請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99350完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張克平 | zh_TW |
| dc.contributor.advisor | Ko-Ping Chang | en |
| dc.contributor.author | 蘇宸熲 | zh_TW |
| dc.contributor.author | Cheng-Chiung Su | en |
| dc.date.accessioned | 2025-09-09T16:07:17Z | - |
| dc.date.available | 2025-09-10 | - |
| dc.date.copyright | 2025-09-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-30 | - |
| dc.identifier.citation | 1. Julien I E Hoffman , & Samuel Kaplan. et al. (2004). Prevalence of congenital heart disease. Am Heart J. 147(3):425-39. doi: 10.1016/j.ahj.2003.05.003
2. Mei-Hwan Wu, & Hui-Chi Chen. et al. (2010). Prevalence of Congenital Heart Disease at Live Birth in Taiwan. J Pediatr. doi:10.1016/j.jpeds.2009.11.062 3. GBD 2017 Congenital Heart Disease Collaborators. (2020). Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study. The Lancet Child & Adolescent Health. doi: 10.1016/S2352-4642(19)30402-X 4. Mark D Reller, & Matthew J Strickland. et al. (2008). Prevalence of Congenital Heart Defects in Metropolitan Atlanta. 1998–2005. J Pediatr. 153(6):807–813. doi: 10.1016/j.jpeds.2008.05.059 5. P Pradat, & C. Francannet. et al. (2003). The epidemiology of cardiovascular defects, part I: a study based on data from three large registries of congenital malformations. Pediatr Cardiol. 24(3):195-221. doi: 10.1007/s00246-002-9401-6. 6. Tong Yi, & Hairui Sun. et al. (2022). Genetic and Clinical Features of Heterotaxy in a Prenatal Cohort. Front Genet. 19:13:818241. doi: 10.3389/fgene.2022.818241. 7. Jiuann-Huey Lin, & Chang-I Chang. (2002). Intrauterine diagnosis of heterotaxy syndrome. Am Heart J. 143(6):1002-8. doi: 10.1067/mhj.2002.122873. 8. Shu-Jen Yeh , Hui-Chi Chen. et al. (2013). Prevalence, Mortality, and the Disease Burden of Pediatric Congenital Heart Disease in Taiwan. Pediatr Neonatol. 54(2):113-8. doi: 10.1016/j.pedneo.2012.11.010. Epub 2013 Jan 11. 9. Yun-Chun Wu, & Wei-Cheng Lo. et al. (2021). Mortality, morbidity, and risk factors in Taiwan, 1990-2017: findings from the Global Burden of Disease Study 2017. J Formos Med Assoc. 120(6):1340-1349. doi: 10.1016/j.jfma.2020.11.014. 10. The heterotaxy syndrome: associated congenital heart defects and management. Ravi Agarwal, & Roy Varghese. et al. (2020). Indian J Thorac Cardiovasc Surg. 27;37:67–81. doi: 10.1007/s12055-020-00935-y. 11. Isao Shiraishi, & Hajime Ichikawa. et al. (2012). Human Heterotaxy Syndrome, From Molecular Genetics to Clinical Features, Management, and Prognosis. Circ J.;76(9):2066-75. doi: 10.1253/circj.cj-12-0957. 12. Aiko Kawasumi, & Tetsuya Nakamura. et al. (2011). Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev Biol. 15;353(2):321-30. doi: 10.1016/j.ydbio.2011.03.009. 13. Lizhong Liu, Anastasiia Nemashkalo, & Luisa Rezende. et al. (2022). Nodal is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nature Communications. doi.org/10.1038/s41467-022-28149-3. 14. Diego Franco, David Sedmera. et al. (2017). Multiple Roles of Pitx2 in Cardiac Development and Disease. J Cardiovasc Dev Dis. 11;4(4):16. doi: 10.3390/jcdd4040016. 15. P. J. Gage , & H. Suh. et al. (1999). The bicoid-related Pitx gene family in development. Mamm Genome. 10(2):197-200. doi: 10.1007/s003359900970. 16. Chrissa Kioussi , Paola Briata. et al. (2002). Identification of a Wnt/Dvl/beta-Catenin , Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 111(5):673-85. doi: 10.1016/s0092-8674(02)01084-x. 17. K Kitamura, H Miura, & S Miyagawa-Tomita. et al. (1999). Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development. 126(24):5749-58. doi: 10.1242/dev.126.24.5749. 18. Ana Chinchilla, & Houria Daimi. et al. (2011). PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet. 4(3):269-79. doi: 10.1161/CIRCGENETICS.110.958116. 19. Lirong Zhu, & John W. Belmont. et al. (2006). Genetics of human heterotaxias. European Journal of Human Genetics. doi:10.1038/sj.ejhg.5201506. 20. McGrath J. , Somlo S. , Makova S. et al. (2003). Two populations of node monocilia initiate left–right asymmetry in the mouse. Cell. 114(1):61-73. doi: 10.1016/s0092-8674(03)00511-7 21. Delmo Walter EM., Hübler M., Alexi-Meskishvili V. et al. (2009). Staged surgical palliation in hypoplastic left heart syndrome and its variants. J. Card Surg. 24(4):383-91. doi: 10.1111/j.1540-8191.2008.00759.x. 22. 簡哲民。先天性心臟病之病理解剖觀察。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/783v32。 23. Paul Grossfeld , Shuyi Nie , Lizhu Lin. et al. (2019). Hypoplastic Left Heart Syndrome: A New Paradigm for an Old Disease? J Cardiovasc Dev Dis. 23;6(1):10. doi: 10.3390/jcdd6010010. 24. Peter P. Roeleveld, & David M. Axelrod. et al. (2019). Hypoplastic left heart syndrome: from fetus to fontan. Cardiol Young. 28(11):1275-1288. doi: 10.1017/S104795111800135X. 25. Christo I. Tchervenkov , Richard Tang. et al. (2022). Hypoplastic Left Ventricle: Hypoplastic Left Heart Complex. World J Pediatr Congenit Heart Surg. 13(5):631-636. doi: 10.1177/21501351221116016. 26. Jeffrey A Feinstein, & D Woodrow Benso. et al. (2012). Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol. 59(1 Suppl):S1-42. doi: 10.1016/j.jacc.2011.09.022. 27. Marshall L Jacobs 1, Jeffrey P Jacobs. et al. (2019). The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2019 Update on Outcomes and Quality. Ann Thorac Surg. 108(3):671-679. doi: 10.1016/j.athoracsur. 28. Nina Øyen, & Gry Poulsen. et al. (2009). Recurrence of congenital heart defects in families. Circulation. 120:295–301. doi: 10.1161/CIRCULATIONAHA.109.857987. 29. Kim L McBride , Lisa Marengo. et al. (2005). Epidemiology of noncomplex left ventricular outflow tract obstruction malformations (aortic valve stenosis, coarctation of the aorta, hypoplastic left heart syndrome) in Texas. Birth Defects Res A Clin Mol. 73(8):555-61. doi: 10.1002/bdra.20169 30. Hisato Yagi , Xiaoqin Liu. et al. (2021). The Genetic Landscape of Hypoplastic Left Heart Syndrome, Considering the Genetic Architecture of Hypoplastic Left Heart Syndrome. Pediatr Cardiol. doi: 10.1007/s00246-018-1861-4. 31. Naila Gaber, & Mark Gagliardi. et al. (2023). Fetal Reprogramming and Senescence in Hypoplastic Left Heart Syndrome and in Human Pluripotent Stem Cells during Cardiac Differentiation. Am J Pathol. 183(3):720-34. doi: 10.1016/j.ajpath.2013.05.022. 32. Campisi J., & Bhaumik D. et al. (2007). Two faces of p53: aging and tumor suppression. Rodier F., Nucleic Acids Res. 35(22):7475-84. doi: 10.1093/nar/gkm744. 33. Jagdish C Mohan , Vishwas Mohan. et al. (2016). Hypoplastic right heart syndrome, absent pulmonary valve, and non-compacted left ventricle in an adult. Indian Heart J. 68 Suppl 2(Suppl 2):S229-S232. doi: 10.1016/j.ihj.2016.03.030. 34. Chadi Dib , Philip A Araoz, Norman P Davies. et al. (2012). Hypoplastic right-heart syndrome presenting as multiple miscarriages. Tex Heart Inst J. 39(2):249. 35. Aggeliki Dimopoulos , & Robert J Sicko. et al. (2017). Rare copy number variants in a population-based investigation of hypoplastic right heart syndrome. Birth Defects Res. 109(1):8–15. doi: 10.1002/bdra.23586. 36. Jeffrey P. Jacobs , Robert H. Anderson. et al. (2007). The nomenclature, definition, and classification of cardiac structures in the setting of heterotaxy. Cardiol Young. 17 Suppl 2:1-28. doi: 10.1017/S1047951107001138. 37. Ravi Agarwal , Roy Varghese. et al. (2020). The heterotaxy syndrome: associated congenital heart defects and management. Indian J Thorac Cardiovasc Surg. 27;37(Suppl 1):67–81. doi: 10.1007/s12055-020-00935-y. 38. Improved national prevalence estimates for 18 selected major birth defects--United States, 1999-2001. Morb Mortal Wkly Rep. 2006 Jan 06;54(51):1301-5. 39. Jin-Chung Shih, Shu-Chien Huang, & Chia-Hui Lin. et al. (2012). Diagnosis of Transposition of the Great Arteries in the Fetus. Journal of Medical Ultrasound. doi:10.1016/j.jmu.2012.04.005 40. Michael W. Szymanski; Sheila M. Moore; Stacy M. Kritzmire; Aby Thomas; Amandeep Goyal. 2025. Transposition of the Great Arteries. StatPearls [Internet]. Treasure Island (FL). 41. Marta Unolt, & Carolina Putotto. et al. (2013). Transposition of great arteries: new insights into the pathogenesis. Frontiers in Pediatrics. doi: 10.3389/fped.2013.00011. 42. Angela E Lin, & Sergey Krikov. et al. (2014). Laterality defects in the national birth defects prevention study (1998–2007): birth prevalence and descriptive epidemiology. Am J Med Genet A, 164A(10):2581-91. doi: 10.1002/ajmg.a.36695. 43. María V. de la Cruz. Manuel Arteaga. et al. (1981). Complete transposition of the great arteries: types and morphogenesis of ventriculoarterial discordance. Am Heart J. 102(2):271-81. doi: 10.1016/s0002-8703(81)80018-x. 44. Horenstein MS, Diaz-Frias J, Guillaume M. Tetralogy of Fallot. [Updated 2024 Dec 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513288/ 45. Matos-Nieves A, Yasuhara J, Garg V. et al. (2019). Another Notch in the Genetic Puzzle of Tetralogy of Fallot. Circ Res. 124(4):462-464. doi: 10.1161/CIRCRESAHA.118.314520. 46. Chung IM, Rajakumar G. et al. (2016). Genetics of Congenital Heart Defects: The NKX2-5 Gene, a Key Player. Genes (Basel). 23;7(2):6. doi: 10.3390/genes7020006. 47. Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL. (2007). American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 115(23):3015-38. doi:10.1161/CIRCULATIONAHA.106.183056. 48. Juan Villafañe , Jeffrey A Feinstein, Kathy J Jenkin. et al. (2013). Hot topics in tetralogy of Fallot. Adult Congenital and Pediatric Cardiology Section. J Am Coll Cardiol. 10;62(23):2155-66. doi: 10.1016/j.jacc.2013.07.100. 49. M. E. Brickner , L. D. Hillis, R. A. Lange. et al. (2000). Congenital heart disease in adults. Second of two parts. N Engl J Med. 342(5):334-42. doi: 10.1056/NEJM200002033420507. 50. Anne Marie Valente , Kimberlee Gauvreau. et al. (2014). Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart. 100(3):247-53. doi: 10.1136/heartjnl-2013-304958. 51. Springett A., Wellesley D., Greenlees R., Loane M. et al. (2015). Congenital anomalies associated with trisomy 18 or trisomy 13: A registry-based study in 16 European countries, 2000-2011. Am J Med Genet A. 167A(12):3062-9. doi: 10.1002/ajmg.a.37355. 52. Stylianos E Antonarakis , Robert Lyle. et al. (2004). Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet. 5(10):725-38. doi: 10.1038/nrg1448. 53. Ambreen Asim, Ashok Kumar, Srinivasan Muthuswamy. et al. (2015). Down syndrome: an insight of the disease. J Biomed Sci. 11;22(1):41. doi: 10.1186/s12929-015-0138-y. 54. Ambreen Asim, Ashok Kumar, Srinivasan Muthuswamy. et al. (2015). Down syndrome: an insight of the disease. J Biomed Sci. 11;22(1):41. doi: 10.1186/s12929-015-0138-y. 55. Sanaa Benhaourech , Abdenasser Drighi. et al. (2016). Congenital heart disease and Down syndrome: various aspects of a confirmed association. Cardiovasc J Afr. 27(5):287-290. doi: 10.5830/CVJA-2016-019. 56. Lyndal Kearney , David Gonzalez De Castro, Jenny Yeung . et al. (2009). Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood. 15;113(3):646-8. doi: 10.1182/blood-2008-08-170928. 57. Geoffrey Holmes. (2014). Gastrointestinal disorders in Down syndrome. Gastroenterol Hepatol Bed Bench. 7(1):6-8。 58. Yousra Hawli, Mona Nasrallah. et al. (2009). Endocrine and musculoskeletal abnormalities in patients with Down syndrome.. Nat Rev Endocrinol. 5(6):327-34. doi: 10.1038/nrendo.2009.80. 59. M. P. Janicki , A J Dalton. et al. (2009). Prevalence of dementia and impact on intellectual disability services. Ment Retard. 38(3):276-88. doi: 10.1352/0047-6765(2000)038<0276:PODAIO>2.0.CO;2. 60. Bugge M, Collins A, Petersen MB, Fisher J. et al. (1998). Non-disjunction of chromosome 18. Hum Mol Genet. 7(4):661-9. doi: 10.1093/hmg/7.4.661. 61. Krista S Crider , Richard S Olney. et al. (2008). Trisomies 13 and 18: population prevalences, characteristics, and prenatal diagnosis. Am J Med Genet A. 146A(7):820-6. doi: 10.1002/ajmg.a.32200. 62. Palanikumar Balasundaram, Indirapriya Darshini Avulakunta. (2025). Edwards Syndrome. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing 63. Anna Springett, Diana Wellesley, Ruth Greenlees, & Maria Loane. et al. (2015). Congenital anomalies associated with trisomy 18 or trisomy 13: A registry-based study in 16 European countries. Am J Med Genet A. 167A(12):3062-9. doi: 10.1002/ajmg.a.37355. 64. Petry P, Polli JB, Mattos VF, Rosa RC, Zen PR. et al. (2013). Clinical features and prognosis of a sample of patients with trisomy 13 (Patau syndrome) from Brazil. Am J Med Genet A. 161A(6):1278-83. doi: 10.1002/ajmg.a.35863. 65. M. J. Khoury , J. F. Cordero, S Rasmussen. et al. (1988). Ectopiacordis, midline defects and chromosome abnormalities: An epidemiologic perspective. Am J Med Genet. 30(3):811-7. doi: 10.1002/ajmg.1320300314. 66. Morales JM, Patel SG, Duff JA, Villareal RL, Simpson JW. et al. (2000). Ectopia cordis and other midline defects. Ann Thorac Surg. 70(1):111–4. doi: 10.1016/s0003-4975(00)01388-6. 67. MAURICE L. BLATT, M.D.; MARY ZELDES, M.D. (1942). Ectopia cordis: Report of a case and review of the literature. Am J Dis Child. 63;(3):515-529. doi:10.1001/archpedi.1942.02010030085005. 68. J R CANTRELL, J A HALLER, M M RAVITCH. (1958). A syndrome of congenital defects involving the abdominal wall, sternum, diaphragm, pericardium, and heart. Surg Gynecol Obstet. 107:602–14. 69. Christine H Attenhofer Jost, Heidi M Connolly, Joseph A Dearani. et al. (2007). Ebstein's anomaly. Circulation. Jan 16;115(2):277-85. doi: 10.1161/CIRCULATIONAHA.106.6193 70. Shi-Min Yuan. (2017). Ebstein's Anomaly: Genetics, Clinical Manifestations, and Management. Pediatr Neonatol. 58(3):211-215. doi: 10.1016/j.pedneo.2016.08.004. 71. Joseph A Dearani, Bassem N Mora , Timothy J Nelson. et al. (2015). Ebstein anomaly review: what's now, what's next? Expert Rev Cardiovasc Ther. 13(10):1101-9. doi: 10.1586/14779072.2015.1087849. 72. Joseph A Dearani, Bassem N Mora , Timothy J Nelson. et al. (2015). Ebstein anomaly review: what's now, what's next? Expert Rev Cardiovasc Ther. 13(10):1101-9. doi: 10.1586/14779072.2015.1087849. 73. Jenkins N.P., & Ward C.. et al. (1999). Coarctation of the aorta: natural history and outcome after surgical treatment. QJM. 92(7):365-71. doi: 10.1093/qjmed/92.7.365. 74. Salciccioli K.B., & Zachariah J.P.. (2023). Coarctation of the Aorta: Modern Paradigms Across the Lifespan.. Hypertension. 80(10):1970-1979. doi: 10.1161/HYPERTENSIONAHA.123.19454. 75. Law M.A., Collier S.A., Sharma S., et al. (2025). Coarctation of the Aorta. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Available from: https://www.ncbi.nlm.nih.gov/books/NBK430913/ 76. McDonald-McGinn D.M., Hain H.S., Emanuel B.S., Zackai E.H.. (2021). 22q11.2 deletion syndrome.. pp. 621–626.e1. https:// pubmed.ncbi.nlm.nih.gov/20301696/ 77. Botto L.D., May K., Fernhoff P.M., Correa A., Coleman K., Rasmussen S.A., Merritt R.K., O'Leary LA.. (2003). A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics. 112:101-7. doi: 10.1542/peds.112.1.101. 78. Campbell I.M., Sheppard S.E., Crowley T.B.. (2018). What is new with 22q? An update from the 22q and You Center at the Children's Hospital of Philadelphia. Am J Med Genet A. 176:2058-69. doi: 10.1002/ajmg.a.40637. 79. Codd, M. B., Sugrue, D. D., Gersh, B. J. & Melton, L. J. 3rd. (1989). Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in olmsted county, minnesota., 1975–1984. Circulation 80, 564–572. doi: 10.1161/01.cir.80.3.564. 80. 蘇柏學、李文煌、趙庭興(2023)。肥厚性心肌病變最新診斷及治療。內科學誌,34(2),61-71。https://doi.org/10.6314/JIMT.202304_34(2).01 81. Kim J., Kim P., Hui C.C.. et al. (2001). The VACTERL association: lessons from the Sonic hedgehog pathway. Clin Genet.59(5):306–15. doi:10.1034/j.1399-0004.2001.590503.x. 82. Solomon B.D.. (2011). VACTERL/VATER Association. Orphanet J Rare Dis. 6:56. doi:10.1186/1750-1172-6-56. 83. Olaf Bergmann , & Ratan D. Bhardwaj. et al. (2009). Evidence for cardiomyocyte renewal in humans. Science. 324(5923):98–102. doi: 10.1126/science.1164680 84. . Eldad Tzahor , Kenneth D. Poss. et al. (2017). Cardiac regeneration strategies: staying young at heart. Science. 356(6342):1035-1039. doi: 10.1126/science.aam5894. 85. Taubenberger A.V., Baum B., Matthews H.K.. et al. (2020). The Mechanics of Mitotic Cell Rounding. Front Cell Dev Biol. 8:687. doi: 10.3389/fcell.2020.00687. 86. Lopaschuk, G. D. & Jaswal, J. S. et al. (2010). Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56, 130–140. doi: 10.1097/FJC.0b013e3181e74a14. 87. Heallen T., Zhang M., Wang J., Bonilla-Claudio M., Klysik E., Johnson R.L., Martin J.F.. (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 22;332(6028):458-61. doi: 10.1126/science.1199010. 88. Alexander von Gise , Zhiqiang Lin, Karin Schlegelmilch. et al. (2012). YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA. 109(7):2394-9. doi: 10.1073/pnas.1116136109. 89. Rich Gang Li , Xiao Li , Yuka Morikawa. et al. (2024). YAP induces a neonatal-like pro-renewal niche in the adult heart. Nat Cardiovasc Res. 3(3):283-300. doi: 10.1038/s44161-024-00428-w. 90. Marion Baniol , Francesca Murganti , Agata Smialowska. et al. (2011). Identification and characterization of distinct cell cycle stages in cardiomyocytes using the FUCCI transgenic system. Exp Cell Res. 408:112880. doi: 10.1016/j.yexcr.2021.112880 91. Morikawa Y, Kim JH, Li RG, Liu L, Liu S, Deshmukh V, Hill MC, Martin JF. (2025). YAP Overcomes Mechanical Barriers to Induce Mitotic Rounding and Adult Cardiomyocyte Division. Circulation. 151(1):76-93. doi:10.1161/CIRCULATIONAHA.123.066004 92. Morikawa Y, Kim JH, Li RG, Liu L, Liu S, Deshmukh V, Hill MC, Martin JF. (2025). YAP Overcomes Mechanical Barriers to Induce Mitotic Rounding and Adult Cardiomyocyte Division. Circulation. 151(1):76-93. doi:10.1161/CIRCULATIONAHA.123.066004 93. Rong Zou , Yahui Xu , Yifan Feng. (2020). YAP nuclear-cytoplasmic translocation is regulated by mechanical signaling, protein modification, and metabolism. Cell Biol Int. 44(7):1416-1425. doi: 10.1002/cbin.11345. 94. Jiang L, Li J, Zhang C, Shang Y, Lin J. (2020). YAP‑mediated crosstalk between the Wnt and Hippo signaling pathways (Review). Mol Med Rep. 22(5):4101-4106. doi: 10.3892/mmr.2020.11529. 95. Tsutsumi R., Masoudi M., Takahashi A., Fujii Y., Hayashi T., Kikuchi I., Satou Y., Taira M., Hatakeyama M.. (2013). YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Dev Cell. 26(6):658-65. doi: 10.1016/j.devcel.2013.08.013. 96. Mei Xin , Yuri Kim, Lillian B Sutherland, Xiaoxia Qi. et al. (2011). Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 4(196):ra70. doi: 10.1126/scisignal.2002278. 97. Xinxiu Xu, Kang Jin, Abha S. Bais, Wenjuan Zhu. et al. (2022). iPSC modeling shows uncompensated mitochondrial mediated oxidative stress underlies early heart failure in hypoplastic left heart syndrome. Cell Stem Cell. 29(5):840-855.e7. doi: 10.1016/j.stem.2022.03.003. 98. Todd Heallen et al. (2011) Hippo Pathway Inhibits Wnt Signaling to Restrain Cardiomyocyte Proliferation and Heart Size. Science. 332,458-461(2011). doi:10.1126/science.1199010 99. Yoo, S. J., Lim, T. H., Park, J. H., & Han, M. C. (1980). Transpositions and malpositions of the great arteries. Journal of the korean radiological society, 16(2), p. 402–413. 100. Xiao Y., Hill M. C., Zhang M., Martin T. J., Morikawa Y., Wang S., et al. (2018). Hippo signaling plays an essential role in cell state transitions during cardiac fibroblast development. Dev. Cell 45 153–169.e6. 10.1016/j.devcel.2018.03.019 101. Lai J. K. H., Collins M. M., Uribe V., Jimenez-Amilburu V., Guenther S., Maischein H.-M., et al. (2018). The Hippo pathway effector Wwtr1 regulates cardiac wall maturation in zebrafish. Development 145:dev159210. 10.1242/dev.159210 102. Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, Liu J. (2016). Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation. Sci Rep. 15;6:23188. doi: 10.1038/srep23188 103. Ye, L., Yin, M., Xia, Y., Jiang, C., Hong, H., & Liu, J. (2015). Decreased Yes-Associated Protein-1 (YAP1) Expression in Pediatric Hearts with Ventricular Septal Defects. PloS one, 10(10), e0139712. doi:10.1371/journal.pone.0139712 104. Liu X., Yagi H., Saeed S., Bais A.S., Gabriel G.C., Chen Z., Peterson K.A., Li Y., Schwartz M.C., Reynolds W.T., et al. (2017). The complex genetics of hypoplastic left heart syndrome. Nat. Genet. 49:1152–1159. doi: 10.1038/ng.3870. 105. Yagi, H., & Lo, C. W. (2023). Left-Sided Heart Defects and Laterality Disturbance in Hypoplastic Left Heart Syndrome. Journal of cardiovascular development and disease, 10(3), 99. doi:10.3390/jcdd10030099 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99350 | - |
| dc.description.abstract | 背景與論述重點
本論文收錄台大醫院二十年來解剖之新生兒與兒童先天性心臟病之系列案例,進行病因病理的回顧性研究,針對不同類型的先天性結構性心臟異常作統計與分析,並就其作系統性的文獻回顧,並針對先天性心臟病案例的心肌切片做特定蛋白的免疫組織染色。 材料和方法 本研究收錄了自1998年至2024年在台灣大學附設醫院解剖的七十五例胎兒、新生兒與兒童先天性心臟病的解剖個案,將所有的案例解剖報告或臨床報告中記載有先天性心臟病的診斷進行紀錄,並把案例的死亡原因進行統整。同時,將這些解剖案例的心肌細胞切片(心室肌肉切片)作鏡檢觀察,並挑特並先天性心臟病案例進行YAP-1蛋白免疫組織抗體染色,與對照組作比較。 結果與討論 七十五例兒童先天性心臟病死亡的解剖個案中,其中女性有34例(45.3%),男性41例(54.6%)。解剖年紀統計,未出生的胎兒有15例(20%),出生後的新生兒有22例(29.3%),嬰兒(infant)有32例(42.6%),一歲以上的幼童(child)有6例(8%)。主要診斷為複雜性先天性心臟病的有54例(72%),單純性先天性心臟病共有8例(10.6%),染色體異常合併先天性心臟病有8例(10.6%),其它先天性心臟病診斷有5例(6.6%)。複雜性先天性心臟病佔比最多的為異位綜合症 (heterotoxy syndrome)(n=14, 18.6%),其次為左心發育不全症候群(Hypoplastic left heart syndrome )(n=12, 16%),排名第三為大動脈轉位 (Transposition of great aorta)(n=10, 13.3%)。死亡原因與機轉中,15例的胎兒先天性心臟病案例都是接受中止姙娠(termination)而進行引產手術,出生後的新生兒、嬰兒或兒童案例中,敗血性休克有29例,心因性休克有30例,神經性休克有1例。正常對照組的心肌切片中,所有的案例(n=17)YAP-1蛋白均呈現細胞核保留染色的表現(preserved nuclear expression),並且依胎兒、新生兒與兒童不同的年紀,YAP-1蛋白的免疫染色在核染色的表現範圍與強度會隨年紀增長而減弱。左心發育不全症候群的案例中(n=11),有72.7%(8/11)的案例的心肌切片YAP-1蛋白免疫染色呈現喪失表現(p值=0.00022);右心發育不全症候群(n=2)與大動脈轉位(n=7)的案例,也都呈現統計上具意義的喪失表現,核染色喪失的比例分別是100% (2/2, p值= 0.0095)與71.4% (5/7, p值=0.0014)。相對來說,異位綜合症(n=7)案例的YAP-1蛋白免疫染色則是只有28.6%(2/7, p值= 0.0877)呈現核喪失染色,其餘均為保留染色(preserved nuclear expression)。 結論 本研究收錄了台大醫院近二十年,七十五例的胎兒、新生兒、兒童的先天性心臟病解剖案例,其中持續性動脈導管是出現頻率最高的先天性心臟異常,且多數收錄的死亡案例為複雜性先天性心臟病。解剖案例的死亡的原因主要為與先天性心臟結果異常相關的心因性休克,或是感染性相關的敗血性休克。除了異位綜合症之外,左心發育不全症候群、右心發育不全症候群與大動脈轉位的死亡案例之心肌切片之YAP1免疫組織染色呈現具統計上意義的喪失表現。 | zh_TW |
| dc.description.abstract | Background
This thesis includes a series of congenital heart disease cases in neonates and children collected from autopsies performed over the past twenty years at National Taiwan University Hospital. It conducts a retrospective study on the etiology and pathology of these cases, provides statistical analysis of different types of congenital structural cardiac anomalies, and includes a systematic review of the related literature. In addition, immunohistochemical staining for specific proteins related to congenital heart disease is performed. Material and method This study included 75 autopsy cases of fetuses, neonates, and children with congenital heart disease (CHD) conducted at National Taiwan University Hospital between 1998 and 2024. Diagnoses of CHD documented in autopsy or clinical reports were systematically recorded, and the causes of death for each case were reviewed and categorized. In addition, myocardial tissue sections (ventricular myocardium) from these autopsy cases were examined microscopically. Selected cases with congenital heart disease were further analyzed by immunohistochemical staining for YAP1 protein and compared with a control group. Result and discussion Among the 75 pediatric autopsy cases of congenital heart disease (CHD), 34 were female (45.3%) and 41 were male (54.6%). Based on age at autopsy, there were 15 fetal cases (20%), 22 neonatal cases (29.3%), 32 infant cases (42.6%), and 6 cases in children over one year old (8%). Regarding the primary diagnosis, 54 cases (72%) involved complex congenital heart disease, 8 cases (10.6%) involved simple congenital heart disease, 8 cases (10.6%) were associated with chromosomal abnormalities and CHD, and 5 cases (6.6%) were categorized under other types of congenital heart disease. Among the complex CHD cases, the most common diagnosis was heterotaxy syndrome (n=14, 18.6%), followed by hypoplastic left heart syndrome (HLHS) (n=12, 16%), and transposition of the great arteries (TGA) (n=10, 13.3%). As for the causes and mechanisms of death, all 15 fetal CHD cases underwent termination of pregnancy via induced labor. Among neonates, infants, and children, septic shock was reported in 29 cases, cardiogenic shock in 30 cases, and neurogenic shock in 1 case. In the control group, all myocardial tissue sections (n=17) showed preserved nuclear expression of YAP1 protein. Notably, the extent and intensity of nuclear YAP1 immunostaining tended to decrease with increasing age from fetus to child. In the HLHS group (n=11), 72.7% (8/11) of cases demonstrated loss of nuclear YAP1 expression (p = 0.00022). Similarly, significant loss of nuclear expression was observed in right heart hypoplasia cases (n=2, 100%, p = 0.0095) and TGA cases (n=7, 71.4%, 5/7, p = 0.0014). In contrast, among heterotaxy syndrome cases (n=7), only 28.6% (2/7) showed loss of nuclear YAP1 staining (p = 0.0877), while the remaining cases retained preserved nuclear expression. Conclusion This study included 75 autopsy cases of fetuses, neonates, and children with congenital heart disease (CHD) collected over the past two decades at National Taiwan University Hospital. Among these cases, patent ductus arteriosus (PDA) was the most frequently observed congenital cardiac anomaly, and the majority of deaths were associated with complex congenital heart disease. The primary causes of death in these autopsy cases were cardiogenic shock related to the underlying cardiac malformations, and septic shock due to infection. Except for heterotaxy syndrome, cases of hypoplastic left heart syndrome, right heart hypoplasia, and transposition of the great arteries demonstrated a statistically significant loss of YAP1 expression | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:07:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-09T16:07:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 vi 目次 vii 圖次 xii 表次 xiii 第一章 緒綸 1 1.1 研究背景與動機 1 1.2 研究目的與目標 4 第二章 文獻探討 7 2.1 先天性心臟病個論 7 2.1.1 左心發育不全症候群 7 2.1.2 右心發育不全症候群 10 2.1.3 異位症候群 10 2.1.4 大動脈轉位 16 2.1.5 法洛氏四重症 18 2.1.6 染色體異常與先天性心臟病 20 2.1.6.1 染色體二十一號三聯症 20 2.1.6.2 染色體十八號三聯症 21 2.1.6.3 染色體十三號三聯症 22 2.1.7 異位心 23 2.1.8 埃勃斯坦畸形 24 2.1.9 雙右心室出口症 25 2.1.10 主動脈窄縮 26 2.1.11 共同動脈幹 26 2.1.12 22q11.2缺失症候群 27 2.1.13 肥厚性心肌病變 28 2.1.14 VACTERL 症候群 29 2.2 心肌細胞的發育與分子機制 30 2.2.1 Hippo 訊息傳遞路徑(The Hippo pathway)與YAP蛋白 31 2.2.2 Hippo、Wnt 訊息傳遞路徑與YAP蛋白的橋接 35 第三章 材料與方法 38 第四章 結果 39 4.1 先天性心臟病的主要診斷 43 4.2 先天性心臟病的死亡原因與機制 64 4.3 病理組織切片發現 69 4.4 病理組織免疫染色 72 第五章 討論 81 參考文獻 96 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | YAP-1蛋白 | zh_TW |
| dc.subject | 先天性心臟病 | zh_TW |
| dc.subject | 大動脈轉位 | zh_TW |
| dc.subject | 異位症候群 | zh_TW |
| dc.subject | 左心發育不全症候群 | zh_TW |
| dc.subject | hypoplastic left heart syndrome | en |
| dc.subject | Yes-associated protein 1 | en |
| dc.subject | transposition of great arteries | en |
| dc.subject | heterotaxy syndrome | en |
| dc.subject | Congenital heart disease | en |
| dc.title | 台灣大學附設醫院胎兒、新生兒與兒童先天性心臟病的病理解剖案例之回溯性探討 | zh_TW |
| dc.title | Retrospective autopsy investigation of congenital heart disease about fetus, infant and child in NTUH | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 翁德怡 | zh_TW |
| dc.contributor.coadvisor | Te-I Weng | en |
| dc.contributor.oralexamcommittee | 黃書健;許倬憲 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Chien Huang;Cho-Hsien Hsu | en |
| dc.subject.keyword | 先天性心臟病,YAP-1蛋白,左心發育不全症候群,異位症候群,大動脈轉位, | zh_TW |
| dc.subject.keyword | Congenital heart disease,Yes-associated protein 1,hypoplastic left heart syndrome,heterotaxy syndrome,transposition of great arteries, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202501286 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-02 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 法醫學研究所 | - |
| dc.date.embargo-lift | 2025-09-10 | - |
| 顯示於系所單位: | 法醫學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
