Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99336
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘斯文zh_TW
dc.contributor.advisorStephen Payneen
dc.contributor.author王珈朵zh_TW
dc.contributor.authorChia-To Wangen
dc.date.accessioned2025-09-01T16:08:07Z-
dc.date.available2025-09-02-
dc.date.copyright2025-09-01-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. Joris, P.J., et al., Cerebral Blood Flow Measurements in Adults: A Review on the Effects of Dietary Factors and Exercise. Nutrients, 2018. 10(5).
2. Feigin, V.L., et al., World Stroke Organization: Global Stroke Fact Sheet 2025. Int J Stroke, 2025. 20(2): p. 132-144.
3. (SAF), S.A.F. Stroke Facts & Statistics. 2025 [cited 2025 April 22]; Available from: https://www.strokeinfo.org/stroke-facts-statistics/.
4. Saini, V., L. Guada, and D.R. Yavagal, Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology, 2021. 97(20_Supplement_2): p. S6-S16.
5. M.D, D.G. Intravenous Thrombolysis in Acute Stroke. 2023 31/01/2025 [cited 2025 April 21]; Available from: https://www.stroke-manual.com/intravenous-thrombolysis-in-acute-stroke/.
6. Hacke, W., et al., Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med, 2008. 359(13): p. 1317-29.
7. Patel, S.C. and A. Mody, Cerebral hemorrhagic complications of thrombolytic therapy. Prog Cardiovasc Dis, 1999. 42(3): p. 217-33.
8. Raha, O., et al., Advances in mechanical thrombectomy for acute ischaemic stroke. BMJ Med, 2023. 2(1): p. e000407.
9. Bennett, M.H., et al., Hyperbaric Oxygen Therapy for Acute Ischemic Stroke. Stroke, 2015. 46(5): p. e109-e110.
10. Lee, S.E., et al., Hyperbaric oxygen therapy as a possible therapeutic candidate for sepsis-associated encephalopathy: A novel hypothesis. Medical Hypotheses, 2024. 182: p. 111212.
11. Thom, S.R., Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg, 2011. 127 Suppl 1(Suppl 1): p. 131S-141S.
12. Medicine, J.H. Hyperbaric Therapy for CO Poisoning and Decompression Sickness. 2025 [cited 2025 April 25]; Available from: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/hyperbaric-therapy-for-co-poisoning-and-decompression-sickness.
13. Xue, L., et al., Effect of large dose hyperbaric oxygenation therapy on prognosis and oxidative stress of acute permanent cerebral ischemic stroke in rats. Neurol Res, 2008. 30(4): p. 389-93.
14. Christmas, K.M. and J.B. Bassingthwaighte, Equations for O(2) and CO(2) solubilities in saline and plasma: combining temperature and density dependences. J Appl Physiol (1985), 2017. 122(5): p. 1313-1320.
15. Jones, M.W., et al., Hyperbaric Physics, in StatPearls. 2025: Treasure Island (FL).
16. Hu, Q., et al., Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside. Med Gas Res, 2016. 6(2): p. 102-110.
17. Hollin, S.A., M.H. Sukoff, and J.H. Jacobson, 2nd, The protective effect of hyperbaric oxygenation in experimentally produced cerebral edema and compression. Prog Brain Res, 1968. 30: p. 479-89.
18. Wang, Q., X.N. Tang, and M.A. Yenari, The inflammatory response in stroke. Journal of Neuroimmunology, 2007. 184(1-2): p. 53-68.
19. Guo, Y., et al., ROS exhaustion reverses the effects of hyperbaric oxygen on hemorrhagic transformation through reactivating microglia in post-stroke hyperglycemic mice. Sci Rep, 2024. 14(1): p. 21410.
20. Ding, Z., et al., Hyperbaric oxygen therapy in acute ischemic stroke: a review. Interv Neurol, 2014. 2(4): p. 201-11.
21. Wu, X., et al., An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis, 2023. 38(3): p. 855-872.
22. Batinac, T., et al., Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality? Journal of Cardiovascular Development and Disease, 2024. 11(12): p. 408.
23. Meng, X.E., et al., Effects of hyperbaric oxygen on the Nrf2 signaling pathway in secondary injury following traumatic brain injury. Genet Mol Res, 2016. 15(1).
24. Cozene, B., et al., An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules, 2020. 10(9): p. 1279.
25. Hussein, O., et al., Hyperbaric oxygen therapy after acute ischemic stroke with large penumbra: a case report. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 2020. 56(1).
26. Moro, M.A., et al., cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci U S A, 1996. 93(4): p. 1480-5.
27. Archer, S.L., et al., Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A, 1994. 91(16): p. 7583-7.
28. Buckley, C.J. and J.S. Cooper, Hyperbaric Oxygen Effects On Angiogenesis, in StatPearls. 2025: Treasure Island (FL).
29. Amato, S. and A. Arnold, Modeling microglia activation and inflammation-based neuroprotectant strategies during ischemic stroke. Bulletin of Mathematical Biology, 2021. 83(6): p. 72.
30. Liang, F., et al., Effect of Hyperbaric Oxygen Therapy on Polarization Phenotype of Rat Microglia After Traumatic Brain Injury. Front Neurol, 2021. 12: p. 640816.
31. Bandera, E., et al., Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke, 2006. 37(5): p. 1334-9.
32. Edward C Jauch, S.A.K., Brian Stettler. Ischemic Stroke. 2024 Feb 21, 2024 [cited 2025 April 28]; Available from: https://emedicine.medscape.com/article/1916852-overview#a4?form=fpf.
33. Hamer, J., et al., Cerebral blood flow and oxidative brain metabolism during and after moderate and profound arterial hypoxaemia. Acta Neurochir (Wien), 1976. 33(3-4): p. 141-50.
34. Elmadhoun, A., H. Wang, and Y. Ding, Impacts of futile reperfusion and reperfusion injury in acute ischemic stroke. Brain Circ, 2024. 10(1): p. 1-4.
35. Rusyniak, D.E., et al., Hyperbaric oxygen therapy in acute ischemic stroke: results of the Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study. Stroke, 2003. 34(2): p. 571-4.
36. Zhai, W.W., et al., Hyperbaric oxygen therapy in experimental and clinical stroke. Med Gas Res, 2016. 6(2): p. 111-118.
37. Pennings, F.A., et al., Brain tissue oxygen pressure monitoring in awake patients during functional neurosurgery: the assessment of normal values. J Neurotrauma, 2008. 25(10): p. 1173-7.
38. Svedung Wettervik, T., et al., Brain tissue oxygen monitoring in traumatic brain injury-part II: isolated and combined insults in relation to outcome. Crit Care, 2023. 27(1): p. 370.
39. Zhang, K., et al., Associations of arterial oxygen partial pressure with all‑cause mortality in critically ill ischemic stroke patients: a retrospective cohort study from MIMIC IV 2.2. BMC Anesthesiol, 2024. 24(1): p. 355.
40. McGoron, A.J., P. Nair, and R.W. Schubert, Michaelis-Menten kinetics model of oxygen consumption by rat brain slices following hypoxia. Ann Biomed Eng, 1997. 25(3): p. 565-72.
41. ; Available from: https://lpsa.swarthmore.edu/NumInt/NumIntFourth.html.
42. Masamoto, K., et al., Apparent diffusion time of oxygen from blood to tissue in rat cerebral cortex: implication for tissue oxygen dynamics during brain functions. J Appl Physiol (1985), 2007. 103(4): p. 1352-8.
43. Lu, Y., D. Hu, and W. Ying, A fast numerical method for oxygen supply in tissue with complex blood vessel network. PLoS One, 2021. 16(2): p. e0247641.
44. Radisic, M., et al., Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol, 2005. 288(3): p. H1278-89.
45. Payne, S.J., Cerebral Blood Flow and Metabolism: A Quantitative Approach. 2017: World Scientific.
46. Bernardo-Castro, S., et al., Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol, 2020. 11: p. 594672.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99336-
dc.description.abstract缺血性中風的特徵是大腦血流(CBF)和氧分壓(𝑃𝑂2)的降低,這會導致顯著的神經損傷和神經炎症。中風發作時,身體會觸發由小膠質細胞介導的炎症反應,這些細胞會對周圍腦細胞釋放的病理信號作出反應。儘管這一過程可能加劇腦損傷,但同時也在腦部恢復過程中扮演著至關重要的角色。理解並調節這種雙重效應對改善中風後的治療結果至關重要。
本研究開發了一個數學模型來模擬神經保護劑和高壓氧治療(HBOT)在缺血性中風中的機制。該模型旨在確定HBOT是否能顯著改變炎症動態,從而增強神經保護作用。通過整合關鍵參數,本模型檢視了大腦血流、𝑃𝑂2 水平和小膠質細胞轉化之間的相互作用,以評估不同𝑃𝑂2輸入水平如何在不同的氧合條件下影響炎症和神經保護作用。
在穩態分析中,通過匹配不同參數,找到了在不同血流變化情境下最能提升𝑃𝑂2水平的最佳參數組合。隨後的模擬結果表明,𝑃𝑂2水平的變化可能會導致炎症軌跡和康復過程中可測量的差異。接下來,我們將模擬範圍擴展至空間層面,觀察在使用或不使用HBOT的情況下,氧氣在炎症區域的擴散情況。模擬結果顯示一致的趨勢,證實了模型的可靠性。
通過整合生理學和臨床參數,本研究提供了一個預測框架,有助於深入理解神經保護動態,並指導中風後治療的優化。研究結果預計將為臨床策略提供參考,並促進有效的神經保護干預的發展。
zh_TW
dc.description.abstractIschaemic stroke, characterised by reduced cerebral blood flow (CBF) and oxygen partial pressure (𝑃𝑂2), results in significant neuronal damage and neuroinflammation. At the onset of stroke, the body triggers an inflammatory response mediated by microglia, which respond to pathological signals released by surrounding brain cells. While this response may potentially exacerbate brain injury, it also plays a crucial role in recovery. Understanding and modulating this dual effect is essential for improving post-stroke outcomes.

This study develops a novel mathematical model to simulate the mechanisms of neuroprotective agents and hyperbaric oxygen therapy (HBOT) in the context of ischaemic stroke. The model aims to determine whether HBOT can significantly alter inflammation dynamics, thereby enhancing neuroprotection. By integrating key parameters, the model examines the interactions between cerebral blood flow, 𝑃𝑂2 levels, and microglial transformation to assess how varying 𝑃𝑂2 input levels influence inflammation and neuroprotection under different oxygenation conditions.

In the steady-state analysis, we identified the optimal parameter combinations that best enhance 𝑃𝑂2 levels under various blood flow change scenarios. Subsequent simulation results suggest that variations in 𝑃𝑂2 levels may lead to measurable differences in inflammation trajectories and recovery processes. Next, we extended the simulation to the spatial level, observing how oxygen diffuses within the inflammation areas with or without HBOT. The simulation results showed consistent trends, confirming the reliability of the model.

By integrating physiological and clinical parameters, this study provides a predictive framework to deepen the understanding of neuroprotection dynamics and guide the optimisation of post-stroke treatments. The findings are expected to offer valuable insights for clinical strategies and contribute to the development of effective neuroprotective interventions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-01T16:08:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-01T16:08:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
Ackowledgement iv
中文摘要 vi
Abstract viii
Contents x
List of Figures xiii
List of Tables xvi
Introduction 1
1.1 Cerebral Blood Flow (CBF) 1
1.2 Stroke 2
1.3 Hyperbaric Oxygen Therapy (HBOT) 4
1.3.1 Basic Effects of HBOT 5
1.3.2 Neuroprotective and Anti-inflammatory Mechanisms of HBOT in Ischaemic Stroke 7
1.4 HBOT Modulation of Cerebral Blood Flow 9
1.4.1 Microcirculation Improvement 9
1.4.2 Vasodilation 10
1.4.3 Angiogenesis 10
1.4.4 Enhancement of Autoregulatory Function 11
1.5 Conclusion 11
Models and Methods 13
2.1 Preliminary Work 14
2.1.1 Microglia and HBOT 14
2.1.2 Preliminary Modelling and Adjustment 16
2.1.3 Transition to Current Focus 22
2.2 Cerebral Blood Flow Configuration 23
2.3 The Setting of Inlet Oxygen Partial Pressure 28
2.4 Mass Balance-Based Modelling of Oxygen Dynamics (0-dimensional) 33
2.4.1 Steady-State Conditions and Parameter Setting 36
2.5 Modelling Spatial–Temporal Oxygen Diffusion and Consumption (3-dimensional) 38
2.5.1 Boundary Conditions 41
2.5.2 Parameter Setting 42
2.6 Conclusion 44
Results and Discussion 45
3.1 0-Dimensional Simulation Results and Analysis 46
3.1.1 Steady-State Analysis 47
3.1.2 Simulated Results of Oxygen Partial Pressure under Treatment Scenario 1 48
3.1.3 Simulated Results of Oxygen Partial Pressure under Treatment Scenario 2 52
3.1.4 Analysis of the Impact of Blood Flow Reduction on Tissue Oxygenation Concentration 55
3.2 3-Dimensional Simulated Results and Analysis 57
3.2.1 Simulation Results under Scenario 1 58
3.2.2 Simulation Results under Scenario 2 63
3.2.3 Oxygen Distribution Patterns under Varying Oxygen Diffusion Coefficients 67
3.3 Conclusion 79
Conclusions and Future Work 81
4.1 Summary of Finding 81
4.2 Future Work 84
References 86
Appendix 93
-
dc.language.isoen-
dc.subject缺血性中風zh_TW
dc.subject數學模型zh_TW
dc.subject微膠質細胞zh_TW
dc.subject高壓氧療法zh_TW
dc.subjecthyperbaric oxygen therapyen
dc.subjectIschaemic strokeen
dc.subjectmathematical modelen
dc.subjectmicrogliaen
dc.title缺血性中風中炎症動態與神經保護機制的整合:基於數值 模擬的治療策略研究zh_TW
dc.titleIntegrating Inflammation Dynamics and Neuroprotection in Ischaemic Stroke: A Simulation-Based Approach to Stroke Treatmenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梅文逢;黃延興zh_TW
dc.contributor.oralexamcommitteeVan-Phung Mai;Ooi Ean Hinen
dc.subject.keyword缺血性中風,數學模型,微膠質細胞,高壓氧療法,zh_TW
dc.subject.keywordIschaemic stroke,mathematical model,microglia,hyperbaric oxygen therapy,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202503445-
dc.rights.note未授權-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved