Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99332
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峻永zh_TW
dc.contributor.advisorChun-Yeon Linen
dc.contributor.author田晏瑋zh_TW
dc.contributor.authorYen-Wei Tienen
dc.date.accessioned2025-09-01T16:07:08Z-
dc.date.available2025-09-02-
dc.date.copyright2025-09-01-
dc.date.issued2025-
dc.date.submitted2025-08-15-
dc.identifier.citation[1] Levitronix GmbH, “Magnetic rotor and rotary pump having a magnetic rotor,” U.S. Patent Application US 20130022481 A1, Jan. 24, 2013.
[2] K.-M. Lee et al., “Multiparameter eddy-current sensor design for conductivity estimation and simultaneous distance and thickness measurements,” IEEE Trans. Ind. Inf., vol. 15, no. 3, pp. 1647–1657, Mar. 2018.
[3] C. H. Dinh et al., “Real-time thickness measurement using resonant eddy-current sensor,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–9, May 2021.
[4] Z. Song et al., “Detection of damage and crack in railhead by using eddy current testing,” J. Electromagn. Anal. Appl., vol. 2011, pp. 1–5, 2011.
[5] M. Ritou et al., “Angular approach combined to mechanical model for tool breakage detection by eddy current sensors,” Mech. Syst. Signal Process., vol. 44, no. 1–2, pp. 211–220, Jan. 2014.
[6] Z. Zhao et al., “Experimental investigation of high temperature-resistant inductive sensor for blade tip clearance measurement,” Sensors, vol. 19, no. 1, p. 61, 2018.
[7] A. J. Grobler, G. van Schoor, and E. O. Ranft, “Design and optimisation of a PCB eddy current displacement sensor,” SAIEE Afr. Res. J., vol. 108, no. 1, pp. 17–25, Mar. 2017.
[8] G. Zhao et al., “Advances in high-precision displacement and thickness measurement based on eddy current sensors: A review,” Measurement, vol. 233, p. 116410, 2024.
[9] 明 王, “磁懸浮式人工心臟中的電渦流位移傳感器優化設計,” 碩士論文, 蘇州大學, 蘇州, 中國, 2015.
[10] K. Wang et al., “Analysis and experiment of self-differential eddy current displacement sensor for AMBs used in molecular pump,” IEEE Trans. Instrum. Meas., vol. 67, no. 8, pp. 1815–1824, Aug. 2018.
[11] Y. Li et al., “Effect of excitation signal on double-coil inductive displacement transducer,” Sensors, vol. 23, no. 7, pp. 3780–3796, Apr. 2023.
[12] T. Sillanpää et al., “Three-axis inductive displacement sensor using phase-sensitive digital signal processing for industrial magnetic bearing applications,” Actuators, vol. 10, no. 6, p. 115, May 2021.
[13] Y. Chen et al., “A magnetic head-based eddy current displacement sensing method,” Phys. Scr., vol. 98, no. 10, p. 105534, Sep. 2023.
[14] L. Yang et al., “Analysis of signal demodulation circuit of eddy current sensor based on Taylor series,” in Proc. 11th Int. Conf. Intell. Human-Machine Syst. Cybern. (IHMSC), vol. 2, pp. 181-184, 2019.
[15] Y. Yu et al., “Temperature invariant phenomenon in dual coil eddy current displacement sensor: Investigation, verification and application,” IEEE Sensors J., vol. 19, no. 21, pp. 9680–9687, Nov. 2019.
[16] T. Ma et al., “Wide temperature range and low temperature drift eddy current displacement sensor using digital correlation demodulation,” Sensors, vol. 23, no. 10, p. 4895, 2023.
[17] Z. Cao et al., “Driver circuit design for a new eddy current sensor in displacement measurement of active magnetic bearing systems,” IEEE Sensors J., vol. 22, no. 17, pp. 16945–16951, Sep. 2022.
[18] L. Xu et al., “Performance analysis of a digital capacitance measuring circuit,” Rev. Sci. Instrum., vol. 86, no. 5, 2015.
[19] C. Wang et al., “Simultaneous temperature drift compensation for eddy current displacement sensors used in magnetically levitated rotor,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–9, 2022.
[20] S. Zheng et al., “Temperature drift compensation for exponential hysteresis characteristics of high-temperature eddy current displacement sensors,” IEEE Sensors J., vol. 19, no. 23, pp. 11041–11049, Dec. 2019.
[21] C.-Y. Lin et al., “Pulsed eddy current sensor for cascade electrical conductivity and thickness estimation in nonferrous metal plates,” IEEE Sensors J., vol. 23, no. 8, pp. 8323–8334, Apr. 2023.
[22] M. Sun et al., “Driver circuit improvement of eddy current sensor in displacement measurement of high-speed rotor,” IEEE Sensors J., vol. 21, no. 6, pp. 7776–7783, Mar. 2021.
[23] T. Mizuno et al., “Extending the linearity range of eddy-current displacement sensor with magnetoplated wire,” IEEE Trans. Magn., vol. 43, no. 2, pp. 543–548, Feb. 2007.
[24] Y.-L. Cheng, “一種礦山窄軌車輛用接近傳感器,” 煤礦安全, vol. 51, no. 5, pp. 142–145, 2020.
[25] J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys., vol. 190, pp. 106–126, 2013.
[26] Z. Liu et al., “Development of a bidirectional-excitation eddy-current sensor with magnetic shielding: Detection of subsurface defects in stainless steel,” IEEE Sensors J., vol. 18, no. 15, pp. 6203–6216, Aug. 2018.
[27] C. C. Cheng, C. V. Dodd, and W. E. Deeds, “Analytical solutions to eddy-current probe-coil problems over layered metals,” Int. J. Nondestruct. Test., vol. 109, pp. 90–109, 1969.
[28] T. P. Theodoulidis and E. E. Kriezis, Eddy Current Canonical Problems, vol. 1. Foster City, CA, USA: Tech Science Press, 2006.
[29] J. Zhang et al., “Analytical approaches to eddy current nondestructive evaluation for stratified conductive structures,” J. Mech. Sci. Technol., vol. 29, pp. 4159–4165, 2015.
[30] Y. Li, T. Theodoulidis, and G. Y. Tian, “Magnetic field-based eddy-current modeling for multilayered specimens,” IEEE Trans. Magn., vol. 43, no. 11, pp. 4010–4015, Nov. 2007.
[31] T. P. Theodoulidis and J. R. Bowler, “The truncated region eigenfunction expansion method for the solution of boundary value problems in eddy current nondestructive evaluation,” in Proc. AIP Conf. Proc., vol. 760, no. 1, pp. 403-408, 2005.
[32] T. Theodoulidis and A. Skarlatos, “Eddy current interaction of an arbitrarily positioned probe coil with a conductive cylinder,” IEEE Trans. Magn., vol. 48, no. 8, pp. 2392–2394, Aug. 2012.
[33] T. P. Theodoulidis and E. E. Kriezis, “Coil impedance due to a sphere of arbitrary radial conductivity and permeability profiles,” IEEE Trans. Magn., vol. 38, no. 3, pp. 1452–1460, May 2002.
[34] S. K. Burke and T. P. Theodoulidis, “Impedance of a horizontal coil in a borehole: A model for eddy-current bolthole probes,” J. Phys. D: Appl. Phys., vol. 37, no. 3, pp. 485–490, 2004.
[35] X. Mao and Y. Lei, “Analytical solutions to eddy current field excited by a probe coil near a conductive pipe,” NDT E Int., vol. 54, pp. 69–74, 2013.
[36] H. Shinagawa, T. Iizuka, Y. Awaji, and K. Funaki, “Theoretical analysis of AC resistance in coil using magnetoplated wire,” IEEE Trans. Magn., vol. 45, no. 9, pp. 3251–3259, Sep. 2009.
[37] H. Wang et al., “Design of ultrastable and high resolution eddy-current displacement sensor system,” in Proc. IEEE IECON, 2014, pp. 2333-2339.
[38] D. Vyroubal, “Impedance of the eddy-current displacement probe: The transformer model,” IEEE Trans. Instrum. Meas., vol. 53, no. 2, pp. 384–391, Apr. 2004.
[39] T. E. Capobianco, J. D. Splett, and H. K. Iyer, “Eddy current probe sensitivity as a function of coil construction parameters,” Res. Nondestruct. Eval., vol. 2, pp. 169–186, 1990.
[40] Y. Yating, D. Pingan, and W. Zhenwei, “Study on the electromagnetic properties of eddy current sensor,” in Proc. IEEE Int. Conf. Mechatronics and Automation, vol. 4, pp. 1970-1975, 2005.
[41] T. Theodoulidis, “Analytical model for tilted coils in eddy-current nondestructive inspection,” IEEE Trans. Magn., vol. 41, no. 9, pp. 2447–2454, Sep. 2005.
[42] Y. Yating and D. Pingan, “Optimization of an eddy current sensor using finite element method,” in Proc. Int. Conf. Mechatronics and Automation, 2007, pp. 3795-3800.
[43] H. Qi, T. Li, and J. Lin, “Parameters optimization for GECDS using response surface methodology and genetic algorithms,” in Proc. IEEE 5th Int. Conf. Electron. Inf. Emergency Commun. (ICEIEC), 2015, pp. 198-202.
[44] J. Sun and H. Zhu, “Self-sensing technology of rotor displacement for six-pole radial active magnetic bearing using improved quantum particle swarm optimized cubature Kalman filter,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 3, pp. 2881–2889, Sep. 2021.
[45] M. R. Nabavi and S. N. Nihtianov, “Design strategies for eddy-current displacement sensor systems: Review and recommendations,” IEEE Sensors J., vol. 12, no. 12, pp. 3346–3355, Dec. 2012.
[46] C.-Y. Lin, Y.-C. Wu, and M. Teng, “Development of a magnetic/eddy-current sensing system for simultaneous estimation of electrical conductivity and thickness in non-ferrous metal plates,” IEEE/ASME Trans. Mechatronics, vol. 28, no. 1, pp. 360–371, Feb. 2022.
[47] A. S. A. Kumar, B. George, and S. C. Mukhopadhyay, “Technologies and applications of angle sensors: A review,” IEEE Sensors J., vol. 21, no. 6, pp. 7195–7206, Mar. 2021.
[48] A. S. A. Kumar, B. George, and S. C. Mukhopadhyay, “An eddy current based non-contact displacement sensor,” in Proc. IEEE Int. Instrum. Meas. Technol. Conf. (I2MTC), 2020, pp. 1-6.
[49] W. Li, J. Hu, Z. Su, and D. Wang, “A novel approach for sensitivity improvement of axial inductive displacement sensor,” Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., vol. 238, no. 19, pp. 9412–9419, 2024.
[50] W. Wang et al., “A novel method for the micro-clearance measurement of a precision spherical joint based on a spherical differential capacitive sensor,” Sensors, vol. 18, no. 10, p. 3366, 2018.
[51] S. C. Wang, B. R. Xie, and S. M. Huang, “Design and analysis of small size eddy current displacement sensor,” Sensors, vol. 22, no. 19, p. 7444, 2022.
[52] Z. Xu, Z. Liu, J. Zhou, and J. Li, “Single-ended eddy current micro-displacement sensor with high precision based on temperature compensation,” Micromachines, vol. 15, no. 3, p. 366, 2024.
[53] Z. Ren, H. Li, and W. Yu, “Research on coil impedance of self-inductive displacement sensor considering core eddy current,” Sensors, vol. 21, no. 18, p. 6292, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99332-
dc.description.abstract本研究對於磁浮泵應用中對於高精度、微型化位移感測的需求,設計並開發一套雙軸渦電流位移感測系統,應用於即時量測轉子於二維平面的偏心位移。傳統渦電流感測器常受限於空間、靈敏度與干擾影響,無法有效應用於磁浮泵內部狹窄結構與動態環境。本文從理論模型出發,導入截斷區域特徵函數展開法與有限元素分析,經過驗證後建立阻抗模型並針對理論缺失的交流電阻進行補償,根據結果可知所使用之數值模型能良好應用,後續進一步整合粒子群最佳化演算法進行線圈幾何參數設計,進而獲得最佳性能的設計組合。本系統採用橋式雙探頭架構,搭配解調電路與儀表放大器進行訊號處理,將帶有位移訊號之交流訊號轉為直流電壓輸出,再透過位移估測模型估測轉子在平面內之位置資訊。本研究開發一套具實用性之高性能微型渦電流位移感測系統,亦建立一套可廣泛應用於其他渦電流感測場合的理論設計流程,提供高精度位移感測領域中快速且表現良好的設計方法。
實驗結果顯示,所設計之探頭大小外徑小於5mm,渦電流感測系統在1毫米的量測範圍內可達到小於2.5 µm 的解析度,靈敏度可達約2 V/mm,非線性度約為1.35%。在動態測試中亦能穩定追蹤轉子平移行為,同時具備良好重複性。
zh_TW
dc.description.abstractThis study addresses the demand for high-precision and miniaturized displacement sensing in magnetically levitated pump applications by designing and developing a dual-axis eddy current displacement sensing system capable of real-time measurement of rotor eccentric displacement in a two-dimensional plane. Traditional eddy current sensors are often limited by spatial constraints, insufficient sensitivity, and susceptibility to interference, making them unsuitable for use within the compact structure and dynamic environment of magnetic levitation pumps. Starting from theoretical modeling, this study incorporates the Truncated Region Eigenfunction Expansion (TREE) method along with finite element analysis (FEA) to establish a validated impedance model. To address deficiencies in the theoretical model, compensation for AC resistance is introduced. Furthermore, the geometric parameters of the sensing coil are optimized using a Particle Swarm Optimization (PSO) algorithm, resulting in an optimal design configuration with enhanced performance.
The developed system adopts a bridge-type dual-probe architecture, integrated with synchronous demodulation circuitry and an instrumentation amplifier for signal processing. The AC signal carrying displacement information is converted into a readable DC voltage output, which is then interpreted using a displacement estimation model to determine the rotor’s position within the plane. This research successfully develops a practical, high-performance, and miniaturized eddy current displacement sensing system, and also establishes a generalizable theoretical design framework applicable to various eddy current sensing applications. It provides a rapid and efficient design methodology for achieving high-precision displacement sensing.
Experimental results demonstrate that the proposed sensing system achieves a resolution of less than 2.5µm within a 1 mm measurement range, with a sensitivity of approximately 2 V/mm and a linearity error of around 1.35%. In dynamic testing, the system is capable of reliably tracking rotor translation, exhibiting excellent repeatability and strong noise immunity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-01T16:07:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-01T16:07:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目次 iv
表次 vii
圖次 viii
符號與縮寫解釋表 x
第一章 前言 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 問題描述 5
1.4 研究貢獻 6
1.5 論文架構 6
2 第二章 理論背景 7
2.1 渦電流磁路原理 7
2.2 線圈阻抗數學模型 9
2.2.1 線圈於空氣中的阻抗值 9
2.2.2 由被測物產生的阻抗變化 12
2.2.3 位移影響阻抗變化 12
2.2.4 總阻抗值補償與計算 13
3 第三章 系統設計 15
3.1 渦電流模型應用情形 15
3.2 線圈設計 16
3.2.1 線圈參數 16
3.2.2 最佳化線圈設計 17
3.3 電路設計 20
3.4 位移估測方法 21
3.4.1 電壓線性回歸模型 22
3.4.2 完整電路特徵 23
4 第四章 數值模擬與驗證 25
4.1 物理模型模擬 25
4.1.1 模擬性能指標定義 25
4.1.2 有限元素模擬環境設置 26
4.1.3 被測物與線圈同軸向移動之情況 28
4.2 有限元素方法與數值模型之驗證與比較 31
4.2.1 空氣中線圈阻抗 31
4.2.2 位移阻抗變化 33
4.2.3 最終線圈參數選擇 35
4.3 被測物與線圈不同軸向移動之情況 37
4.3.1 沿主量測軸位移感測之副軸偏移量對量測響應影響 38
4.3.2 沿副軸位移對主量測線圈組輸出影響 39
4.4 位移估測方法模擬 39
4.4.1 電壓線性回歸模型 40
4.4.2 完整特徵法 42
5 第五章 實驗結果與分析 45
5.1 渦電流感測系統設置 45
5.1.1 軟體量測系統 45
5.1.2 感測探頭 46
5.1.3 硬體系統配置 47
5.2 實驗結果 49
5.2.1 靜態量測結果 50
5.2.2 位移估測結果 52
5.2.3 動態測試結果 53
5.3 與其他文獻比較之性能指標 55
6 第六章 結論與未來展望 57
6.1 結論 57
6.2 未來展望 58
7 第七章 參考文獻 60
-
dc.language.isozh_TW-
dc.subject差分電橋zh_TW
dc.subject渦電流位移感測器zh_TW
dc.subject位移估測zh_TW
dc.subject最佳化線圈設計zh_TW
dc.subject渦電流阻抗變化模型zh_TW
dc.subjecteddy current impedance variation modelen
dc.subjectoptimized coil designen
dc.subjectdisplacement estimationen
dc.subjectdifferential bridge circuiten
dc.subjecteddy current displacement sensoren
dc.title應用於磁浮泵偏心量估測之雙軸渦電流位移感測系統開發zh_TW
dc.titleDesign and Implementation of a Dual-Axis Eddy Current Displacement Sensor for Eccentricity Detection in Magnetically Levitated Pumpsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊士進;鄭振宗;王建昌zh_TW
dc.contributor.oralexamcommitteeShih-Chin Yang;Jen-Tzong Jeng;Chien-Chang Wangen
dc.subject.keyword渦電流位移感測器,差分電橋,渦電流阻抗變化模型,最佳化線圈設計,位移估測,zh_TW
dc.subject.keywordeddy current displacement sensor,differential bridge circuit,eddy current impedance variation model,optimized coil design,displacement estimation,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202504368-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved