Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99347
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor江伯倫zh_TW
dc.contributor.advisorBor-Luen Chiangen
dc.contributor.author卓姸儒zh_TW
dc.contributor.authorYan-Ru Choen
dc.date.accessioned2025-09-09T16:06:43Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-07-28-
dc.identifier.citation1. Organization, W. H. (2022). WHO recommendations on antenatal corticosteroids for improving preterm birth outcomes: World Health Organization.
2. Chawanpaiboon, S., Vogel, J. P., Moller, A. B., et al. (2019). Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Global Health, 7(1), 37-46.
3. Ward, R. M., & Beachy, J. C. (2003). Neonatal complications following preterm birth. BJOG: An International Journal of Obstetrics and Gynaecology, 110, 8-16.
4. Kim, J. H., Lee, S. M., & Lee, Y. H. (2018). Risk factors for respiratory distress syndrome in full-term neonates. Yeungnam University Journal of Medicine, 35(2), 187-191.
5. Sultana, S., Vogel, J. P., & Oladapo, O. T. (2023). The efficacy of antenatal corticosteroids to improve preterm newborn outcomes in low-resource countries: Are we there yet? BJOG: An International Journal of Obstetrics and Gynaecology.
6. Sweet, D. G., Carnielli, V. P., Greisen, G., et al. (2023). European consensus guidelines on the management of respiratory distress syndrome: 2022 update. Neonatology, 120(1), 3-23.
7. Jobe, A. H., Kemp, M., Schmidt, A., Takahashi, T., Newnham, J., & Milad, M. (2021). Antenatal corticosteroids: a reappraisal of the drug formulation and dose. Pediatric Research, 89(2), 318-325.
8. Parker, R., & Dalziel, S. R. (2020). Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database of Systematic Reviews 12(12).
9. Jobe, A. H. (2006). Pharmacology review: why surfactant works for respiratory distress syndrome. NeoReviews, 7(2), e95-e106.
10. Khawar, H., & Marwaha, K. (2023). Surfactant. In StatPearls [Internet]: StatPearls Publishing.
11. Ng, E. H., & Shah, V. (2021). Guidelines for surfactant replacement therapy in neonates. Paediatrics & Child Health, 26(1), 35-41.
12. Guttentag, S., & Foster, C. D. (2011). Update in surfactant therapy. NeoReviews, 12(11), e625-e634.
13. Ramaswamy, V. V., Abiramalatha, T., Bandyopadhyay, T., Boyle, E., & Roehr, C. C. (2022). Surfactant therapy in late preterm and term neonates with respiratory distress syndrome: a systematic review and meta-analysis. Archives of Disease in Childhood-Fetal and Neonatal Edition, 107(4), 393-397.
14. De Luca, D., Cogo, P., Kneyber, M. C., et al. (2021). Surfactant therapies for pediatric and neonatal ARDS: ESPNIC expert consensus opinion for future research steps. Critical Care, 25, 1-12.
15. Jobe, A. H., Mitchell, B. R., & Gunkel, J. H. (1993). Beneficial effects of the combined use of prenatal corticosteroids and postnatal surfactant on preterm infants. American Journal of Obstetrics and Gynecology, 168(2), 508-513.
16. Kari, M. A., Eronen, M., Virtanen, M., et al. (1994). Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant: a randomized placebo-controlled multicenter study. Pediatrics, 93(5), 730-736.
17. Heljić, S., Maksić, H., Kalkan, I., & Krđalić, B. (2009). The effects of antenatal corticosteroids and surfactant replacement on neonatal respiratory distress syndrome. Bosnian Journal of Basic Medical Sciences, 9(3), 225.
18. Liggins, G. C. (1969). Premature delivery of foetal lambs infused with glucocorticoids. Journal of Endocrinology, 45(4), 515-523.
19. Liggins, G. C., & Howie, R. N. (1972). A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics, 50(4), 515-525.
20. Gilstrap, L. C., Christensen, R., Clewell, W. H., et al. (1995). Effect of corticosteroids for fetal maturation on perinatal outcomes: NIH consensus development panel on the effect of corticosteroids for fetal maturation on perinatal outcomes. Journal of the American Medical Association, 273(5), 413-418.
21. Practice, C. o. O. (2002). ACOG committee opinion: antenatal corticosteroid therapy for fetal maturation.
22. Fee, E. L., Stock, S. J., & Kemp, M. W. (2023). Antenatal steroids: benefits, risks, and new insights. Journal of Endocrinology, 258(2), e220306.
23. Bonanno, C., & Wapner, R. J. (2009). Antenatal corticosteroid treatment: what's happened since Drs Liggins and Howie? American Journal of Obstetrics and Gynecology, 200(4), 448-457.
24. Ali, I., Batta, R. I., Yaseen, R. M., & Hasson, J. (2020). Antenatal corticosteroids and fetal lung immaturity in preterm birth. Heliyon, 6(6), e04116.
25. Han, S., & Mallampalli, R. K. (2015). The role of surfactant in lung disease and host defense against pulmonary infections. Annals of the American Thoracic Society, 12(5), 765-774.
26. Hentschel, R., Bohlin, K., van Kaam, A., Fuchs, H., & Danhaive, O. (2020). Surfactant replacement therapy: from biological basis to current clinical practice. Pediatric Research, 88(2), 176-183.
27. Nkadi, P. O., Merritt, T. A., & Pillers, D.-A. M. (2009). An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Molecular Genetics and Metabolism, 97(2), 95-101.
28. Ahmad, S., & Ahmad, A. (2017). Chapter 6 - Epithelial regeneration and lung stem cells. In V. K. Sidhaye & M. Koval (Eds.), Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease (pp. 91-102). Boston: Academic Press.
29. Ballard, P. L., & Ballard, R. A. (1995). Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. American Journal of Obstetrics and Gynecology, 173(1), 254-262.
30. Snyder, J. M., Rodgers, H. F., O'Brien, J. A., Mahli, N., Magliato, S. A., & Durham, P. L. (1992). Glucocorticoid effects on rabbit fetal lung maturation in vivo: an ultrastructural morphometric study. The Anatomical Record, 232(1), 133-140.
31. Ballard, P. L., Ning, Y., Polk, D., Ikegami, M., & Jobe, A. H. (1997). Glucocorticoid regulation of surfactant components in immature lambs. American Journal of Physiology-Lung Cellular and Molecular Physiology, 273(5), L1048-L1057.
32. Polglase, G. R., Nitsos, I., Jobe, A. H., Newnham, J. P., & Moss, T. J. (2007). Maternal and intra-amniotic corticosteroid effects on lung morphometry in preterm lambs. Pediatric Research, 62(1), 32-36.
33. Schmeckebier, S., Mauritz, C., Katsirntaki, K., et al. (2013). Keratinocyte growth factor and dexamethasone plus elevated cAMP levels synergistically support pluripotent stem cell differentiation into alveolar epithelial type II cells. Tissue Engineering Part A, 19(7-8), 938-951.
34. Gonzales, L. W., Guttentag, S. H., Wade, K. C., Postle, A. D., & Ballard, P. L. (2002). Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP. American Journal of Physiology-Lung Cellular and Molecular Physiology, 283(5), L940-L951.
35. Ewing, C. K., Duffy, D. M., & Roberts, J. M. (1992). Characterization of the β-adrenergic receptor in isolated human fetal lung type II cells. Pediatric Research, 32(3), 350-355.
36. Venkatesh, V. C., & Katzberg, H. D. (1997). Glucocorticoid regulation of epithelial sodium channel genes in human fetal lung. American Journal of Physiology-Lung Cellular and Molecular Physiology, 273(1), L227-L233.
37. Thome, U. H., Davis, I. C., Nguyen, S. V., Shelton, B. J., & Matalon, S. (2003). Modulation of sodium transport in fetal alveolar epithelial cells by oxygen and corticosterone. American Journal of Physiology-Lung Cellular and Molecular Physiology, 284(2), L376-L385.
38. Gyamfi-Bannerman, C., Thom, E. A., Blackwell, S. C., et al. (2016). Antenatal betamethasone for women at risk for late preterm delivery. New England Journal of Medicine, 374(14), 1311-1320.
39. McElwee, E. R., Wilkinson, K., Crowe, R., et al. (2022). Latency of late preterm steroid administration to delivery and risk of neonatal hypoglycemia. American Journal of Obstetrics & Gynecology MFM, 4(5), 100687.
40. McKinlay, C. J., Alsweiler, J. M., Anstice, N. S., et al. (2017). Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 years. Journal of the American Medical Association Pediatrics, 171(10), 972-983.
41. Murphy, K. E., Hannah, M. E., Willan, A. R., et al. (2008). Multiple courses of antenatal corticosteroids for preterm birth (MACS): a randomised controlled trial. The Lancet, 372(9656), 2143-2151.
42. Audette, M. C., Challis, J. R., Jones, R. L., Sibley, C. P., & Matthews, S. G. (2014). Synthetic glucocorticoid reduces human placental system a transport in women treated with antenatal therapy. The Journal of Clinical Endocrinology & Metabolism, 99(11), E2226-E2233.
43. Stutchfield, P., Whitaker, R., & Russell, I. (2005). Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. British Medical Journal, 331(7518), 662.
44. Räikkönen, K., Gissler, M., & Kajantie, E. (2020). Associations between maternal antenatal corticosteroid treatment and mental and behavioral disorders in children. Journal of the American Medical Association, 323(19), 1924-1933.
45. Bridges, J. P., Sudha, P., Lipps, D., et al. (2020). Glucocorticoid regulates mesenchymal cell differentiation required for perinatal lung morphogenesis and function. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319(2), L239-L255.
46. Matsumoto, D., Toba, H., Kenzaki, K., et al. (2023). Lung regeneration with rat fetal lung implantation and promotion of alveolar stem cell differentiation by corticosteroids. Regenerative Therapy, 24, 426-433.
47. Umberto Meduri, G., & Chrousos, G. P. (2024). Chapter 22 - General adaptation in critical illness 1: The glucocorticoid signaling system as master rheostat of homeostatic corrections in concerted action with nuclear factor-κB. In G. Fink (Ed.), Stress: Immunology and Inflammation (pp. 231-261): Academic Press.
48. Gerber, A. N. (2015). Glucocorticoids and the lung. Glucocorticoid Signaling: From Molecules to Mice to Man, 279-298.
49. Zhao, Z., Chen, X., Dowbaj, A. M., et al. (2022). Organoids. Nature Reviews Methods Primers, 2(1), 94.
50. Simian, M., & Bissell, M. J. (2017). Organoids: a historical perspective of thinking in three dimensions. Journal of Cell Biology, 216(1), 31-40.
51. Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165(7), 1586-1597.
52. Yi, S. A., Zhang, Y., Rathnam, C., Pongkulapa, T., & Lee, K. B. (2021). Bioengineering approaches for the advanced organoid research. Advanced Materials, 33(45), 2007949.
53. Hofer, M., & Lutolf, M. P. (2021). Engineering organoids. Nature Reviews Materials, 6(5), 402-420.
54. Vazquez-Armendariz, A. I., & Tata, P. R. (2023). Recent advances in lung organoid development and applications in disease modeling. Journal of Clinical Investigation, 133(22), e170500.
55. Danahay, H., Pessotti, A. D., Coote, J., et al. (2015). Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Reports, 10(2), 239-252.
56. Hild, M., & Jaffe, A. B. (2016). Production of 3‐D airway organoids from primary human airway basal cells and their use in high‐throughput screening. Current Protocols in Stem Cell Biology, 37(1), IE. 9.1-IE. 9.15.
57. Vazquez‐Armendariz, A. I., Heiner, M., El Agha, E., et al. (2020). Multilineage murine stem cells generate complex organoids to model distal lung development and disease. The EMBO journal, 39(21), e103476.
58. Laube, M., Pietsch, S., Pannicke, T., Thome, U., & Fabian, C. (2021). Development and functional characterization of fetal lung organoids. Frontiers of Medicine 8: 1525.
59. Ling, T.-Y., Kuo, M.-D., Li, C.-L., et al. (2006). Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proceedings of the National Academy of Sciences, 103(25), 9530-9535.
60. Eguizabal, C., Shovlin, T. C., Durcova-Hills, G., Surani, A., & McLaren, A. (2009). Generation of primordial germ cells from pluripotent stem cells. Differentiation, 78(2-3), 116-123.
61. Cui, L., Johkura, K., Yue, F., et al. (2004). Spatial distribution and initial changes of SSEA-1 and other cell adhesion-related molecules on mouse embryonic stem cells before and during differentiation. Journal of Histochemistry & Cytochemistry, 52(11), 1447-1457.
62. Pruszak, J., Ludwig, W., Blak, A., Alavian, K., & Isacson, O. (2009). CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells, 27(12), 2928-2940.
63. Ariza, A., Lopez, D., Castella, E., Munoz, C., Zujar, M., & Mate, J. (1996). Expression of CD15 in normal and metaplastic Paneth cells of the digestive tract. Journal of Clinical Pathology, 49(6), 474-477.
64. Trubiani, O., Zalzal, S. F., Paganelli, R., et al. (2010). Expression profile of the embryonic markers nanog, OCT‐4, SSEA‐1, SSEA‐4, and frizzled‐9 receptor in human periodontal ligament mesenchymal stem cells. Journal of Cellular Physiology, 225(1), 123-131.
65. Chiu, C. J., Ling, T. Y., & Chiang, B. L. (2015). Lung‐derived SSEA‐1+ stem/progenitor cells inhibit allergic airway inflammation in mice. Allergy, 70(4), 374-383.
66. Chiu, C.-J., Liao, C.-C., Hsu, Y.-H., & Chiang, B.-L. (2022). Circulating SSEA-1+ stem cell-mediated tissue repair in allergic airway inflammation. Cellular and Molecular Life Sciences, 79(7), 347.
67. Liao, C.-C., Chiu, C.-J., Yang, Y.-H., & Chiang, B.-L. (2022). Neonatal lung-derived SSEA-1+ cells exhibited distinct stem/progenitor characteristics and organoid developmental potential. iScience, 25(5), 104262.
68. Brownfoot, F. C., Gagliardi, D. I., Bain, E., Middleton, P., & Crowther, C. A. (2013). Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database of Systematic Reviews(8).
69. Eenjes, E., Tibboel, D., Wijnen, R. M. H., Schnater, J. M., & Rottier, R. J. (2022). SOX2 and SOX21 in lung epithelial differentiation and repair. International Journal of Molecular Sciences, 23(21).
70. van der Zalm, A. P., Dings, M. P. G., Manoukian, P., et al. (2024). The pluripotency factor NANOG contributes to mesenchymal plasticity and is predictive for outcome in esophageal adenocarcinoma. Communications Medicine, 4(1), 89.
71. Raiser, D. M., & Kim, C. F. (2009). Commentary: Sca-1 and cells of the lung: A matter of different sorts. Stem Cells, 27(3), 606-611.
72. Cuevas Guaman, M., Sbrana, E., Shope, C., et al. (2014). Administration of antenatal glucocorticoids and postnatal surfactant ameliorates respiratory distress syndrome–associated neonatal lethality in Erk3−/− mouse pups. Pediatric Research, 76(1), 24-32
73. Arnhold, V., Jansen, S. A., Chang, W., et al. (2021). Corticosteroid treatment impairs epithelial regeneration, limiting intestinal recovery in experimental graft vs host disease. Blood, 138, 88.
74. Kroner-Weigl, N., Chu, J., Rudert, M., Alt, V., Shukunami, C., & Docheva, D. (2023). Dexamethasone is not sufficient to facilitate tenogenic differentiation of dermal fibroblasts in a 3D organoid model. Biomedicines, 11(3), 772.
75. Arnhold, V., Chang, W. Y., Jansen, S. A., et al. (2024). Corticosteroids impair epithelial regeneration in immune-mediated intestinal damage. The Journal of Clinical Investigation, 134(7), e155880.
76. Kim, S., Yang, S., Kim, J., et al. (2024). Glucocorticoid receptor down-regulation affects neural stem cell proliferation and hippocampal neurogenesis. Molecular Neurobiology, 61(6), 3198-3211.
77. Amsterdam, A., Tajima, K., & Sasson, R. (2002). Cell-specific regulation of apoptosis by glucocorticoids: implication to their anti-inflammatory action. Biochemical Pharmacology, 64(5-6), 843-850.
78. Grisé, K. N., Bautista, N. X., Jacques, K., Coles, B. L., & van der Kooy, D. (2021). Glucocorticoid agonists enhance retinal stem cell self-renewal and proliferation. Stem Cell Research & Therapy, 12, 1-19.
79. Kimura, S., Yokoyama, S., Pilon, A. L., & Kurotani, R. (2022). Emerging role of an immunomodulatory protein secretoglobin 3A2 in human diseases. Pharmacology & Therapeutics, 236, 108112.
80. Nord, M., Andersson, O., Brönnegård, M., & Lund, J. (1992). Rat lung polychlorinated biphenyl-binding protein: effect of glucocorticoids on the expression of the Clara cell-specific protein during fetal development. Archives of Biochemistry and Biophysics, 296(1), 302-307.
81. Michel, O., Murdoch, R., & Bernard, A. (2005). Inhaled LPS induces blood release of Clara cell specific protein (CC16) in human beings. Journal of Allergy and Clinical Immunology, 115(6), 1143-1147.
82. Rahmawati, S. F., Vos, R., Bos, I. S. T., Kerstjens, H. A., Kistemaker, L. E., & Gosens, R. (2022). Function-specific IL-17A and dexamethasone interactions in primary human airway epithelial cells. Scientific Reports, 12(1), 11110.
83. Lu, W., Lillehoj, E. P., & Kim, K. C. (2005). Effects of dexamethasone on Muc5ac mucin production by primary airway goblet cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 288(1), L52-L60.
84. Chen, Y., Nickola, T. J., DiFronzo, N. L., Colberg-Poley, A. M., & Rose, M. C. (2006). Dexamethasone-mediated repression of MUC5AC gene expression in human lung epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 34(3), 338-347.
85. Martínez‐Antón, A., De Bolós, C., Alobid, I., et al. (2008). Corticosteroid therapy increases membrane‐tethered while decreases secreted mucin expression in nasal polyps. Allergy, 63(10), 1368-1376.
86. Fergie, N., Guo, L., Pearson, J., & Birchall, J. (2000). The influence of prednisolone on the secretion of MUC5AC from TH29‐MTX cell culture. Clinical Otolaryngology & Allied Sciences, 25(6), 570-576.
87. Chen, Y., Watson, A. M., Williamson, C. D., et al. (2012). Glucocorticoid receptor and histone deacetylase–2 mediate dexamethasone-induced repression of MUC5AC gene expression. American Journal of Respiratory Cell and Molecular Biology, 47(5), 637-644.
88. Garvin, L. M., Chen, Y., Damsker, J. M., & Rose, M. C. (2016). A novel dissociative steroid VBP15 reduces MUC5AC gene expression in airway epithelial cells but lacks the GRE mediated transcriptional properties of dexamethasone. Pulmonary Pharmacology & Therapeutics, 38, 17-26.
89. Evans, C. M., Raclawska, D. S., Ttofali, F., et al. (2015). The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nature communications, 6(1), 6281.
90. Harkema, J. R., Nikula, K. J., & Haschek, W. M. (2018). Chapter 14 - Respiratory system. In M. A. Wallig, W. M. Haschek, C. G. Rousseaux, & B. Bolon (Eds.), Fundamentals of Toxicologic Pathology (Third Edition) (pp. 351-393): Academic Press.
91. Beers, M. F., & Moodley, Y. (2017). When is an alveolar type 2 Cell an alveolar type 2 cell? A conundrum for lung stem cell biology and regenerative medicine. American Journal of Respiratory Cell and Molecular Biology, 57(1), 18-27.
92. Yin, Z., Gonzales, L., Kolla, V., et al. (2006). Hop functions downstream of Nkx2. 1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. American Journal of Physiology-Lung Cellular and Molecular Physiology, 291(2), L191-L199.
93. Jain, R., Barkauskas, C. E., Takeda, N., et al. (2015). Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nature communications, 6(1), 6727.
94. Flodby, P., Li, C., Liu, Y., et al. (2017). Cell-specific expression of aquaporin-5 (Aqp5) in alveolar epithelium is directed by GATA6/Sp1 via histone acetylation. Scientific Reports, 7(1), 3473.
95. Borgnia, M., Nielsen, S., Engel, A., & Agre, P. (1999). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry, 68(1), 425-458.
96. Ben, Y., Chen, J., Zhu, R., Gao, L., & Bai, C. (2008). Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells. Respiratory Physiology & Neurobiology, 161(2), 111-118.
97. Hawkins, F., Rankin, S. A., Kotton, D. N., & Zorn, A. M. (2016). The genetic programs regulating embryonic lung development and induced pluripotent stem cell differentiation. In A. H. Jobe, J. A. Whitsett, & S. H. Abman (Eds.), Fetal and Neonatal Lung Development: Clinical Correlates and Technologies for the Future (pp. 1-21). Cambridge: Cambridge University Press.
98. He, P., Lim, K., Sun, D., et al. (2022). A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell, 185(25), 4841-4860.e4825.
99. Baisden, B., Sonne, S., Joshi, R. M., Ganapathy, V., & Shekhawat, P. S. (2007). Antenatal dexamethasone treatment leads to changes in gene expression in a murine late placenta. Placenta, 28(10), 1082-1090.
100. Bhatt, A. J., Amin, S. B., Chess, P. R., Watkins, R. H., & Maniscalco, W. M. (2000). Expression of vascular endothelial growth factor and Flk-1 in developing and glucocorticoid-treated mouse lung. Pediatric Research, 47(5), 606-613.
101. Lee, J. Y., Park, S. J., Kim, S. H., & Kim, M. H. (2012). Prenatal administration of dexamethasone during early pregnancy negatively affects placental development and function in mice. Journal of Animal Science, 90(13), 4846-4856.
102. Fernanda de Mello Costa, M., Weiner, A. I., & Vaughan, A. E. (2020). Basal-like progenitor cells: A review of dysplastic alveolar regeneration and remodeling in lung repair. Stem Cell Reports, 15(5), 1015-1025.
103. Conklin, L. S., Damsker, J. M., Hoffman, E. P., et al. (2018). Phase IIa trial in Duchenne muscular dystrophy shows vamorolone is a first-in-class dissociative steroidal anti-inflammatory drug. Pharmacological Research, 136, 140-150.
104. D’Ambrosio, E. S., & Mendell, J. R. (2023). Evolving therapeutic options for the treatment of Duchenne muscular dystrophy. Neurotherapeutics, 20(6), 1669-1681.
105. Schäcke, H., Döcke, W.-D., & Asadullah, K. (2002). Mechanisms involved in the side effects of glucocorticoids. Pharmacology & Therapeutics, 96(1), 23-43.
106. Keam, S. J. (2024). Vamorolone: first approval. Drugs, 84(1), 111-117.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99347-
dc.description.abstract因為肺部發育不全併發嚴重的呼吸窘迫症是造成早產兒死亡的主要原因之一,產前類固醇目前已被廣泛運用在有早產風險的孕婦身上。然而,僅有少數的證據能說明產前類固醇促進胎兒肺部成熟的詳細機制,且皮質類固醇對於肺部幹細胞的影響仍不清楚。因此,本研究主旨在探討皮質類固醇對SSEA1+肺部幹細胞及其發育而成的類器官的影響。我們結果顯示持續給予SSEA1+肺部類器官dexamethasone的刺激,會顯著增加細支氣管外分泌細胞(club)標誌Scgb1a1,伴隨著CCSP分泌到類器官的空腔。相反地,dexamethasone會減少纖毛(ciliated)及杯狀(goblet)細胞的標誌,分別是Foxj1及Muc5ac。螢光染色也發現在dexamethasone刺激後的類器官中纖毛(ciliated)細胞會消失。更重要的是,我們發現給予dexamethasone也會增加第一型及第二型肺泡細胞的標誌基因及蛋白表達。從機制上來看,我們發現dexamethasone顯著減少轉錄因子Sox2與Sox9的表達,這兩個基因分別主要表達在氣道與肺泡的先驅細胞中。與in vitro的數據相同的是,in vivo dexamethasone注射也傾向減少SSEA1+細胞數量,但增加基底(basal)及第二型細胞的標誌,這些效果可能同樣是透過抑制Sox2及Sox9來達成。綜合來說,這些結果表明皮質類固醇可以促進SSEA1+幹細胞分化成似肺泡(alveolar-like)的肺部類器官且從機制上來加速肺部幹細胞的成熟。這些發現也強調了皮質類固醇對於胎兒肺部發育成熟的益處且更深入了其對肺部幹細胞分化的影響。本研究最終可能有助於改善早產兒的臨床表現與整體健康狀況。zh_TW
dc.description.abstractThe immaturity of the lung is a leading cause of mortality in preterm infants with severe pulmonary complication such as respiratory distress syndrome (RDS). Antenatal corticosteroids have been widely used to treat women at risk of preterm delivery. However, there is limited evidence elucidating the detailed mechanisms of antenatal corticosteroids on fetal lung maturation, and their impact on lung stem cells remains unclear. In this study, we aimed to investigate the influence and mechanism of corticosteroids on pulmonary SSEA-1+ stem/progenitor cells and the lung organoid model generated from SSEA1+ cells. Our results indicated that sustained dexamethasone stimulation significantly increased the gene expression of club cell marker Scgb1a1, accompanied by the secretion of CCSP into the organoid lumen. In contrast, dexamethasone decreased the ciliated and goblet cell markers, Foxj1 and Muc5ac, respectively. Immunofluorescence staining also revealed an absence of ciliated cells in dexamethasone-treated organoids. Importantly, dexamethasone treatment upregulated the expression of type I and type II alveolar cell markers at both the mRNA and protein levels. Mechanistically, dexamethasone decreased the expression of the transcription factors Sox2 and Sox9, which are typically expressed in airway and alveolar progenitor cells, respectively. Consistent with in vitro data, in vivo dexamethasone injection appeared to reduce SSEA1+ cell population while increasing the expression of basal and AT2 cell markers, likely through the suppression of Sox2 and Sox9. Together, these results demonstrated that dexamethasone promoted the differentiation of SSEA1+ stem cells into alveolar-like lung organoids and mechanistically accelerated their maturation. These findings highlight the beneficial effects of corticosteroids on lung development and provide further insight into their impact on pulmonary stem cell differentiation. Ultimately, this study might contribute to improving outcomes and health in preterm infants.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:06:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:06:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
Content VI
Content of Figures XI
Content of Tables XIII
Chapter 1. Introduction 1
Part Ⅰ. Background 2
1. Overview of premature birth 2
1.1 Preterm birth 2
1.2 Clinical administration for RDS 2
1.2.1 Antenatal corticosteroids (ACS) 2
1.2.2 Surfactant therapy 3
1.2.3 Synergistic effect of ACS and surfactant therapy 3
2. The impact of corticosteroids on lung development 4
2.1 ACS promotes fetal lung maturation 4
2.2 Potential side effects of ACS 6
2.3 Influence of corticosteroids on lung stem cells 6
2.4 Mechanism of corticosteroids 7
3. Overview of organoids 7
3.1 Introduction of organoid technics 8
3.2 Existing lung organoid models 8
4. SSEA1+ lung stem/progenitor cells 9
Part II. Statement of the Motives 10
Part III. Study Aims 11
Chapter 2. Materials and Methods 12
Part Ⅰ. Materials 13
1. Animals 13
2. Reagents 13
3. Antibodies 15
Part Ⅱ. Methods 16
1. Organoid culture assay 16
1.1 Isolation of pulmonary SSEA1+ cells 16
1.2 Organoid culture 16
1.3 Collection of lung organoids and single-cell suspensions 17
2. Flow cytometric analysis of the purity of SSEA1+ cells 18
3. Bromodeoxyuridine (BrdU) assay 18
4. Apoptosis marker analysis 19
5. Quantification of Nanog+SSEA1+ cells in day 14 organoids 20
6. In vivo dexamethasone injection 20
7. Dexamethasone combined with surfactant stimulation in lung organoid model 21
8. RNA extraction and reverse transcription 21
9. Quantitative real time polymerase chain reaction (qRT-PCR) 22
10. Immunoblotting 23
11. Immunofluorescence microscopy 24
12. Statistical analysis 25
Chapter 3. Results 26
1. The purity of the isolated pulmonary SSEA1+ cells reached about 70% 27
2. Dexamethasone stimulation slightly increased the irregularity of lung organoids but significantly decreased the recovered cells 27
3. Dexamethasone did not affect cell proliferation in lung organoids 28
4. Sustained dexamethasone treatment altered the gene expression of lung epithelial cell markers in day 14 lung organoids 29
5. Dexamethasone increased the protein expression of AT2 cell markers Pro-SPB and Pro-SPC in a dose-dependent manner 30
6. Ciliated cells were absent in day 14 lung organoids and CCSP was secreted into the organoid lumen following sustained dexamethasone stimulation 31
7. Dexamethasone reduced the expression of the transcription factors Sox2 and Sox9 32
8. Dexamethasone resulted in a diminished number of Nanog⁺SSEA1⁺ cells in day 14 organoids 33
9. Dexamethasone administration appeared to reduce the SSEA1⁺ cell population while increasing Sca1⁺ cells in the neonatal lung in vivo 34
10. In vivo dexamethasone injection did not affect the expression of epithelial markers in neonatal lung tissue 35
11. Dexamethasone administration tended to direct the fate of SSEA1⁺ cells toward basal and AT2 cells in vivo 35
12. In vivo, the response of Sca1⁺ cells to dexamethasone resembled that of SSEA1⁺ cells 36
13. In vivo dexamethasone administration seemed to reduce the population of SSEA1+ cells in neonatal lung tissue 37
14. The combined effect of dexamethasone and surfactant on lung organoids 37
15. Surfactant had no significant effects on the differentiation of lung organoids 38
Chapter 4. Discussion 40
Figures 49
References 77
-
dc.language.isoen-
dc.subject產前類固醇zh_TW
dc.subject早產zh_TW
dc.subject胎兒肺部發育zh_TW
dc.subject肺部類器官zh_TW
dc.subjectSSEA1+幹細胞zh_TW
dc.subjectSSEA1+ stem cellen
dc.subjectlung organoiden
dc.subjectfetal lung developmenten
dc.subjectantenatal corticosteroidsen
dc.subjectPreterm birthen
dc.title探討皮質類固醇對SSEA-1+肺部幹細胞類器官發育的影響zh_TW
dc.titleStudy on the effect of corticosteroids on organoid formation of SSEA1+ lung stem/progenitor cellsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曹伯年;林志萱zh_TW
dc.contributor.oralexamcommitteePo-Nien Tsao;Jr-Shiuan Linen
dc.subject.keyword早產,產前類固醇,SSEA1+幹細胞,肺部類器官,胎兒肺部發育,zh_TW
dc.subject.keywordPreterm birth,antenatal corticosteroids,SSEA1+ stem cell,lung organoid,fetal lung development,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202502443-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college醫學院-
dc.contributor.author-dept免疫學研究所-
dc.date.embargo-lift2030-07-24-
Appears in Collections:免疫學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
3.98 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved