Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99320Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林浩雄 | zh_TW |
| dc.contributor.advisor | Hao-Hsiung Lin | en |
| dc.contributor.author | 陳奕臣 | zh_TW |
| dc.contributor.author | Yi-Chen Chen | en |
| dc.date.accessioned | 2025-08-22T16:10:09Z | - |
| dc.date.available | 2025-08-23 | - |
| dc.date.copyright | 2025-08-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-10 | - |
| dc.identifier.citation | 1.Burg, D. and J.H. Ausubel, Moore's Law revisited through Intel chip density. PLoS One, 2021. 16(8): p. e0256245.
2.Wang, S., X. Liu, and P. Zhou, The Road for 2D Semiconductors in the Silicon Age. Advanced Materials, 2022. 34(48): p. 2106886. 3.Pearce, C.W. and D.S. Yaney, Short-channel effects in MOSFET's. IEEE Electron Device Letters, 1985. 6(7): p. 326-328. 4.Ferain, I., C.A. Colinge, and J.-P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature, 2011. 479(7373): p. 310-316. 5.Qu, J., et al., Study of Drain Induced Barrier Lowering(DIBL) Effect for Strained Si nMOSFET. Procedia Engineering, 2011. 16: p. 298-305. 6.Tarr, N.G., et al., Short-channel effects on MOSFET subthreshold swing. Solid-State Electronics, 1995. 38(3): p. 697-701. 7.Mahnkopf, R., G. Przyrembel, and H.G. Wagemann, Characterization of hot carrier degradation within the gate oxide of short channel MOSFET's. Archiv für Elektrotechnik, 1991. 74(5): p. 379-387. 8.Uren, M.J., et al., Punch-through in short-channel AlGaN/GaN HFETs. IEEE Transactions on Electron Devices, 2006. 53(2): p. 395-398. 9.Narendar, V. and R.A. Mishra, Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices and Microstructures, 2015. 85: p. 357-369. 10.Wei, T., et al., Two dimensional semiconducting materials for ultimately scaled transistors. iScience, 2022. 25(10): p. 105160. 11.Li, H.-M., et al., Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors. Scientific Reports, 2014. 4(1): p. 4041. 12.Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669. 13.Chhowalla, M., D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors. Nature Reviews Materials, 2016. 1(11): p. 16052. 14.Yang, S.-H., et al., Exploring the frontier of 2D materials: Strain and electric field effects in MoS2/WS2 vdW heterostructures. Journal of Alloys and Compounds, 2025. 1012: p. 178457. 15.Sakthivel, R., et al., Heterostructures of 2D materials and their applications in biosensing. Progress in Materials Science, 2023. 132: p. 101024. 16.Bafekry, A., et al., Tunable electronic and magnetic properties of graphene/carbon-nitride van der Waals heterostructures. Applied Surface Science, 2020. 505: p. 144450. 17.Nair, A.S., et al., A novel top-down approach for high yield production of graphene from natural graphite and its supercapacitor applications. Diamond and Related Materials, 2024. 144: p. 111025. 18.Sruti, A.N. and K. Jagannadham, Electrical Conductivity of Graphene Composites with In and In-Ga Alloy. Journal of Electronic Materials, 2010. 39(8): p. 1268-1276. 19.Yang, G., et al., Structure of graphene and its disorders: a review. Science and Technology of Advanced Materials, 2018. 19(1): p. 613-648. 20.Yazdi, G.R., T. Iakimov, and R. Yakimova, Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals, 2016. 6(5): p. 53. 21.Dubois, S.M.M., et al., Electronic properties and quantum transport in Graphene-based nanostructures. The European Physical Journal B, 2009. 72(1): p. 1-24. 22.Sun, B., et al., Synthesis of Wafer-Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021. 6(7): p. 2000744. 23.Esmaeilpour, M., et al., Multiscale Model of CVD Growth of Graphene on Cu(111) Surface. International Journal of Molecular Sciences, 2023. 24(10): p. 8563. 24.Freire Soler, V.M., Fabrication and Characterization of Macroscopic Graphene Layers on Metallic Substrates. 2014. 25.Wang, J., et al., Properties and applications of new superlattice: twisted bilayer graphene. Materials Today Physics, 2019. 9: p. 100099. 26.Koshino, M., Interlayer screening effect in graphene multilayers with $ABA$ and $ABC$ stacking. Physical Review B, 2010. 81(12): p. 125304. 27.Wang, S., C. Wang, and X. Ji, Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Advances, 2017. 7: p. 52252-52260. 28.Park, K.H. and S.H. Song, Graphene Quantum Dots with Blue and Yellow Luminescence Fabricated by Modulating Intercalation State. Materials, 2022. 15(19): p. 6567. 29.Khan, M.A., Development of nanocomposites for energy storage devices. 2012. 30.Li, S.W., et al. Intercalated Graphene as Next Generation Back-end-of-Line Conductors. in 2023 International Electron Devices Meeting (IEDM). 2023. 31.Zhao, W., et al., Intercalation of Few-Layer Graphite Flakes with FeCl3: Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability. Journal of the American Chemical Society, 2011. 133(15): p. 5941-5946. 32.Contino, A., Modeling of Graphene for Interconnect Applications. 2019. 33.Zhan, D., et al., FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping. Advanced Functional Materials, 2010. 20(20): p. 3504-3509. 34.Yao, J. and G. Yang, 2D group 6 transition metal dichalcogenides toward wearable electronics and optoelectronics. Journal of Applied Physics, 2020. 127(3). 35.Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130. 36.Hoang Huy, V.P., Y.N. Ahn, and J. Hur, Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. Nanomaterials, 2021. 11(6): p. 1517. 37.Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7(11): p. 699-712. 38.Thomas, N., et al., 2D MoS2: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability, 2021. 13: p. 100073. 39.Ye, M., et al., Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films. Photonics, 2015. 2(1): p. 288-307. 40.Wani, S.S., et al., Enhanced Electrical Transport Properties of Molybdenum Disulfide Field-Effect Transistors by Using Alkali Metal Fluorides as Dielectric Capping Layers. ACS Nano, 2024. 18(16): p. 10776-10787. 41.Lan, H.-Y., et al., Reliability of high-performance monolayer MoS2 transistors on scaled high-κ HfO2. npj 2D Materials and Applications, 2025. 9(1): p. 5. 42.Abdel Maksoud, M.I.A., et al., MoS2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review. Environmental Chemistry Letters, 2021. 19(5): p. 3645-3681. 43.Cheung, W.-S., et al., Advancing semantic segmentation of two-dimensional materials using a semantic-adaptive transformer model. Applied Physics Letters, 2024. 125(13). 44.Sahoo, D., et al., RETRACTED ARTICLE: Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Scientific Reports, 2020. 10(1): p. 10759. 45.Wang, S., et al., Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition. Nanotechnology, 2016. 27(8): p. 085604. 46.Liu, X., et al., Fermi Level Pinning Dependent 2D Semiconductor Devices: Challenges and Prospects. Advanced Materials, 2022. 34(15): p. 2108425. 47.Shen, P.-C., et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211-217. 48.Dobrescu, L., et al. Threshold voltage extraction methods for MOS transistors. in 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486). 2000. 49.Chang, H.-Y., W. Zhu, and D. Akinwande, On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Applied Physics Letters, 2014. 104(11). 50.de la Rosa, C.J.L., et al., Insight on the Characterization of MoS2 Based Devices and Requirements for Logic Device Integration. ECS Journal of Solid State Science and Technology, 2016. 5(11): p. Q3072. 51.Su, L., et al., Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale, 2014. 6(9): p. 4920-4927. 52.Gołasa, K., et al., Resonant Raman scattering in MoS2—From bulk to monolayer. Solid State Communications, 2014. 197: p. 53-56. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99320 | - |
| dc.description.abstract | 本研究主要探討運用感應式耦合電漿輔助沉積系統於鈷箔基板上合成多層石墨烯,並將其應用於二硫化鉬場效電晶體之製作中。多層石墨烯為半金屬,因具備優異的韌性與材料特性,在本實驗中被選為電極材料,並結合轉移電極技術改善傳統直接蒸鍍金屬於二硫化鉬時所可能引發的材料破壞等問題,有助於改善金屬與半導體界面間費米能階釘札(Fermi Level Pinning)效應所造成的界面電子注入障礙。本研究成功製備石墨烯/二硫化鉬異質結構場效電晶體,石墨烯作為電極轉移至二硫化鉬表面後,能有效調變其介面功函數,進而緩解費米能階釘札效應,有助於提升介面載子注入效率,降低接觸電阻。
元件電性分析顯示,石墨烯電極元件具備明顯的n型導電特性,其導通電流達3.62 × 10−4 A,開關電流比為1.64 × 106,場效遷移率為29.2 cm2/V⋅s,與極低之接觸電阻1.54 kΩ⋅μm,但石墨烯本身具有較高電阻,限制了元件導通電流大小。 本研究使用兩種方式降低石墨烯電阻並提升元件電流: 第一種方式為在石墨烯電極上加上金電極,由於金導電阻較低,因此有效降低電極電阻,導通電流達6.08 × 10−4 A,場效遷移率為48.7 cm2/V⋅s,與低接觸電阻1.95 kΩ⋅μm,展現最好的元件電性結果。 第二種方式為使用插層技術對石墨烯改質,大幅降低電阻。插層石墨烯電極元件同樣能緩解費米能階釘札效應,但插層後接觸電阻升至2.27 kΩ⋅μm。元件電性分析結果顯示,導通電流達提升到了5.37 × 10−4 A,且高遷移率43.5 cm2/V∙s,展現插層技術在犧牲增加接觸電阻情況下,利用電極電阻下降能大幅提升整體的電流。 | zh_TW |
| dc.description.abstract | This study focuses on the synthesis of multilayer graphene on cobalt foil substrates using an ICP-CVD system, and apply in the MoS2 field-effect transistors. Owing to its semimetallic nature, excellent mechanical flexibility, and favorable material properties, multilayer graphene was chosen as the electrode material in this work. To address the issues associated with conventional direct metal deposition on MoS2, such as material degradation and structural damage—a transferred electrode technique was adopted. This method effectively alleviates the Fermi level pinning effect at the metal–semiconductor interface, which commonly leads to carrier injection barriers.
A graphene / MoS2 heterostructure FET was successfully fabricated. After transferring the graphene electrode onto the MoS2 surface, the interfacial work function was effectively modulated, thereby mitigating the Fermi level pinning effect. This modulation improves carrier injection efficiency at the interface and leads to a reduction in contact resistance. Electrical measurements of the graphene / MoS2 device revealed clear n type conduction behavior, with an on current of 3.62 × 10−4 A, an on/off current ratio of 1.64 × 106, a field effect mobility of 29.2 cm2/V⋅s, and a low contact resistance of 1.54 kΩ·μm. However, the inherent high resistance of graphene limited the achievable current level of the device. To overcome this limitation and improve device performance, two strategies were employed to reduce the resistance of the graphene electrode. In the first approach, a gold layer was deposited on top of the graphene electrode. Due to the superior conductivity of gold, this structure effectively reduced the overall electrode resistance, resulting in an increased on current of 6.08 × 10−4 A, a field effect mobility of 48.7 cm2/V⋅s, and a contact resistance of 1.95 kΩ⋅μm. In the second approach, graphene was chemically modified through intercalation, which significantly decreased its resistance. Although the intercalated graphene / MoS2 FET also mitigated the Fermi level pinning effect, the increased work function after intercalation led to a higher interfacial barrier, raising the contact resistance to 2.27 kΩ·μm. Nevertheless, the electrical performance of the device improved, with an increased on current of 5.37 × 10-4 A, and an enhanced mobility of 43.5 cm²/V·s. This demonstrates that, despite the increase in contact resistance, the intercalation technique can significantly enhance the overall current by reducing the electrode resistance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-22T16:10:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-22T16:10:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 誌謝 iv 目次 v 表次 ix 圖次 x 第一章緒論 1 1.1半導體之發展 1 1.1.1摩爾定律 1 1.1.2二維材料 3 1.2石墨烯 4 1.2.1石墨烯能帶結構 4 1.2.2石墨烯製備方法 6 1.2.3多層石墨烯 8 1.2.4插層石墨烯 8 1.3過渡金屬二硫化族 10 1.3.1二硫化鉬 11 1.3.2二硫化鉬製備方式 12 1.4費米能階釘札效應 13 1.5研究動機 14 第二章 實驗理論及方法 16 2.1實驗設備介紹 16 2.1.1感應式耦合電漿輔助沉積系統 16 2.1.2電子束蒸鍍系統 16 2.1.3真空熱蒸鍍機 17 2.1.4拉曼及光致發光光機 18 2.1.5快速熱退火儀 19 2.1.6掃描式電子顯微鏡 20 2.1.7步進式曝光機 20 2.1.8 X射線光電子能譜 21 2.1.9紫外光電子能譜 22 2.1.10四點探針儀 23 2.1.11 KEITHLEY 2636 23 2.2實驗原理說明 24 2.2.1感應式耦合電漿介紹 24 2.2.2石墨烯生長原理 24 2.2.3四點探針量測法 25 2.2.4元件電性分析 26 第三章 金電極元件 32 3.1二硫化鉬製備 32 3.1.1二硫化鉬生長 32 3.1.2二硫化鉬材料分析 32 3.2二硫化鉬轉移 36 3.3金電極元件 37 3.3.1金電極元件製程 37 3.3.2金電極元件分析 38 第四章石墨烯電極元件 41 4.1石墨烯製備 41 4.1.1石墨烯生長 41 4.1.2石墨烯轉移 41 4.1.3石墨烯片電阻 42 4.2石墨烯材料分析 42 4.2.1石墨烯拉曼光譜 42 4.2.2石墨烯光電子能譜 43 4.3石墨烯電極元件製程 44 4.3.1石墨烯電極 44 4.3.2石墨烯電極轉移 45 4.4石墨烯電極元件電性分析 46 4.4.1石墨烯電極元件轉移曲線 46 4.4.2石墨烯/二硫化鉬介面分析 47 4.4.3 石墨烯/二硫化鉬接觸電阻 49 4.4.4石墨烯電極元件特性 50 第五章 石墨烯電極元件電性之提升 52 5.1動機 52 5.2金/石墨烯電極元件 52 5.2.1 金/石墨烯電極元件製程 52 5.2.2金/石墨烯電極元件電性分析 52 5.3插層石墨烯電極元件 54 5.3.1插層石墨烯製備 54 5.3.2插層石墨烯片電阻 55 5.3.3插層石墨烯材料分析 55 5.3.4插層石墨烯電極元件製程 57 5.3.5插層石墨烯電極元件電性分析 57 第六章 結論與展望 62 6.1結論 62 6.2未來展望 62 參考資料 64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 費米能階釘札 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 導通電流 | zh_TW |
| dc.subject | 接觸電阻 | zh_TW |
| dc.subject | 插層石墨烯 | zh_TW |
| dc.subject | Graphene | en |
| dc.subject | Fermi level pinning | en |
| dc.subject | On current | en |
| dc.subject | Contact resistance | en |
| dc.subject | Intercalation graphene | en |
| dc.title | 藉由多層石墨烯工藝優化二硫化鉬電晶體之特性 | zh_TW |
| dc.title | Performance Enhancement of Molybdenum Disulfide Transistors via Multilayer Graphene techniques | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 吳志毅 | zh_TW |
| dc.contributor.coadvisor | Chih-I Wu | en |
| dc.contributor.oralexamcommittee | 邱雅萍;陳奕君 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Ping Chiu;I-Chun Cheng | en |
| dc.subject.keyword | 石墨烯,費米能階釘札,插層石墨烯,接觸電阻,導通電流, | zh_TW |
| dc.subject.keyword | Graphene,Fermi level pinning,Intercalation graphene,Contact resistance,On current, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202503814 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 電子工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 6.29 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
