 4
1.4 研究假說......................................................................................................... 4
第二章 文獻回顧......................................................................................................... 7
2.1 扁平足介紹..................................................................................................... 7
2.2 足部靜態姿勢與動態功能量測................................................................... 13
2.3 足部核心系統............................................................................................... 21
2.4 高能量聚焦磁場........................................................................................... 28
第三章 研究方法....................................................................................................... 30
3.1 實驗設計....................................................................................................... 30
3.2 受試者條件................................................................................................... 30
3.3 實驗流程....................................................................................................... 30
3.4 介入方式....................................................................................................... 34
3.5 資料處理....................................................................................................... 35
3.6 統計分析....................................................................................................... 38
第四章 研究結果....................................................................................................... 39
4.1 基本資料....................................................................................................... 39
4.2 足底負荷參數............................................................................................... 39
4.3 足掌內肌型態學參數................................................................................... 40
4.4 外展拇肌肌電訊號....................................................................................... 41
4.5 靜態足部姿勢............................................................................................... 41
第五章 討論............................................................................................................... 42
第六章 結論............................................................................................................... 54
參考資料..................................................................................................................... 55
附錄........................................................................................................................... 108
-
dc.language.isozh_TW-
dc.subject足部核心系統zh_TW
dc.subject功能性扁平足zh_TW
dc.subject足部核心訓練zh_TW
dc.subject高能量聚焦磁場zh_TW
dc.subject足部動態功能zh_TW
dc.subjectdynamic foot functionen
dc.subjecthigh-intensity focused electromagneticen
dc.subjectfoot core trainingen
dc.subjectfoot core systemen
dc.subjectpronated footen
dc.title高能量聚焦磁場合併足部核心訓練對功能性扁平足族群之足部動態功能的影響zh_TW
dc.titleEffects of High-Intensity Focused Electromagnetic Technology Combined with Foot Core Training on Dynamic Foot Function in Individuals with Pronated Footen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee趙遠宏;陳譽仁zh_TW
dc.contributor.oralexamcommitteeYuan-Hung Chao;Yu-Jen Chenen
dc.subject.keyword功能性扁平足,足部核心系統,足部動態功能,高能量聚焦磁場,足部核心訓練,zh_TW
dc.subject.keywordpronated foot,foot core system,dynamic foot function,high-intensity focused electromagnetic,foot core training,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202304132-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college醫學院-
dc.contributor.author-dept物理治療學研究所-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
22.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved