Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍俊宏zh_TW
dc.contributor.advisorJakey Blueen
dc.contributor.author阮唯語zh_TW
dc.contributor.authorWei-Yu Juanen
dc.date.accessioned2025-09-01T16:07:53Z-
dc.date.available2025-09-02-
dc.date.copyright2025-09-01-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citationAbolghasemi, M., Beh, E., Tarr, G., & Gerlach, R. (2020). Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Computers & Industrial Engineering, 142, 106380.
Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clustering–a decade review. Information systems, 53, 16-38.
Agrawal, R. K., & Adhikari, R. (2013). An introductory study on time series modeling and forecasting. Nova York: CoRR, 200-212.
Almeida, A., Brás, S., Sargento, S., & Pinto, F. C. (2023). Time series big data: a survey on data stream frameworks, analysis and algorithms. Journal of Big Data, 10(1), 83.
Bacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega, 40(6), 722-737.
Bekal, G., & Bari, M. (2021). An XGBoost-Based Forecasting Framework for Product Cannibalization. arXiv preprint arXiv:2111.12680
Box, G., & Jenkins, G. M. (1976). Analysis: Forecasting and Control. San francisco.
D. Ivanov, A. Tsipoulanidis, and J. Schönberger, Global Supply Chain and Operations Management. Cham, Germany: Springer, 2017.
Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9(3), 458-467.
Deb, C., Zhang, F., Yang, J., Lee, S. E., & Shah, K. W. (2017). A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 74, 902-924.
Du Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: an application to international tourism demand. International Journal of Forecasting, 19(3), 435-451.
Düker, M. C., Matteson, D. S., Tsay, R. S., & Wilms, I. (2025). Vector autoregressive moving average models: A review. Wiley Interdisciplinary Reviews: Computational Statistics, 17(1), e70009.
Fuchs, E., Gruber, T., Nitschke, J., & Sick, B. (2010). Online segmentation of time series based on polynomial least-squares approximations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2232-2245.
Gonçalves, J. N., Cortez, P., Carvalho, M. S., & Frazão, N. M. (2021). A multivariate approach for multi-step demand forecasting in assembly industries: Empirical evidence from an automotive supply chain. Decision Support Systems, 142, 113452.
Pérez-Chacón, R., Asencio-Cortés, G., Troncoso, A., & Martínez-Álvarez, F. (2024). Pattern sequence-based algorithm for multivariate big data time series forecasting: Application to electricity consumption. Future Generation Computer Systems, 154, 397-412.
Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669-679.
Kiefer, D., Grimm, F., Bauer, M., & Van, D. (2021). Demand forecasting intermittent and lumpy time series: Comparing statistical, machine learning and deep learning methods.
Lars G. Silver, Evan A. Pyke, & Rein Peterson. (1998). Inventory Management and Production Planning and Scheduling. John Wiley & Sons.
Lavielle, M., & Teyssiere, G. (2006). Detection of multiple change-points in multivariate time series. Lithuanian Mathematical Journal, 46(3), 287-306.
Levitt, T. (1965). Exploit the product life cycle. Harvard Business Review, 43(6), 81–94.
Liu, Z., Zhang, J., & Li, Y. (2022). Towards better time series prediction with model-independent, low-dispersion clusters of contextual subsequence embeddings. Knowledge-Based Systems, 235, 107641.
Lovrić, M., Milanović, M., & Stamenković, M. (2014). Algoritmic methods for segmentation of time series: An overview. Journal of Contemporary Economic and Business Issues, 1(1), 31-53.
Müller, M. (2007). Dynamic time warping. Information retrieval for music and motion, 69-84.
Rao, C. M., & Rao, K. P. (2009). Inventory turnover ratio as a supply chain performance measure. Serbian Journal of Management, 4(1), 41-50.
Syntetos, A. A., Boylan, J. E., & Croston, J. D. (2005). On the categorization of demand patterns. Journal of the operational research society, 56(5), 495-503.
Seyedan, M., Mafakheri, F., & Wang, C. (2022). Cluster-based demand forecasting using Bayesian model averaging: An ensemble learning approach. Decision Analytics Journal, 3, 100033.
Tulli, S. (2020). Comparative Analysis of Traditional and AI-based Demand Forecasting Models. International Journal of Emerging Trends in Science and Technology, 6933-6956.
Zhou, S., & Pan, Y. (2021, May). Spectrum attention mechanism for time series classification. In 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS) (pp. 339-343). IEEE.
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021, May). Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 12, pp. 11106-11115).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99335-
dc.description.abstract在全球供應鏈益發複雜且需求型態瞬息多變的情況下,企業若要維持適當庫存與服務品質,必須依賴高效且高精度的需求預測,尤其當產品上市時間不同、需求呈間歇波動,並伴隨替代或互補效應時更是如此。然而,逐品項獨立建模不僅計算成本高昂,也往往忽略不同序列間的互動資訊。
為因應此挑戰,本研究提出一套「先分群、後建模」的整合性預測框架。首先對齊多條需求序列的起始點,再以交叉相關係數量化其同步與領先/滯後關係,進而透過階層式演算法將具相似需求輪廓或正負相關性的序列歸為群集。分群完成後,本框架採行雙路徑預測:一路徑將群內高度相似的子序列串接為長序列並套用單變量模型,另一路徑則將整群序列同時輸入多變量模型以捕捉交互作用。針對平均絕對百分比誤差(MAPE)在低量級與零需求場景易失真的問題,本文進一步提出以實際值與預測值總和為分母的 N_MAPE 指標,使衡量結果對不同量級與間歇需求更具公平性與解釋力。
實驗以某汽車零組件之月度需求資料為例,聚焦兩種分群方式下的四個大型群集。結果顯示,在需求輪廓同向群集內,群集單變量模型可明顯改善高誤差序列,但整體平均誤差仍略遜於獨立建模;多變量模型僅於部分序列表現優於基準,群集平均 MAPE 與 N_MAPE 仍高於獨立模型,突顯跨序列交互資訊的穩定性與精度尚待提升。
整體而言,群集單變量與多變量方法唯有在序列互動關係明確且結構穩定時方能超越逐品項獨立建模,若群集雜訊過高或關聯性鬆散,無差別共享反而稀釋序列特徵。有效的策略是在基準誤差偏高且具高度關聯性的子集合中導入共用模型,藉由精細的群內篩選與差異化建模路徑,將跨序列資訊轉化為可觀的預測增益。此策略性分群與建模原則凸顯了本研究於特定序列顯著提升預測效能的價值,並為未來跨產業導入共享預測模型提供可行的實務指引。
zh_TW
dc.description.abstractAccurate and efficient demand forecasting is essential in today’s complex supply chains, where demand is often intermittent, product life cycles are misaligned, and substitution or complementarity effects exist. Traditional item-level models are computationally costly and often neglect cross-series relationships. To address this, we propose a “cluster-first, model-second” forecasting framework that first aligns the starting points of multiple time series, then applies cross-correlation to quantify lead–lag relationships, followed by hierarchical clustering based on profile similarity or positive/negative correlations.
The framework supports two parallel modeling paths: a univariate path that concatenates similar subsequences for individual modeling, and a multivariate path that inputs entire clusters into VARMA and LSTM models to capture interdependencies. To address the distortion of MAPE under low or zero demand, we introduce N_MAPE, which normalizes error by the sum of actual and predicted values.
Using monthly automotive parts demand data, we evaluate four large clusters derived from two grouping strategies. Results show that clustered univariate models improve high-error series but underperform in average accuracy compared to independent models. Multivariate models yield limited gains and higher average errors, highlighting sensitivity to noise and structural inconsistency.
Overall, the framework is most effective when applied to highly correlated, high-error subsets. Indiscriminate shared modeling may dilute useful signals, while strategic clustering and selective model deployment can meaningfully enhance forecasting performance across industries.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-01T16:07:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-01T16:07:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
目次 iii
圖次 v
表次 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究目的 3
1.3 研究架構 4
第二章 文獻探討 5
2.1 需求預測 5
2.1.1 庫存管理與需求預測 5
2.1.2 需求預測方法 5
2.2 時間序列需求預測方法 8
2.2.1 單變量時間序列 8
2.2.2 多變量時間序列 9
2.2.3 子時間序列 10
2.3 時間序列分群 13
2.3.1 序列相似度衡量 13
2.3.2 分群方法 15
2.4 需求預測衡量指標 17
2.5 文獻綜合評析與本研究定位 19
第三章 多元時序資料分群與建模 21
3.1 交叉相關係數(Cross Correlation)分析 25
3.1.1 多產品需求輪廓對齊 26
3.1.2 交叉相關係數計算 28
3.2 序列分群 31
3.2.1 相似度矩陣 31
3.2.2 分群方法 32
3.2.3 群集代表序列 33
3.3 分群建模 36
3.3.1 單變量分群建模 37
3.3.2 多變量分群建模 38
3.4 衡量指標 42
第四章 案例研討 46
4.1 資料集介紹與前處理 46
4.2 序列分群 49
4.3 建模與預測 59
4.3.1 單變量時間序列 60
4.3.2 多變量時間序列 64
4.4 成效討論 77
第五章 結論與建議 81
5.1 研究結論與貢獻 81
5.2 未來研究方向 84
參考文獻 86
-
dc.language.isozh_TW-
dc.subject需求預測zh_TW
dc.subject時間序列分群zh_TW
dc.subject交叉相關函數zh_TW
dc.subject汽車零組件zh_TW
dc.subject庫存管理zh_TW
dc.subjectTime Series Clusteringen
dc.subjectDemand Forecastingen
dc.subjectInventory Managementen
dc.subjectAuto Spare Partsen
dc.subjectCross-Correlationen
dc.title子序列導向之多元時序資料分群與建模分析—以汽車零組件需求預測為例zh_TW
dc.titleSubsequence-based Clustering and Modeling for Multivariate Time Series Analytics – A Case Study in Auto Parts Demand Forecastingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭佳瑋;許育彰zh_TW
dc.contributor.oralexamcommitteeChia-Wei Kuo;Yu-Jang Hsuen
dc.subject.keyword需求預測,時間序列分群,交叉相關函數,汽車零組件,庫存管理,zh_TW
dc.subject.keywordDemand Forecasting,Time Series Clustering,Cross-Correlation,Auto Spare Parts,Inventory Management,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202503633-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2030-08-03-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
12.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved