Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝zh_TW
dc.contributor.advisorMing-Ju Chenen
dc.contributor.author傅筠淇zh_TW
dc.contributor.authorYun-Chi Fuen
dc.date.accessioned2025-08-22T16:09:13Z-
dc.date.available2025-08-23-
dc.date.copyright2025-08-22-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation林永欽。2016。台灣產紅茶抗氧化能力之研究。國立嘉義大學農藝學系研究所碩士論文。嘉義市。
彭子欣。2022。臺茶十八號茶樹之芽葉性狀、紅茶品質與內容物之季節性變化。國立臺灣大學生物資源暨農學院園藝暨景觀學研究所碩士論文。臺北市。
葉妤婧。2023。不同茶種、發酵與保存方式對康普茶之植化成份與抗氧化能力之影響。國立嘉義大學食品科學研究所碩士論文。嘉義市。
Abdelal, A. T. H., and H. J. Phaff. 1969. Purification and properties of endo-β-glucanase in the yeast Hanseniaspora valbyensis. Canadian Journal of Microbiology. 15:697–701. doi:10.1139/m69-123
Ahola, A. J., H. Yli-Knuuttila, T. Suomalainen, T. Poussa, A. Ahlström, J. H. Meurman, and R. Korpela. 2002. Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Archives of Oral Biology. 47:799–804. doi:10.1016/s0003-9969(02)00112-7
Álvarez-Martín, P., A. B. Flórez, A. Hernández-Barranco, and B. Mayo. 2007. Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control. 19:62–70. doi:10.1016/j.foodcont.2007.02.003
AOAC. 1984. Official methods of analysis of the association of official analytical chemists. 14th ed. Assoc. Off. Anal. Chem., Arlington
Ayed, L., S. B. Abid, and M. Hamdi. 2016. Development of a beverage from red grape juice fermented with the Kombucha consortium. Annals of Microbiology. 67:111–121. doi:10.1007/s13213-016-1242-2
Barbosa, C. D., A. P. T. Uetanabaro, W. C. R. Santos, R. G. Caetano, H. Albano, R. Kato, G. P. Cosenza, A. Azeredo, A. Góes-Neto, C. A. Rosa, P. Teixeira, V. O. Alvarenga, and I. C. A. Lacerda. 2021. Microbial–physicochemical integrated analysis of kombucha fermentation. LWT. 148:111788. doi:10.1016/j.lwt.2021.111788
Bartowsky, E. J., and P. A. Henschke. 2007. Acetic acid bacteria spoilage of bottled red wine—A review. International Journal of Food Microbiology. 125:60–70. doi:10.1016/j.ijfoodmicro.2007.10.016
Batista, P., M. R. Penas, M. Pintado, and P. Oliveira-Silva. 2022. Kombucha: Perceptions and future prospects. Foods. 11:1977. doi:10.3390/foods11131977
Beresford, T. P., N. A. Fitzsimons, N. L. Brennan, and T. M. Cogan. 2001. Recent advances in cheese microbiology. International Dairy Journal. 11:259–274. doi:10.1016/s0958-6946(01)00056-5
Bergamini, C. V., E. R. Hynes, A. Quiberoni, V. B. Suárez, and C. A. Zalazar. 2005. Probiotic bacteria as adjunct starters: influence of the addition methodology on their survival in a semi-hard Argentinean cheese. Food Research International. 38:597–604. doi:10.1016/j.foodres.2004.11.013
Bishop, P., E. R. Pitts, D. Budner, and K. A. Thompson-Witrick. 2022b. Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chemistry Advances. 1:100025. doi:10.1016/j.focha.2022.100025
Bjekić, M., M. Iličić, V. Vukić, D. Vukić, K. Kanurić, B. Pavlić, Z. Zeković, L. Popović, A. Torbica, J. Tomić, and J. Degenek. 2021. Protein characterisation and antioxidant potential of fresh cheese obtained by kombucha inoculum. Mljekarstvo. 71:215–225. doi:10.15567/mljekarstvo.2021.0401
Borges, D. M., S. C. Ribeiro, S. P. M. Silva, and C. C. G. Silva. 2024. Dried algae as potential functional ingredient in fresh cheese. Food Bioengineering. 3:65–72. doi:10.1002/fbe2.12077
Bouzas, J., C. A. Kantt, F. Bodyfelt, and J. A. Torres. 1991. Simultaneous determination of sugars and organic acids in cheddar cheese by High‐Performance Liquid Chromatography. Journal of Food Science. 56:276–278. doi:10.1111/j.1365-2621.1991.tb08034.x.
Cardoso, R. R., R. O. Neto, C. T. D. S. D’Almeida, T. P. D. Nascimento, C. G. Pressete, L. Azevedo, H. S. D. Martino, L. C. Cameron, M. S. L. Ferreira, and F. A. R. De Barros. 2019. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International. 128:108782. doi:10.1016/j.foodres.2019.108782
Chakravorty, S., S. Bhattacharya, A. Chatzinotas, W. Chakraborty, D. Bhattacharya, and R. Gachhui. 2016. Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology. 220:63–72. doi:10.1016/j.ijfoodmicro
Chakravorty, S., S. Bhattacharya, D. Bhattacharya, S. Sarkar, and R. Gachhui. 2019. Kombucha: a promising functional beverage prepared from tea. In: Elsevier eBooks. p. 285–327. doi:10.1016/b978-0-12-815270-6.00010-4
Chawla, B., S. A. S. and R. S. Singhal. 2009. Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47(2): 107–124 (2009)
Choi, H. Y., C. J. Yang, K. S. Choi, and I. Bae. 2015. Characteristics of Gouda cheese supplemented with fruit liquors. Journal of Animal Science and Technology. 57. doi:10.1186/s40781-015-0048-2
Costa, M. A., L. De Paula Dias Moreira, V. Da Silva Duarte, R. R. Cardoso, V. P. B. De São José, B. P. Da Silva, M. Grancieri, V. Corich, A. Giacomini, J. Bressan, H. S. D. Martino, and F. A. R. De Barros. 2022. Kombuchas from green and black tea modulate the gut microbiota and improve the intestinal health of wistar rats fed a high-fat high-fructose diet. Nutrients. 14:5234. doi:10.3390/nu14245234
Coton, M., A. Pawtowski, B. Taminiau, G. Burgaud, F. Deniel, L. Coulloumme-Labarthe, A. Fall, G. Daube, and E. Coton. 2017. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology. 93. doi:10.1093/femsec/fix048
Crum and A. LaGory. 2016. The big book of kombucha: brewing, flavoring, and enjoying the health benefits of fermented tea. Storey Publishing
Da Silva Júnior, J. C., Í. M. Mafaldo, I. De Lima Brito, and A. M. T. De Magalhães Cordeiro. 2022. Kombucha: Formulation, chemical composition, and therapeutic potentialities. Current Research in Food Science. 5:360–365. doi:10.1016/j.crfs.2022.01.023
Değirmencioğlu, N., E. Yıldız, Y. Sahan, M. Güldas, and O. Gürbüz. 2020. Impact of tea leaves types on antioxidant properties and bioaccessibility of kombucha. Journal of Food Science and Technology. 58:2304–2312
Diker, K. S., and G. Hascelik. 1994. The bactericidal activity of tea against Helicobacter pylori. Letters in Applied Microbiology. 19:299–300. doi:10.1111/j.1472-765x.1994.tb00459.x
Diker, K. S., M. Akan, G. Hascelik, and M. Yurdakök. 1991. The bactericidal activity of tea against Campylobacter jejuni and Campylobacter coli. Letters in Applied Microbiology. 12:34–35. doi:10.1111/j.1472-765x.1991.tb00496.x
Dontha, S., K. Hemalatha, and M. B. Raju. 2016. Phytochemical Evaluation and Screening of in vitro antioxidant potentiality of extracts of Ixora chinensis Lam Leaves. Asian Journal of Chemistry. 28:1595–1598. doi:10.14233/ajchem.2016.19765
Dorothy, R., K. S. Latha, R. M. Joany, T. Sasilatha, S. Rajendran, G. Singh, and S. S. Kumaran. 2020. Multifunctional drinks from all natural ingredients. In: Elsevier eBooks. p. 413–431. Available from: https://doi.org/10.1016/b978-0-12-819941-1.00014-6
Dufresne, C., and E. Farnworth. 2000. Tea, Kombucha, and health: a review. Food Research International. 33:409–421. doi:10.1016/s0963-9969(00)00067-3
Duthie, G. G., S. J. Duthie, and J. a. M. Kyle. 2000. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutrition Research Reviews. 13:79–106. doi:10.1079/095442200108729016
Ettayebi, K., F. Errachidi, L. Jamai, M. A. Tahri-Jouti, K. Sendide, and M. Ettayebi. 2003. Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. FEMS Microbiology Letters. 223:215–219. doi:10.1016/s0378-1097(03)00380-x
Ferrer, C., F. Colom, S. FraséS, E. Mulet, J. L. Abad, and J. L. Alio. 2001. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. Journal of Clinical Microbiology. 39:2873–2879. doi:10.1128/jcm.39.8.2873-2879.2001
Fleet. 1990. Growth of yeasts during wine fermentations. Journal of Wine Research. 1:211–223. doi:10.1080/09571269008717877
Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2016a. Fundamentals of Cheese Science. Springer. doi:10.1007/978-1-4899-7681-9
Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2016b. Fresh cheese products: Principals of manufacture and overview of different varieties. Springer. doi: 10.1007/978-1-4899-7681-9_16
Franks, M., P. Lawrence, A. Abbaspourrad, and R. Dando. 2019. The influence of water composition on flavor and nutrient extraction in green and black tea. Nutrients. 11:80. doi:10.3390/nu11010080
Gomes, R. J., P. C. De Sousa Faria-Tischer, C. A. Tischer, L. V. Constantino, M. De Freitas Rosa, R. T. Chideroli, U. De Pádua Pereira, and W. A. Spinosa. 2021. Komagataeibacter intermedius V-05: An acetic acid baterium isolated from vinegar industry, with high capacity for bacterial cellulose production in soybean molasses medium. Food Technology and Biotechnology. 59:432–442. doi:10.17113/ftb.59.04.21.7148
Gomez, L. P., C. Alvarez, M. Zhao, U. Tiwari, J. Curtin, M. Garcia-Vaquero, and B. K. Tiwari. 2020. Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydrate Polymers. 248:116784. doi:10.1016/j.carbpol.2020.116784
Greenwalt, C. J., K. H. Steinkraus, and R. A. Ledford. 2000. Kombucha, the Fermented Tea: microbiology, composition, and claimed health effects. Journal of Food Protection. 63:976–981. doi:10.4315/0362-028x-63.7.976
Greenwalt, C. J., R. A. Ledford, and K. Steinkraus. 1998. Determination and characterization of the antimicrobial activity of the fermented TeaKombucha. LWT. 31:291–296. doi:10.1006/fstl.1997.0354
Gripon. 1993. Mould-Ripened cheeses. In: Springer eBooks. p. 111–136. doi:10.1007/978-1-4615-2648-3_4
Grozdanić, N., I. Đuričić, M. Kosanić, G. Zdunić, K. Šavikin, S. Etahiri, O. Assobhei, J. Benba, S. Petović, I. Z. Matić, and T. P. Stanojković. 2020. Fucus spiralis extract and fractions: Anticancer and pharmacological potentials.URL:https://farfar.pharmacy.bg.ac.rs/handle/123456789/3605
Hagi, T., A. Kurahashi, Y. Oguro, K. Kodaira, M. Kobayashi, S. Hayashida, H. Yamashita, Y. Arakawa, T. Miura, K. Sato, S. Tomita, S. Suzuki, K.-I. Kusumoto, N. Moriya, and M. Nomura. 2022. Effect of sake lees on cheese components in cheese ripened by Aspergillus oryzae and lactic acid bacteria. Journal of Dairy Science. 105:4868–4881. doi:10.3168/jds.2021-21721
Harrison, K., and C. Curtin. 2021. Microbial composition of SCOBY starter cultures used by commercial kombucha brewers in North America. Microorganisms. 9:1060. doi:10.3390/microorganisms9051060
Heinen, E., R. T. Ahnen, and J. Slavin. 2020. Fermented foods and the gut microbiome. Nutrition Today. 55:163–167. doi:10.1097/nt.0000000000000422
Infante-Neta, A. A., A. P. D’Almeida, and T. L. De Albuquerque. 2024. Bacterial cellulose in Food Packaging: A bibliometric analysis and review of sustainable innovations and prospects. Processes. 12:1975. doi:10.3390/pr12091975
Jakubczyk, K., J. Kałduńska, J. Kochman, and K. Janda. 2020. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red Tea. Antioxidants. 9:447. doi:10.3390/antiox9050447
Jang, H. J., M. W. Song, N.-K. Lee, and H.-D. Paik. 2018. Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi. Journal of Food Science and Technology. 55:3174–3180. doi:10.1007/s13197-018-3245-4
Jayabalan, R., P. Subathradevi, S. Marimuthu, M. Sathishkumar, and K. Swaminathan. 2008. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry. 109:227–234. doi:10.1016/j.foodchem.2007.12.037
Jayabalan, R., R. V. Malbaša, E. S. Lončar, J. S. Vitas, and M. Sathishkumar. 2014. A review on Kombucha Tea—Microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety. 13:538–550. doi:10.1111/1541-4337.12073
Jayabalan, Rasu, S. Marimuthu, P. Thangaraj, M. Sathishkumar, A. R. Binupriya, K. Swaminathan, and S. E. Yun. 2008. Preservation of Kombucha Tea—Effect of temperature on tea components and free radical scavenging properties. Journal of Agricultural and Food Chemistry. 56:9064–9071. doi:10.1021/jf8020893
Jayaram, V. B., S. Cuyvers, K. J. Verstrepen, J. A. Delcour, and C. M. Courtin. 2013. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chemistry. 151:421–428. doi:10.1016/j.foodchem.2013.11.025
Kaashyap, M., M. Cohen, and N. Mantri. 2021. Microbial diversity and characteristics of kombucha as revealed by metagenomic and physicochemical analysis. Nutrients. 13:4446. doi:10.3390/nu13124446
Kahraman-Ilıkkan, Ö. 2023. Microbiome composition of kombucha tea from Türkiye using high-throughput sequencing. Journal of Food Science and Technology. 60:1826–1833. doi:10.1007/s13197-023-05725-z
Kakuda, T., A. Nozawa, A. Sugimoto, and H. Niino. 2002. Inhibition by theanine of binding of [3H]AMPA, [3H]Kainate, and [3H]MDL 105,519 to glutamate receptors. Bioscience Biotechnology and Biochemistry. 66:2683–2686. doi:10.1271/bbb.66.2683
Kapp, J. M., and W. Sumner. 2018. Kombucha: a systematic review of the empirical evidence of human health benefit. Annals of Epidemiology. 30:66–70. doi:10.1016/j.annepidem.2018.11.001
Kim, B. J., J. H. Kim, H. P. Kim, and M. Y. Heo. 1997. Biological screening of 100 plant extracts for cosmetic use (II): anti‐oxidative activity and free radical scavenging activity. International Journal of Cosmetic Science. 19:299–307. doi:10.1111/j.1467-2494.1997.tb00194.x
Kim, D.-H., J.-W. Chon, H. Kim, and K.-H. Seo. 2019. Development of a novel selective medium for the isolation and enumeration of acetic acid bacteria from various foods. Food Control. 106:106717. doi:10.1016/j.foodcont.2019.106717
Kim, J., and K. Adhikari. 2020. Current trends in Kombucha: marketing perspectives and the need for improved sensory research. Beverages. 6:15. doi:10.3390/beverages6010015
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120. doi:10.1007/bf01731581
Kumar, A., and D. Kumar. 2015. Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe. 33:117–123. doi:10.1016/j.anaerobe.2015.03.004
Kumar, S., G. Skechers, and K. Tamara. 2016. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol. Biol. Evol 33:1870-1874. doi:10.1093/molbev/msw054
Kurtzman, C. P., C. J. Robnett, and E. Basehoar-Powers. 2001. Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'. FEMS Yeast Research. 1:133–138. doi:10.1111/j.1567-1364.2001.tb00024.x
Laureys, D., S. J. Britton, and J. De Clippeleer. 2020. Kombucha Tea fermentation: a review. Journal of the American Society of Brewing Chemists. 78:165–174. doi:10.1080/03610470.2020.1734150
Lavasani, P. S., E. Motevaseli, N. S. Sanikhani, and M. H. Modarressi. 2019. Komagataeibacter xylinus as a novel probiotic candidate with high glucose conversion rate properties. Heliyon. 5:e01571. doi:10.1016/j.heliyon.2019.e01571
Leandro, A., L. Pereira, and A. M. M. Gonçalves. 2019. Diverse applications of marine macroalgae. Marine Drugs. 18:17. doi:10.3390/md18010017
Lucey, J. A. 2002. Formation and physical properties of milk protein gels. Journal of Dairy Science. 85:281–294. doi:10.3168/jds.s0022-0302(02)74078-2
Makarewicz, M., I. Drożdż, T. Tarko, and A. Duda-Chodak. 2021. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants. 10:188. doi:10.3390/antiox10020188
Malbaša, R. V., E. S. Lončar, J. S. Vitas, and J. M. Čanadanović-Brunet. 2011. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry. 127:1727–1731. doi:10.1016/j.foodchem.2011.02.048
Mamlouk, D., and M. Gullo. 2013. Acetic acid bacteria: physiology and carbon sources oxidation. Indian Journal of Microbiology. 53:377–384. doi:10.1007/s12088-013-0414-z
Markov, S., V. Jerinic, D. Cvetkovic, E. Loncar, and R. Malbasa. 2003. Kombucha - functional beverage: Composition, characteristics and process of biotransformation. Hemijska Industrija. 57:456–462. doi:10.2298/hemind0310456s
Marsh, A. J., O. O’Sullivan, C. Hill, R. P. Ross, and P. D. Cotter. 2013. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology. 38:171–178. doi:10.1016/j.fm.2013.09.003
Martin, C., M. Harel-Oger, G. Garric, and S. Marette. 2024b. Impact of sensory properties and their appreciation on willingness to pay for innovative cheeses with health benefits. Food Quality and Preference. 118:105207. doi:10.1016/j.foodqual.2024.105207
Martínez-Leal, J., N. Ponce-García, and A. Escalante-Aburto. 2020. Recent evidence of the beneficial effects associated with glucuronic acid contained in kombucha beverages. Current Nutrition Reports. 9:163–170. doi:10.1007/s13668-020-00312-6
May, A., S. Narayanan, J. Alcock, A. Varsani, C. Maley, and A. Aktipis. 2019. Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ. 7:e7565. doi:10.7717/peerj.7565
Medici, M., C. G. Vinderola, and G. Perdigón. 2004. Gut mucosal immunomodulation by probiotic fresh cheese. International Dairy Journal. 14:611–618. doi:10.1016/j.idairyj.2003.10.011
Meisel, A. G., S. Günther. 1997. ACE-inhibitory activities in milk products. Milchwiss. 52(6):307–311
Milanovic, S., E. Loncar, M. Djuric, R. Malbasa, M. Tekic, M. Ilicic, and K. Durakovic. 2008. Low energy Kombucha fermented milk-based beverages. Acta Periodica Technologica. 37–46. doi:10.2298/apt0839037m
Mohite, B. V., and S. V. Patil. 2013. A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry. 61:101–110. doi:10.1002/bab.1148
Mojzer, E. B., M. K. Hrnčič, M. Škerget, Ž. Knez, and U. Bren. 2016. Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 21:901. doi:10.3390/molecules21070901
Neffe-Skocińska, K., B. Sionek, I. Ścibisz, and D. Kołożyn-Krajewska. 2017. Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA - Journal of Food. 15:601–607. doi:10.1080/19476337.2017.1321588
Nenciarini, S., A. Reis-Costa, M. Pallecchi, S. Renzi, A. D’Alessandro, A. Gori, B. Cerasuolo, N. Meriggi, G. L. Bartolucci, and D. Cavalieri. 2023. Investigating yeast–Lactobacilli interactions through co-culture growth and metabolite analysis. Fermentation. 9:933. doi:10.3390/fermentation9110933
Neta, E. R., S. D. Johanningsmeier, M. A. Drake, and R. F. McFeeters. 2007. A chemical basis for sour taste perception of acid solutions and Fresh‐Pack dill pickles. Journal of Food Science. 72. doi:10.1111/j.1750-3841.2007.00400.x
Nguyen, N. K., N. T. N. Dong, H. T. Nguyen, and P. H. Le. 2015a. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha. SpringerPlus. 4. doi:10.1186/s40064-015-0872-3
Nguyen, N. K., P. B. Nguyen, H. T. Nguyen, and P. H. Le. 2015b. Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. LWT. 64:1149–1155. doi:10.1016/j.lwt.2015.07.018
Noskin. 1997. Vancomycin-resistant enterococci: Clinical, microbiologic, and epidemiologic features. Journal of Laboratory and Clinical Medicine. 130:14–20. doi:10.1016/s0022-2143(97)90054-8
Parapouli, M., A. Vasileiadi, A. S. Afendra, and E. Hatziloukas. 2020. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology. 6:1–32. doi:10.3934/microbiol.2020001
Parente, E., T. M. Cogan, and I. B. Powell. 2017. Starter Cultures: General aspects. In: Elsevier eBooks. p. 201–226. doi:10.1016/b978-0-12-417012-4.00008-9
Pfeiffer, T., and A. Morley. 2014. An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences. 1. doi:10.3389/fmolb.2014.00017
Pigeau, G. M., E. Bozza, K. Kaiser, and D. L. Inglis. 2007. Concentration effect of Riesling Icewine juice on yeast performance and wine acidity. Journal of Applied Microbiology. 103:1691–1698. doi:10.1111/j.1365-2672.2007.03397.x
Pihurov, M., B. Păcularu-Burada, M. Cotârleț, L. Grigore-Gurgu, D. Borda, N. Stănciuc, M. Kluz, and G. E. Bahrim. 2023. Kombucha and water kefir grains microbiomes’ symbiotic contribution to postbiotics enhancement. Foods. 12:2581. doi:10.3390/foods12132581
Ramachandran, P. F., A. Pandey and C. Larroche. 2006. Gluconic Acid: Properties, Applications and Microbial Production. Food Technol. Biotechnol. 44 (2):185–195
Rengasamy, K. Rr., M. F. Mahomoodally, M. Z. Aumeeruddy, G. Zengin, J. Xiao, and D. H. Kim. 2019. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food and Chemical Toxicology. 135:111013. doi:10.1016/j.fct.2019.111013
Roostita, R., and G. H. Fleet. 1996. Growth of yeasts in milk and associated changes to milk composition. International Journal of Food Microbiology. 31:205–219. doi:10.1016/0168-1605(96)00999-3
Ross, R. P., G. Fitzgerald, K. Collins, and C. Stanton. 2002. Cheese delivering biocultures--probiotic cheese. Australian Journal of Dairy Technology, Suppl.Proceedings Cheese Science. 2: 71. https://www.proquest.com/scholarly-journals/cheese-delivering-biocultures-probiotic/docview/199392524/se-2
Roudot‐algaron, F., D. L. Bars, L. Kerhoas, J. Einhorn, and J. C. Gripon. 1994. Phosptiopeptides from Comté Cheese: Nature and Origin. Journal of Food Science. 59:544–547. doi:10.1111/j.1365-2621.1994.tb05558.x
Rudrapal, M., S. J. Khairnar, J. Khan, A. B. Dukhyil, M. A. Ansari, M. N. Alomary, F. M. Alshabrmi, S. Palai, P. K. Deb, and R. Devi. 2022. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Frontiers in Pharmacology. 13. doi:10.3389/fphar.2022.806470
Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Bio. Evol. doi:10.1093/oxfordjournals.molbev.a040454
Salisbury, D., and U. Bronas. 2014. Reactive oxygen and nitrogen species. Nursing Research. 64:53–66. doi:10.1097/nnr.0000000000000068
Samsonowicz, M., E. Regulska, D. Karpowicz, and B. Leśniewska. 2018. Antioxidant properties of coffee substitutes rich in polyphenols and minerals. Food Chemistry. 278:101–109. doi:10.1016/j.foodchem.2018.11.057
Sánchez, M. M., T. Delgado, L. Alonso, and B. Mayo. 2000. Phenotypic and genetic characterization of a selected set of Lactococcus lactis strains isolated from a starter-free farmhouse cheese. Food Microbiology. 17:449–460. doi:10.1006/fmic.2000.0340
Sarais, I., D. Piussi, V. Aquili, and M. L. Stecchini. 1996. The behavior of yeast populations in stracchino cheese packaged under various conditions. Journal of Food Protection. 59:541–544. doi:10.4315/0362-028x-59.5.541
Savijoki, K., H. Ingmer, and P. Varmanen. 2006. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology. 71:394–406. doi:10.1007/s00253-006-0427-1
Scalzo. 2007. Organic acids influence on DPPH scavenging by ascorbic acid. Food Chemistry. 107:40–43. doi:10.1016/j.foodchem.2007.07.070
Schulz-Collins, D., and B. Senge. 2004. Acid- and acid/rennet-curd cheeses part A: Quark, cream cheese and related varieties. In: Cheese. 2:301–328. doi: 10.1016/s1874-558x(04)80049-6
Sharma, V. K., A. Bhattacharya, A. Kumar, and H. K. Sharma. 2007. Health benefits of tea consumption. Tropical Journal of Pharmaceutical Research. 6. doi:10.4314/tjpr.v6i3.14660
Sievers, M., C. Lanini, A. Weber, U. Schuler-Schmid, and M. Teuber. 1995. Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation. Systematic and Applied Microbiology. 18:590–594. doi:10.1016/s0723-2020(11)80420-0
Sombolestani, A. S., I. Cleenwerck, M. Cnockaert, W. Borremans, A. D. Wieme, L. De Vuyst, and P. Vandamme. 2019. Characterization of novel Gluconobacter species from fruits and fermented food products: Gluconobacter cadivus sp. nov., Gluconobacter vitians sp. nov. and Gluconobacter potus sp. nov. International journal of systematic and evolutionary microbiology. 71. doi:10.1099/ijsem.0.004751
Sorathiya, K. B., A. Melo, M. C. Hogg, and M. Pintado. 2025. Organic Acids in Food Preservation: Exploring synergies, molecular insights, and sustainable applications. Sustainability. 17:3434. doi:10.3390/su17083434
Sreeramulu, G., Y. Zhu, and W. Knol. 2000. Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry. 48:2589–2594. doi:10.1021/jf991333m
Steensels, J., L. Daenen, P. Malcorps, G. Derdelinckx, H. Verachtert, and K. J. Verstrepen. 2015. Brettanomyces yeasts — From spoilage organisms to valuable contributors to industrial fermentations. International Journal of Food Microbiology. 206:24–38. doi:10.1016/j.ijfoodmicro.2015.04.005
Steinkraus, K. H. 1994. Nutritional significance of fermented foods. Food Research International. 27:259–267. doi:10.1016/0963-9969(94)90094-9
Stewart, P. S. 1996. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrobial Agents and Chemotherapy. 40:2517–2522. doi:10.1128/aac.40.11.2517
Toda, M., S. Okubo, H. Ikigai, T. Suzuki, Y. Suzuki, and T. Shimamura. 1991. The protective activity of tea against infection by Vibrio cholerae O1. Journal of Applied Bacteriology. 70:109–112. doi:10.1111/j.1365-2672.1991.tb04435.x
Toda, M., S. Okubo, R. Hiyoshi, and T. Shimamura. 1989. The bactericidal activity of tea and coffee. Letters in Applied Microbiology. 8:123–125. doi:10.1111/j.1472-765x.1989.tb00255.x
Tsutsui, N., Y. Yamamoto, and K. Iwami. 1998. Protein-nutritive assessment of sake lees obtained by brewing from liquefied rice. Journal of Nutritional Science and Vitaminology. 44:177–186. doi:10.3177/jnsv.44.177
Tu, C., W. Hu, S. Tang, L. Meng, Z. Huang, X. Xu, X. Xia, F. Azi, and M. Dong. 2020. Isolation and identification of Starmerella davenportii strain Do18 and its application in black tea beverage fermentation. Food Science and Human Wellness. 9:355–362. doi:10.1016/j.fshw.2020.04.010
Van Den Bogaard, P. T. C., M. Kleerebezem, O. P. Kuipers, and W. M. De Vos. 2000. Control of lactose transport, β-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus : Evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar. Journal of Bacteriology. 182:5982–5989. doi:10.1128/jb.182.21.5982-5989.2000
Vázquez, M., M. Flórez, and P. Cazón. 2024. A strategy to prolong cheese shelf-life: Laminated films of bacterial cellulose and chitosan loaded with grape bagasse antioxidant extract for effective lipid oxidation delay. Food Hydrocolloids. 156:110232. doi:10.1016/j.foodhyd.2024.110232
Villarreal‐Soto, S. A., S. Beaufort, J. Bouajila, J. Souchard, and P. Taillandier. 2018. Understanding kombucha tea fermentation: A review. Journal of Food Science. 83:580–588. doi:10.1111/1750-3841.14068
Vīna, I., P. Semjonovs, R. Linde, and I. Deniņa. 2013. Current evidence on physiological activity and expected health effects of kombucha fermented beverage. Journal of Medicinal Food. 17:179–188. doi:10.1089/jmf.2013.0031
Vukić, V., M. Iličić, D. Vukić, S. Kocić-Tanackov, B. Pavlić, M. Bjekić, K. Kanurić, J. Degenek, and Z. Zeković. 2021. The application of kombucha inoculum as an innovative starter culture in fresh cheese production. LWT. 151:112142. doi:10.1016/j.lwt.2021.112142
Wang, B., Y. Shao, T. Chen, W. Chen, and F. Chen. 2015. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Scientific Reports. 5. doi:10.1038/srep18330
Wang, Y., B. Ji, W. Wu, R. Wang, Z. Yang, D. Zhang, and W. Tian. 2013. Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components. Journal of the Science of Food and Agriculture. 94:265–272. doi:10.1002/jsfa.6245
Watanabe, S., A. Kita, K. Kobayashi, and K. Miki. 2008. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proceedings of the National Academy of Sciences. 105:4121–4126. doi:10.1073/pnas.0709188105
Watawana, M. I., N. Jayawardena, C. B. Gunawardhana, and V. Y. Waisundara. 2015. Health, wellness, and safety aspects of the consumption of kombucha. Journal of Chemistry. 2015:1–11. doi:10.1155/2015/591869
Watkinson, P., C. Coker, R. Crawford, C. Dodds, K. Johnston, A. McKenna, and N. White. 2001. Effect of cheese pH and ripening time on model cheese textural properties and proteolysis. International Dairy Journal. 11:455–464. doi:10.1016/s0958-6946(01)00070-x
Wintergerst, E. S., S. Maggini, and D. H. Hornig. 2005. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Annals of Nutrition and Metabolism. 50:85–94. doi:10.1159/000090495
Yang, S. 2025. A review of the research on microbial diversity and its effects on components and functions of Kombucha. Highlights in Science Engineering and Technology. 139:93–99. doi:10.54097/apxkpb82
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99316-
dc.description.abstract自2025年起,紐西蘭牛奶輸入將實施零關稅,可能對臺灣乳業造成衝擊。發展具在地特色與附加價值之風味型乳品有其必要性。康普茶菌群具多樣代謝潛力,應用於起司製程可望增添功能性與風味層次,其微生物組成及發酵特性須先釐清,並需補充乳酸菌以利發酵控制。本研究分為三大部分。第一部分為商業康普茶樣品中微生物菌株之分離與鑑定,採用16S rRNA與ITS定序技術,分離出三株醋酸菌 (Acetobacter tropicalis、Gluconobacter potus、Komagataeibacter intermedius) 與五株酵母菌 (Brettanomyces bruxellensis、Hanseniaspora valbyensis、Saccharomyces cerevisiae、Starmerella davenportii、Zygosaccharomyces kombuchaensis)。進一步評估醋酸菌之酵素活性,結果顯示三菌株皆具中等以上酯解酶與酯解脂肪酶活性。酵母菌則測定其醣類利用能力,結果顯示除H. valbyensis外皆可利用 D-葡萄糖,S. cerevisiae對多種醣類具微弱利用能力。第二部分探討康普茶發酵過程,以臺茶18號紅茶為基底,於26 °C下發酵七天,pH值由4.21下降至3.48,自第5天起趨於穩定,顯示發酵終點約為第五天。以沒食子酸為標準測定總多酚類含量,結果顯示未發酵紅茶含量為423.25 mg GAE/L,發酵後提升至630.75 mg GAE/L,具顯著差異 (p < 0.05),顯示康普茶發酵能有效提升茶湯抗氧化潛力。第三部分以康普茶液與 Streptococcus thermophilus、Lactobacillus delbrueckii subsp. bulgaricus混合作為發酵劑進行起司製作,探討菌株間之互動及其對發酵表現之影響。以優格菌和康普茶共同發酵的混合組發酵26小時後pH值降至5.39,顯示乳酸菌仍具良好產酸能力,且未受康普茶菌種干擾。活菌數方面,兩株乳酸菌在發酵過程中均增加;酵母菌與醋酸菌在混合組中亦穩定存活。機能性分析顯示,混合組具最高總多酚含量 (0.76 ± 0.06 mg GAE/g) 與 2,2-Diphenyl-1-picrylhydrazy (DPPH) 自由基清除率 (42.77 ± 3.57%),顯示共培養可提升起司之抗氧化潛力。惟總多酚含量差異未達統計顯著 (p > 0.05)。質地方面,僅添加康普茶的組別堅實度最高 (159.90 ± 4.96 g,p < 0.05),混合組相對較低,推測與酸度、醋酸菌酵素活性與細菌纖維素的生成影響結構有關。感官品評方面雖無統計顯著差異 (p > 0.05),但優格組於香氣、風味及整體接受度得分較高,混合組具有柔軟口感與明顯酸味,水果與茶香表現突出,展現潛在的市場接受性。保存性試驗結果顯示,混合組具較佳之活菌穩定性與持續產酸能力,含水量變化小,保水性良好;且三週內未檢出腸桿菌科與大腸桿菌群,顯示其具有良好之保存穩定性與衛生安全性。綜合而言,康普茶菌群之多樣性與代謝潛力可有效豐富新鮮起司的風味與機能性,並與乳酸菌展現協同發酵效應,提升整體產品價值。本研究首次將康普茶菌株應用於與優格菌共培養的起司製程,顯示其在風味強化、抗氧化潛能及保存穩定性上具發展潛力。未來建議深化菌株功能篩選與代謝產物分析,並結合台灣特色茶葉資源,開發兼具風味、健康機能與文化價值之創新型乳製品,以回應市場對高品質、多元化功能性食品的需求。zh_TW
dc.description.abstractAccording to the Agreement between New Zealand and the Separate Customs Territory of Taiwan, Penghu, Kinmen, and Matsu on Economic Cooperation (ANZTEC), New Zealand’s liquid milk imports will enter Taiwan at zero tariffs starting in 2025, potentially impacting Taiwan’s dairy industry. Therefore, the development of value-added and locally characteristic dairy products is essential. Kombucha microbiota has the potential to enhance the functionality and flavor complexity of cheese; however, its microbial composition and fermentation characteristics must be clarified prior to application. Additionally, the supplementation of lactic acid bacteria is necessary to ensure proper fermentation control. This study is divided into three main parts: The first part focuses on the isolation and identification of microbial strains present in commercial kombucha. Using 16S rRNA and ITS sequencing, we isolated three acetic acid bacteria (Acetobacter tropicalis, Gluconobacter potus, and Komagataeibacter intermedius) and five yeasts (Brettanomyces bruxellensis, Hanseniaspora valbyensis, Saccharomyces cerevisiae, Starmerella davenportii, and Zygosaccharomyces kombuchaensis). Assays revealed that all three acetic acid bacteria exhibit moderate to high esterase and lipase activity. The test indicated that all yeasts except H. valbyensis can utilize D‑glucose, and S. cerevisiae shows weak activity on various sugars. The second part examines the fermentation of kombucha, recording its changes over different fermentation times. Using Taiwan Tea No. 18 red tea at 26 °C over seven days, pH declined from 4.21 to 3.48 and stabilized after day 5, indicating fermentation completion. Total phenolic content increased significantly from 423.25 to 630.75 mg GAE/L post-fermentation (p < 0.05), demonstrating enhanced antioxidant potential. The third part involves mixing kombucha with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus as a cheese starter culture. Kombucha was mixed with S. thermophilus and L. bulgaricus to produce cheese. The pH value of the mixed group, co-fermented with yogurt cultures and kombucha, decreased to 5.39 after 26 hours of fermentation, confirming lactic acid bacteria retained acidification potency when combined with kombucha microbes. Lactic bacterial counts increased, indicating no inhibitory effects from kombucha microbiota. Yeasts and acetic acid bacteria remained stable or modestly increased. The mixed group exhibited the highest total phenolics (0.76 ± 0.06 mg GAE/g) and DPPH radical-scavenging activity (42.77 ± 3.57%), evidencing improved antioxidant function—though phenolic differences were not statistically significant (p > 0.05). Textural analysis revealed cheese with kombucha alone showed the highest firmness (159.90 ± 4.96 g, p < 0.05), while the combined group was softer, likely influenced by acid levels, acetic acid bacterial enzymes, and bacterial cellulose formation. Sensory evaluation showed no significant differences (p > 0.05), though the yogurt-only group scored highest in aroma, flavor, and overall acceptance; the mixed group achieved good consumer acceptability with fruit-tea aroma. Storage studies revealed the mixed group maintained stable microbial populations, sustained acid production, and minimal moisture loss; no coliforms were detected over three weeks, demonstrating good shelf stability and safety.Kombucha’s microbial diversity and metabolic versatility can effectively enhance the flavor and functionality of fresh cheese, showing synergy with lactic cultures and adding product value. This study is the first to apply kombucha microbiota in a functional fresh cheese system co-cultured with yogurt bacteria, revealing promising improvements in flavor, antioxidant potential, and shelf stability. Future work should focus on screening strain functionality, profiling metabolites, and harnessing Taiwan’s unique tea resources to create cheese products that combine flavor, health benefits, and cultural value, aligning with consumer demand for high-quality, diversified functional dairy foods.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-22T16:09:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-22T16:09:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iv
目次 vi
圖次 viii
表次 x
壹、文獻探討 1
ㄧ、康普茶 (kombucha) 1
(一) 康普茶的微生物組成及其交互作用 3
(二) 康普茶發酵過程中的微生物和化學變化 12
(三)康普茶的化學組成 12
(四)康普茶的健康促進效用 14
二、起司 (cheese) 19
(一) 起司的製造 19
(二) 發酵劑菌種 21
(三) 起司機能性 22
(四) 新鮮起司 22
(五) 新型起司產品 23
貳、研究動機與目的 27
參、材料與方法 28
一、 試驗設計 28
第一節:分離與鑑定康普茶及探討其表觀特性 29
第二節:康普茶發酵變化之測定 38
第三節:使用康普茶作為起司發酵劑 41
肆、結果 48
第一節:分離與鑑定康普茶及探討其表觀特性 48
一、 基因型鑑定之分析 48
二、 革蘭氏染色結果 48
三、 藉由API ® ZYM商業套組分析對酵素之活性反應 53
四、 使用API20 C AUX商業套組測定酵母菌對於醣類之利用 53
第二節:康普茶發酵變化之測定 57
一、 發酵期間酸鹼值的變化 57
二、 未發酵紅茶與康普茶總多酚類含量 57
第三節:使用康普茶作為起司發酵劑並測定其特性 60
一、 起司外觀 60
二、 化學組成 60
三、 發酵期間pH值變化 60
四、 發酵期間活菌數的變化 61
五、 各組別總多酚含量的差異分析 68
六、 以DPPH自由基清除率測定各組別的抗氧化活性 68
七、 各組別堅實度和黏聚性的質地分析 68
八、 各組別含水量的測定 72
九、 起司產品之感官品評 72
十、 有機酸的測定 73
十一、 起司產品之保存試驗 77
伍、討論 83
第一節:分離與鑑定康普茶及探討其表觀特性 83
第二節:康普茶發酵變化之測定 86
第三節:使用康普茶作為起司發酵劑並測定其特性 87
第四節:康普茶作為新鮮起司發酵劑之應用潛力與未來展望 93
陸、結論 96
柒、參考文獻 98
捌、附錄 114
-
dc.language.isozh_TW-
dc.subject康普茶菌種zh_TW
dc.subject抗氧化潛力zh_TW
dc.subject起司共發酵zh_TW
dc.subject優格乳酸菌zh_TW
dc.subject多酚含量zh_TW
dc.subjectAntioxidant potentialen
dc.subjectPolyphenol contenten
dc.subjectCheese co-fermentationen
dc.subjectYogurt lactic acid bacteriaen
dc.subjectKombucha microbiotaen
dc.title結合康普茶與乳酸菌開發新型新鮮起司zh_TW
dc.titleDevelopment of starter culture from kombucha and lactic acid bacteria for novel fresh cheese productionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳詠宗;陳彥伯;郭卿雲;王聖耀zh_TW
dc.contributor.oralexamcommitteeYu-Chun Lin;Yen-Po Chen;Ching-Yun Kuo;Sheng-Yao Wangen
dc.subject.keyword優格乳酸菌,康普茶菌種,多酚含量,抗氧化潛力,起司共發酵,zh_TW
dc.subject.keywordAntioxidant potential,Cheese co-fermentation,Polyphenol content,Kombucha microbiota,Yogurt lactic acid bacteria,en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202503230-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2026-07-02-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2026-07-02
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved