請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99337完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德 | zh_TW |
| dc.contributor.advisor | Pei-Te Chiueh | en |
| dc.contributor.author | 黃郁琁 | zh_TW |
| dc.contributor.author | Yu-Hsuan Huang | en |
| dc.date.accessioned | 2025-09-01T16:08:20Z | - |
| dc.date.available | 2025-09-02 | - |
| dc.date.copyright | 2025-09-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | Agency for Toxic Substances and Disease Registry (ATSDR). (2017). Toxicological profile for toluene. U.S. Department of Health and Human Services, Public Health Service. Retrieved from https://www.atsdr.cdc.gov/toxprofiles/tp56.html
Agency for Toxic Substances and Disease Registry (ATSDR). (2025). Toxicological profiles. Retrieved from https://www.atsdr.cdc.gov/toxicological-profiles/about/ Bayraktar, O. M., & Mutlu, A. (2024). Analyses of industrial air pollution and long‑term health risk using different dispersion models and WRF physics parameters. Atmospheric Pollution Research, 17, 2277–2305. https://doi.org/10.1007/s11869-024-01573-8 Chehrehei, S., Shirzadi, M., Golbabaei, F., & Kazemi, Z. (2023). Health risk assessment of benzene using AERMOD–IRIS method in the vicinity of the gas station. Polish Journal of Environmental Studies, 32(3), 1–10. https://doi.org/10.15244/pjoes/154738 Eliang, Z., Yu, Y., Sun, B., Yao, Q., Lin, X., Wang, Y., Zhang, J., Li, Y., Wang, X., & Tang, Z. (2024). The underappreciated role of fugitive VOCs in ozone formation and health risk assessment emitted from seven typical industries in China. Journal of Environmental Sciences, 136, 647–657. https://doi.org/10.1016/j.jes.2022.12.037 Environmental Protection Administration, Executive Yuan. (2011). Technical guidelines for health risk assessment. Taipei, Taiwan. Eslamidoost, Z., Samaei, M. R., Hashemi, H., Baghapour, M. A., Arabzadeh, M., & Dehghani, S. (2023). Dispersion of SO₂ emissions in a gas refinery by AERMOD modeling and human health risk: A case study in the Middle East. Environmental Monitoring and Assessment, 195, 1272. https://doi.org/10.1007/s10661-023-11879-2 Hesami Arani, M., Jaafarzadeh, N., Moslemzadeh, M., Rezvani Ghalhari, M., Bagheri Arani, S., & Mohammadzadeh, M. (2021). Dispersion of NO₂ and SO₂ pollutants in the rolling industry with AERMOD model: A case study to assess human health risk. Journal of Environmental Health Science and Engineering, 19(2), 1287–1298. https://doi.org/10.1007/s40201-021-00686-x International Agency for Research on Cancer (IARC). (2019). IARC Monographs on the Identification of Carcinogenic Hazards to Humans: Agents Classified by the IARC Monographs, Volumes 1–125. World Health Organization. https://monographs.iarc.who.int/agents-classified-by-the-iarc/ Malik, N., Elumalai, S. P., & Kumar, K. (2023). Health risk assessment from exposure to ambient VOCs and particulate matter in different functional zones in Dhanbad, India. Science of The Total Environment, 891, 164573. https://doi.org/10.1016/j.scitotenv.2023.164573 Mokhtar, M. M., Hassim, M. H., & Taib, R. M. (2014). Health risk assessment of emissions from a coal-fired power plant using AERMOD modelling. Process Safety and Environmental Protection, 92(5), 476–485. https://doi.org/10.1016/j.psep.2014.05.008 Office of Environmental Health Hazard Assessment (OEHHA). (2015, February). Air Toxics Hot Spots Program Guidance Manual: Preparation of Health Risk Assessments. California Environmental Protection Agency. https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf Office of Environmental Health Hazard Assessment (OEHHA). (2025). Chemicals. Retrieved from https://oehha.ca.gov/library/chemicals Tsai, J.-H., & Gu, W.-T. (2019). Emission characteristics and risk assessment in an industrial‑metropolitan area in Taiwan using the AERMOD model. Advances in Geosciences, 49, 113–119. https://doi.org/10.5194/adgeo-49-113-2019 Tsai, J.-H., Gu, W.-T., Chung, I.-I., & Chiang, H.-L. (2019). Airborne air toxics characteristics and inhalation health risk assessment of a metropolitan industrial complex. Aerosol and Air Quality Research, 19, 2477–2489. https://doi.org/10.4209/aaqr.2019.08.0422 U.S. Environmental Protection Agency (EPA). (1989a). Clarification of guidance for calculating actual or potential emissions. Office of Air Quality Planning and Standards. https://www.epa.gov/sites/default/files/2020-09/documents/pte_guidance_1989.pdf U.S. Environmental Protection Agency (EPA). (1989b). Risk assessment guidance for Superfund, Volume I: Human health evaluation manual (Part A) (EPA/540/1-89/002). https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part U.S. Environmental Protection Agency (EPA). (1990). Clean Air Act Amendments of 1990. https://www.epa.gov/clean-air-act-overview U.S. Environmental Protection Agency (EPA). (2004). User’s guide for the AMS/EPA regulatory model – AERMOD (EPA-454/B-03-001). https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#aermod U.S. Environmental Protection Agency (EPA). (2005). Guidelines for carcinogen risk assessment (EPA/630/P-03/001F). https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment U.S. Environmental Protection Agency (EPA). (2024). AERMOD: Preferred/recommended air quality model. https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#aermod U.S. Environmental Protection Agency (EPA). (2025a). Hazardous air pollutants. https://www.epa.gov/haps U.S. Environmental Protection Agency (EPA). (2025b). Integrated Risk Information System (IRIS) Assessments. Retrieved April 27, 2025, from https://iris.epa.gov/ World Health Organization Regional Office for Europe. (2010). WHO guidelines for indoor air quality: Selected pollutants. World Health Organization. https://www.who.int/europe/publications/i/item/9789289002134 Yousefi, M., Shokri, M., Safari, G. H., Moradpour, N., & Taghipour, H. (2022). Carcinogenic risk assessment among children and adults due to exposure to toxic air pollutants: A systematic review. Environmental Science and Pollution Research, 29, 23015–23025. https://doi.org/10.1007/s11356-021-17300-0 Yu, J.-H. (2012). Health risk assessment of lead emissions from a point source in Taoyuan using AERMOD and HARP. Journal of Environmental Science and Health, Part A, 47(14), 2025–2033. https://hdl.handle.net/11296/r58wbm 環境部(2011a)。《健康風險評估技術規範》。行政院環境保護署。取自 https://oaout.epa.gov.tw/law 環境部(2014)。《特殊性工業區緩衝地帶及空氣品質監測設施設置標準》。行政院環境保護署公告。 環境部(2019a)。《第一批固定污染源有害空氣污染物種類及排放限值》。行政院環境保護署公告。取自 https://oaout.epa.gov.tw/law 環境部(2019b)。《固定污染源有害空氣污染物排放標準》。行政院環境保護署公告。 環境部(2019c)。《應設置空氣污染防制專責單位或專責人員及健康風險評估專責人員之公私場所》。行政院環境保護署公告。 環境部(2021)。《空氣污染物擴散模式應用技術指引》。行政院環境保護署。取自 https://air.epa.gov.tw/ 環境部(2022a)。《排放量申報管理辦法》。行政院環境保護署公告。 環境部(2022b)。《北高雄產業園區健康風險評估報告》。取自環評書件查詢系統:https://eiadoc.moenv.gov.tw/eiaweb/ 環境部(2023a)。《固定污染源設置及操作許可證管理辦法》。行政院環境保護署公告。 環境部(2023b)。《固定污染源空氣污染物排放標準(112年版)》。行政院環境保護署公告。 環境部(2023c)。《空氣污染防制費收費辦法》。行政院環境保護署公告。 環境部(2024a)。《白埔產業園區開發案環境影響說明書附錄:健康風險評估報告》。取自 https://eiadoc.moenv.gov.tw/eiaweb/ 環境部(2024b)。《嘉義縣馬稠後產業園區開發計畫第四次環境影響差異分析報告(修訂本)》。取自 https://eiadoc.moenv.gov.tw/eiaweb/ 環境部(2024c)。《固定污染源設置操作及燃料使用許可證管理辦法》。取自 https://oaout.moenv.gov.tw/law/LawContent.aspx?id=FL015356 環境部(2025a)。《固定污染源管理資訊公開平台》。取自 https://aodmis.moenv.gov.tw/opendata/#/lq 環境部(2025b)。《空氣污染物排放量彙整查詢資料集》。環境部開放資料平台。取自 https://data.moenv.gov.tw/dataset/detail/EMS_P_08 環境部(2025c)。《關切污染物參數》。土壤及地下水風險分析資訊系統。取自 https://sgwenv.moenv.gov.tw/RISK/parameter/parameter4 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99337 | - |
| dc.description.abstract | 都市型工業區的合法排放雖符合現行法規標準,然其在特定時空條件下仍造成鄰近居民健康風險。本研究以高雄前鎮科技產業園區為案例,建立「操作許可證排放資料-AERMOD擴散模擬-HARP多媒介健康風險模型」之評估架構,針對苯、甲苯、乙苯、二甲苯、甲醛與六價鉻等六項有害空氣污染物,模擬其在四行政區(前鎮、旗津、鹽埕、鼓山)之空間濃度分布特性,並考量不同年齡與生理狀態族群(嬰幼兒、青少年、成人、老年人)進行吸入、皮膚接觸與食入三途徑暴露下的致癌、慢性非致癌及急性非致癌風險評估。
研究結果顯示,整體致癌風險以六價鉻貢獻最高,約占總風險近九成,前鎮與旗津區為主要風險熱區,老年族群的致癌風險(Lifetime Cancer Risk, LCR)最高值達9.4×10⁻⁶,落於可接受但需管控區間(10⁻⁶至10⁻⁴);慢性非致癌風險以甲醛、二甲苯為主,整體危害指數(Hazard Index, HI)皆小於1,顯示慢性暴露風險普遍可接受;然而急性非致癌風險則在污染尖峰情境下於鹽埕、前鎮與旗津區明顯偏高,鹽埕區部分受體HI高達2,顯示短期健康效應不可忽視。 本研究進一步進行兩種減量情境模擬,發現針對主要風險貢獻污染物六價鉻減量50%(情境一)即能顯著降低急性非致癌風險44–45%,而納入甲苯、乙苯等次要污染物(情境二)之綜合削減,雖能進一步降低風險至近七成,然而其邊際效益呈現遞減。此結果強調風險導向之污染管制策略,應優先聚焦於高毒性、高暴露貢獻之污染物,以提升管理效益。綜合污染物風險排序與地理熱區判別結果,本研究建議建立固定污染源操作許可證核發後之健康風險覆核機制、推動本土化暴露參數調查、以及敏感族群健康防護機制,作為未來污染治理與環境健康決策之重要依據。 | zh_TW |
| dc.description.abstract | Although legal emissions from urban industrial parks comply with current regulatory standards, they still pose health risks to nearby residents under specific temporal and spatial conditions. This study takes the Kaohsiung Cianjhen Technology Industrial Park as a case study to establish an assessment framework combining "emissions data from operating permits – AERMOD dispersion modeling – HARP multi-pathway health risk model." The research simulates the spatial concentration distribution of six hazardous air pollutants—benzene, toluene, ethylbenzene, xylene, formaldehyde, and hexavalent chromium—across four administrative districts (Cianjhen, Cijin, Yancheng, and Gushan). It further assesses the carcinogenic, chronic non-carcinogenic, and acute non-carcinogenic risks through three exposure pathways (inhalation, dermal contact, and ingestion) for different age and physiological groups (infants, adolescents, adults, and the elderly).
The results indicate that hexavalent chromium is the primary contributor to the overall carcinogenic risk, accounting for nearly 90% of the total risk. The main risk hotspots are concentrated in the Cianjhen and Cijin districts. The highest Lifetime Cancer Risk (LCR) for the elderly population reached 9.4×10⁻⁶ , falling within the acceptable but requires management range (10⁻⁶ to 10-4). For chronic non-carcinogenic risk, formaldehyde and xylene are the main contributors, with the overall Hazard Index (HI) for all receptors remaining below 1, suggesting that chronic exposure risks are generally acceptable. However, the acute non-carcinogenic risk is significantly elevated in the Yancheng, Cianjhen, and Cijin districts under peak pollution scenarios, with the HI for some receptors in the Yancheng district reaching as high as 2, indicating that short-term health effects cannot be overlooked. This study further simulated two reduction scenarios. It was found that a 50% reduction of hexavalent chromium (Scenario 1), the main risk-contributing pollutant, could significantly decrease the acute non-carcinogenic risk by 44–45%. A comprehensive reduction strategy that also includes secondary pollutants like toluene and ethylbenzene (Scenario 2) could further reduce the risk to nearly 70%; however, it exhibited diminishing marginal benefits. These findings underscore the importance of a risk-oriented pollution control strategy that prioritizes pollutants with high toxicity and high exposure contributions to enhance management effectiveness. Based on the pollutant risk ranking and the identification of geographical hotspots, this study recommends the establishment of a health risk review mechanism for stationary pollution sources after the issuance of operating permits, the promotion of localized exposure parameter surveys, and the implementation of health protection mechanisms for sensitive populations. These measures are proposed as a crucial basis for future pollution governance and environmental health decision-making. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-01T16:08:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-01T16:08:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
謝辭 i 摘要 ii Abstract iii 目次 v 圖次 vii 表次 viii 第一章、 緒論 1 1.1 研究緣起 1 1.2 研究目標 3 第二章、 文獻回顧 5 2.1 有害空氣污染物 5 2.2 法規規範 7 2.3 AERMOD空氣污染模式 9 2.4 健康風險分析 11 2.4.1 危害確認 13 2.4.2 劑量效應評估 15 2.4.3 暴露量評估 16 2.4.4 風險特徵描述 17 2.5 AERMOD與健康風險評估整合相關文獻 19 2.6 國內環評案例 21 第三章、 研究方法 23 3.1 研究流程 23 3.2研究區域 25 3.2.1 前鎮區背景介紹 26 3.2.2 前鎮科技產業園區概況 26 3.2.3 周邊行政區背景分析 27 3.2.4 研究區域氣象條件與擴散特性 28 3.3 污染物分析 29 3.3.1 申報數據盤查 29 3.3.2 監測數據盤查 30 3.3.3 污染物排放數據 32 3.3.4 污染物申報、監測與操許證核可濃度分析 34 3.3.5 評估污染物 36 3.4 AERMOD 模擬 38 3.4.1 AERMOD模擬方式 38 3.5 健康風險評估 40 3.5.1 危害確認 41 3.5.2 劑量效應評估 42 3.5.3 暴露量評估 50 3.5.4 風險特徵描述 59 3.5.5 敏感族群風險評估 61 3.6 減量情境設計 64 3.6.1 減量比例設定 64 第四章、 結果與討論 65 4.1 AERMOD模擬結果 65 4.1.1 年均濃度分布 65 4.1.2 最大小時濃度分布 68 4.1.3 年均濃度與最大小時濃度比較 69 4.1.4 風向與濃度模擬分布之比較分析 70 4.1.5 模擬濃度與監測值差異分析 70 4.2 健康風險評估 72 4.2.1 暴露量評估 72 4.2.2 致癌風險 76 4.2.3 慢性非致癌風險 81 4.2.4 急性非致癌風險 82 4.2.5 致癌與非致癌風險之綜合比較與空間差異探討 84 4.3 減量情境結果與討論 86 4.3.2 減量情境急性非致癌風險變化 87 4.3.3 減量情境致癌風險變化 87 4.3.4 減量情境綜合討論與政策意涵 88 4.4 研究限制 89 第五章、 結論與建議 92 5.1 研究結論 92 5.2 政策建議 94 第六章、 參考文獻 97 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 都市型工業區 | zh_TW |
| dc.subject | 健康風險評估 | zh_TW |
| dc.subject | 多暴露途徑 | zh_TW |
| dc.subject | 風險導向減量 | zh_TW |
| dc.subject | 六價鉻 | zh_TW |
| dc.subject | 污染減量情境 | zh_TW |
| dc.subject | Multi-pathway Exposure | en |
| dc.subject | Urban Industrial Park | en |
| dc.subject | Pollution Reduction Scenarios | en |
| dc.subject | Hexavalent Chromium | en |
| dc.subject | Risk-oriented Reduction | en |
| dc.subject | Health Risk Assessment | en |
| dc.title | 工業區污染物排放及健康風險整合分析-以高雄前鎮科技產業園區為例 | zh_TW |
| dc.title | Integrated Assessment of Industrial Pollutant Emissions and Associated Health Risks: A Case Study of the Qianzhen Technology Industrial Park, Kaohsiung | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 丁育頡;胡景堯 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chieh Ting ;Ching-Yao Hu | en |
| dc.subject.keyword | 都市型工業區,健康風險評估,多暴露途徑,風險導向減量,六價鉻,污染減量情境, | zh_TW |
| dc.subject.keyword | Urban Industrial Park,Health Risk Assessment,Multi-pathway Exposure,Risk-oriented Reduction,Hexavalent Chromium,Pollution Reduction Scenarios, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202503975 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
