請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99309完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 洪賢修 | zh_TW |
| dc.contributor.author | Hsien-Hsiu Hung | en |
| dc.date.accessioned | 2025-08-22T16:07:33Z | - |
| dc.date.available | 2025-08-23 | - |
| dc.date.copyright | 2025-08-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] Freakley, P. K., Payne, A. R., & Davey, A. (1978). Theory and practice of engineering with rubber.
[2] Myklestad, N. O. (2018). Fundamentals of vibration analysis. Courier Dover Publications. [3] Mullins, L. (1986). Engineering with rubber. Rubber Chemistry and Technology, vol. 59, 69-83. [4] Bartenev, G. M., & Zuyev, Y. S. (2013). Strength and failure of visco-elastic materials. Elsevier. [5] Harris, C. M., & Piersol, A. G. (2002). Harris' shock and vibration handbook (vol. 5). McGraw-Hill New York. [6] Tian, Y., Liu, Y., He, M., Zhao, G., & Sun, Y. (2013). High damping properties of magnetic particles doped rubber composites at wide frequency. Materials Research Bulletin, vol. 48, 2002-2005. [7] Xiao, W., Yu, S., Liu, L., & Zhang, F. (2020). Vibration reduction design of extension housing for printed circuit board based on particle damping materials. Applied Acoustics, 168, 107434. [8] Veeramuthuvel, P., Shankar, K., & Sairajan, K. (2016). Application of particle damper on electronic packages for spacecraft. Acta Astronautica, vol. 127, 260-270. [9] Praveen, S., Bahadur, J., Yadav, R., Billa, S., Patro, T. U., Rath, S. K., Ratna, D., & Patri, M. (2020). Tunable viscoelastic and vibration damping properties of a segmented polyurethane synergistically reinforced with carbon black and anisotropic additives. Applied Acoustics, 170, 107535. [10] Liu, C., Fan, J., & Chen, Y. (2019). Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range. Polymer Testing, 79, 106003. [11] Tang, K., & Wang, J. (2022). Chlorinated butyl rubber/two-step modified montmorillonite nanocomposites: Mechanical and damping properties. Chinese Journal of Chemical Engineering, vol. 42, 437-449. [12] Zhou, X., Yu, D., Shao, X., Zhang, S., & Wang, S. (2016). Research and applications of viscoelastic vibration damping materials: A review. Composite Structures, vol. 136, 460-480. [13] Ramesh, R. S., Fredette, L., & Singh, R. (2019). Identification of multi-dimensional elastic and dissipative properties of elastomeric vibration isolators. Mechanical Systems and Signal Processing, vol. 118, 696-715. [14] bin Salim, M. A., bin Omar, G., bin Akop, M. Z., bin Abdul Hamid, N., & bin Tamaldin, N. (2018). Challenges and Developments of Rubber Materials as Vibration Isolator. [15] LORD, C. (2011). Aerospace & Defense Isolator Catalog. In. [16] Lu, L.-Y., Lin, C.-C., & Lin, G.-L. (2013). Experimental evaluation of supplemental viscous damping for a sliding isolation system under pulse-like base excitations. Journal of Sound and Vibration, vol. 332, 1982-1999. [17] Ashby, M. F., & Cebon, D. (1993). Materials selection in mechanical design. Le Journal de Physique IV, vol. 3, C7-1-C7-9. [18] Sun, X., Zhang, C., Fu, Q., Zhang, H., & Dong, H. (2020). Measurement and modelling for harmonic dynamic characteristics of a liquid-filled isolator with a rubber element and high-viscosity silicone oil at low frequency. Mechanical Systems and Signal Processing, 140, 106659. [19] Kimanzi, S. M. (2019). A simple approach to viscoelastic material selection for impact absorption [University of British Columbia]. [20] Wadud, S. E. B., & Ulbrich, R. R. DMA 2980 DYNAMIC MECHANICAL ANALYZER. [21] Koupai, S. A., Bakhshi, A., & Tabrizi, V. V. (2017). Experimental investigation on effects of elastomer components on dynamic and mechanical properties in seismic isolator compounds. Construction and Building Materials, vol. 135, 267-278. [22] Petrone, F., Lacagnina, M., & Scionti, M. (2004). Dynamic characterization of elastomers and identification with rheological models. Journal of Sound and Vibration, vol. 271, 339-363. [23] Barrera, C. S., & Tardiff, J. L. (2022). Static and dynamic properties of eggshell filled natural rubber composites for potential application in automotive vibration isolation and damping. Journal of Cleaner Production, 353, 131656. [24] Tzikang, C. (2000). Determining a Prony series for a viscoelastic material from time varying strain data. [25] Fazekas, B., & Goda, T. J. (2021). Constitutive modelling of rubbers: Mullins effect, residual strain, time-temperature dependence. International Journal of Mechanical Sciences, 210, 106735. [26] Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical society, vol. 77, 3701-3707. [27] Xiao, H., Xu, C., Wang, R., Yu, P., Zhou, J., & Bai, J. (2021). A nonlinear model and parameter identification method for rubber isolators under shock excitation in underwater vehicles. Journal of Marine Science and Engineering, vol. 9, 1282. [28] Ardıç, H. (2013). Design and mo deling elastomeric vibration isolators using finite element method (Master's thesis, Middle East Technical University (Turkey)). [29] Takeh, A., & Shanbhag, S. (2013). A computer program to extract the continuous and discrete relaxation spectra from dynamic viscoelastic measurements. Applied Rheology, 23(2), 24628. [30] Siswanto, W. A., Ibrahim, M. N., Madlan, M. A., & Mohamad, S. M. (2011). Shaker table design for electronic device vibration test system. International Journal of Engineering and Technology, 3(6), 663. [31] Tao, Y., Rui, X., Yang, F., & Hao, B. (2019). Development of a MRE isolation system for strapdown inertial measurement unit. Mechanical systems and signal processing, vol. 117, 553-568. [32] Ogawa, S., & Yamada, T. (2022). Minimizing creep deformation via topology optimization. Finite Elements in Analysis and Design, 207, 103758. [33] Giraldo-Londoño, O., & Paulino, G. H. (2020). Fractional topology optimization of periodic multi-material viscoelastic microstructures with tailored energy dissipation. Computer Methods in Applied Mechanics and Engineering, 372, 113307 [34] Dutta, G. S., & Venkatesan, C. (2013). Analytical and empirical modeling of multilayered elastomeric isolators from damping experiments. Journal of Sound and Vibration, vol. 332, 6913-6923. [35] Liu, C., Jing, X., Daley, S., & Li, F. (2015). Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, vol. 56, 55-80. [36] Mallik, A. K., Kher, V., Puri, M., & Hatwal, H. (1999). On the modelling of non-linear elastomeric vibration isolators. Journal of Sound and Vibration, vol. 219, 239-253. [37] Balthazar, J. M., Bassinello, D. G., Tusset, A. M., Bueno, A. M., & de Pontes Junior, B. R. (2014). Nonlinear control in an electromechanical transducer with chaotic behaviour. Meccanica, vol. 49, 1859-1867. [38] J. Fang, X. Gong. (2010). Predictive iterated Kalman Filter for INS/GPS integration and its application to SAR motion compensation, IEEE Trans. Instrum. Meas. vol. 59, 909–915. [39] D.A. Grejner-Brzezinska, C.K. Toth, H. Sun, X. Wang, C. Rizos. (2011). A robust solution to high-accuracy geolocation: quadruple integration of GPS, IMU, pseudolite, and terrestrial laser scanning, IEEE Trans. Instrum. Meas. vol. 60, 3694–3695. [40] M. Mohamed, J. Hutton. (2001). Direct positioning and orientation systems, How do they work? What is the attainable accuracy?, in: Proc. American Society of Photogrammetry and Remote Sensing Annual Meeting, St. Louis, pp. 1–11. [41] H.S. Ahn, C.H. Won. (2009). DGPS/IMU integration-based geolocationsystem: airborne experimental test results, Aerospace Sci Technol, vol. 13, 316–324. [42] Mostafa, M., & Hutton, J. (2001). Airborne remote sensing without ground control. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium. Vol. 7, pp. 2961-2963 [43] Mostafa, M. M., Hutton, J., & Lithopoulos, E. (2001). Airborne direct georeferencing of frame imagery: an error budget. In Proceedings of the 3rd International Symposium on Mobile Mapping Technology (MMS2001). [44] J. Grandin. (2007). Aided inertial navigation field tests using an RLG IMU,MA.Sc. thesis, School of Architecture and the Built Environment, Royal Institute of Technology, Stockholm, Sweden, pp. 17–27. [45] M. Mohamed, K. Mostafa. (2001). Digital image georeferencing from amultiple camera system by GPS/INS, ISPRS J. Photogramm Rem. Sens. vol. 56, pp.1–12. [46] Poddar, S., Kumar, V., & Kumar, A. (2017). A comprehensive overview of inertial sensor calibration techniques. Journal of Dynamic Systems, Measurement, and Control, 139(1), 011006. [47] Peng, H., Zhi, X., Wang, R., Liu, J. Y., & Zhang, C. (2014). A new dynamic calibration method for IMU deterministic errors of the INS on the hypersonic cruise vehicles. Aerospace Science and Technology, 32(1), 121-130. [48] Gardonio, P., & Elliott, S. J. (1999). A study of control strategies for the reduction of structural vibration transmission. JOURNAL OF VIBRATION AND ACOUSTICS, 121(4), 482-487. [49] Rohac, J., Reinstein, M., & Draxler, K. (2011). Data processing of inertial sensors in strong-vibration environment. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems. Vol. 1, pp. 71-75. [50] Spiewak, S., Karpachevskyy, T., & Zaiss, C. (2013). High performance isolation and excitation of vibration for enhanced identification of inertial sensors. In ASME International Mechanical Engineering Congress and Exposition, Vol. 56253, p. V04BT04A061 [51] Holm, R., Schou, H., Petersen, H. R., & Horntvedt, M. (2018). Behavioral performance during vibration and shock for a tactical grade IMU. In 2018 DGON Inertial Sensors and Systems (ISS), pp. 1-19. [52] Kedadouche, M., Yulan, S., Liu, Z., Thomas, M., Charland-Arcand, G., & Beck, A. (2018). Design of a vibration isolator for the inertial navigation system of an autopilot dedicated to the operation of light drones. In 2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE), pp. 73-78. [53] Tao, Y., Rui, X., Yang, F., & Hao, B. (2019). Development of a MRE isolation system for strapdown inertial measurement unit. Mechanical systems and signal processing, 117, 553-568. [54] Capriglione, D., Carratù, M., Pietrosanto, A., Sommella, P., Catelani, M., Ciani, L., ... & Signorini, L. (2020). Characterization of inertial measurement units under environmental stress screening. In 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-6. [55] Lahham, J. I., Wigent, D. J., & Coleman, A. L. (2000). Tuned support structure for structure-borne noise reduction of inertial navigator with dithered ring laser gyros (RLG). In IEEE 2000. Position Location and Navigation Symposium (Cat. No. 00CH37062). pp. 419-428. [56] Cheng, J., Fang, J., Wu, W., & Li, J. (2014). Optimized design method of vibration isolation system in mechanically dithered RLG POS based on motion decoupling. Measurement, vol. 48, 314-324. [57] Ramesh, R. S., Fredette, L., & Singh, R. (2019). Identification of multi-dimensional elastic and dissipative properties of elastomeric vibration isolators. Mechanical Systems and Signal Processing, vol. 118, 696-715. [58] Verola, M., Senatore, R., Quatraro, E., Piccinino, A., Moretti, A., Pizzarulli, A., & Perlmutter, M. (2020, September). IMU architecture based on functional redundancy to improve safety features and measurements availability during highly dynamic transients. In 2020 DGON Inertial Sensors and Systems (ISS), pp. 1-13. [59] Augustyniak, A., Hanley, D. J., Bretl, T. W., Hejmanowski, N. J., & Carroll, D. L. (2021). A preliminary framework and feasibility study for spacecraft disturbance source detection and isolation with distributed inertial sensors. In AIAA Scitech 2021 Forum, p. 1867. [60] Jiang, M., Rui, X., Zhu, W., Yang, F., & Gu, J. (2022). Control and experimental study of 6-DOF vibration isolation platform with magnetorheological damper. Mechatronics, 81, 102706. [61] Xiangyang, Z., Ruixia, Y., Jianping, L., & Dapeng, L. (2011). Structure optimal design of roll gimbal for an aerial three-axis ISP based on FEM modal analysis. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation Vol. 3, pp. 373-376. [62] Trinklein, E., & Parker, G. (2016, April). Ship motion sensor isolation system development and testing for use with low cost IMUs. In 2016 IEEE Sensors Applications Symposium (SAS), pp. 1-6. [63] Zhuang, J. H., Liu, Y. X., He, C. H., Zhang, R. Z., Zhou, B., & Cheng, X. Y. (2019). Optimization design method of MEMS-IMU structure. In 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 466-470. [64] Hoang, M. L., & Pietrosanto, A. (2021). Yaw/Heading optimization by drift elimination on MEMS gyroscope. Sensors and Actuators A: Physical, 325, 112691. [65] Rohac, J., Reinstein, M., & Draxler, K. (2011, September). Data processing of inertial sensors in strong-vibration environment. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, Vol. 1, pp. 71-75. [66] Ma, L., Jiang, X., Dong, L., Cao, J., Jin, Y., & Shi, G. (2017). Vibration effects rectification of IMU attitude based on gradient descent algorithm. In 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 167-171. [67] Scripal, E. N., Ermakov, R. V., Gutcevitch, D. E., L'vov, A. A., & Sytnik, A. A. (2018, January). Test methods and results of the MEMS inertial sensors. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 983-986. [68] Wei, Y., Yang, J., Li, P., Zhang, X., & Liang, P. (2021). Analysis and optimization method of the vibration rectification error of a pendulous accelerometer. IEEE Sensors Journal, 21(18), 19847-19856. [69] Belyaev, Y., Yurchenko, V., & Piatak, I. (2021). Error calculation for accelerometer calibration by broadband random vibration analysis. In 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), pp. 1156-1159. [70] Hoang, M. L., & Pietrosanto, A. (2021). Yaw/Heading optimization by drift elimination on MEMS gyroscope. Sensors and Actuators A: Physical, 325, 112691. [71] Capriglione, D., Carratù, M., Catelani, M., Ciani, L., Patrizi, G., Pietrosanto, A., ... & Sommella, P. (2021). Performance analysis of MEMS-based inertial measurement units in terrestrial vehicles. Measurement, 186, 110237. [72] N.G. LITEF, μIMU-IC micro inertial measurement unit, March, 2016, [Product datasheet]. [Online]. Available: https://geo-matching.com/products/imu-mems-based-inertial-measurement-unit. [73] Analog Devices, Inc.,Gyro Mechanical Performance:The Most Important Parameter,USA: Analog Devices, Wilmington, USA, 2011. [74] Analog Devices, Inc.,Vibration Rectification in MEMS Accelerometers, USA: Analog Devices, Wilmington, USA, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99309 | - |
| dc.description.abstract | 本研究針對高精度慣性測量單元(IMU)在動態環境下之抗振性能進行深入探討,核心目的為建立具物理意義之黏彈性模型,並導入於IMU隔振系統之設計與性能分析中。研究方法採用擴展型Maxwell黏彈性模型對隔振材料進行參數化建模,透過三項實驗技術,拉伸試驗、靜態剛度測試及動態機械分析(DMA)進行材料性質之量測與參數反饋,精確識別矽膠(Silicone)與丁腈橡膠(NBR)在不同應變與頻率下之黏彈行為。根據所得材料模型,建立IMU系統六自由度(6DOF)完整動力學模型,分析不同隔振器元件佈置方式與結構設計參數對結構系統耦合程度之影響,並探討在何種條件下能實現動態完全解耦與軸向響應獨立性。
為驗證模型準確性與實用性,本研究進行多階段驗證流程,包含有限元素法(FEA)模擬分析、振動台實驗與古典衝擊試驗。分析結果顯示,建立之黏彈性模型不僅能合理描述材料在寬頻率範圍內之力學行為,亦能準確預測隔振器於實際組裝後的動態反應。進一步針對IMU內部之關鍵感測元件,陀螺儀與加速度計進行VRE(Vibration Rectification Error)性能評估,探討材料性質與隔振結構對感測器穩定性與量測誤差的影響。研究結果指出,透過合適之材料選擇與結構解耦設計,能顯著抑制外部振動進入IMU核心結構,進一步降低VRE效應,提升感測精度與長期穩定性。 本研究成功整合材料實驗、理論建模、動態模擬與系統驗證四大構面,提出一套可延伸至其他精密感測平台之隔振設計與建模流程,具備高度工程應用價值。所建模型可作為未來高性能IMU開發與設計最佳化之理論依據,亦有助於進一步提升航太、精密導航與動態監測等領域對於振動抑制與感測精度的整體表現。 | zh_TW |
| dc.description.abstract | This study investigates the vibration mitigation performance of high-precision Inertial Measurement Units (IMU) under dynamic environments, with the core objective of establishing a physically meaningful viscoelastic model and applying it to the design and performance analysis of IMU isolation systems. An extended Maxwell viscoelastic model was adopted to parameterize isolation materials, supported by three experimental techniques: tensile testing, static stiffness measurement, and Dynamic Mechanical Analysis (DMA). These methods enabled precise characterization and parameter identification of the viscoelastic behavior of silicone and nitrile rubber (NBR) across varying strains and frequencies.
Based on the obtained material models, a comprehensive six-degree-of-freedom (6DOF) dynamic model of the IMU system was developed to analyze how different isolator arrangements and structural design parameters influence system coupling and to determine conditions under which dynamic full decoupling and axial response independence can be achieved. To validate the accuracy and practical applicability of the model, a multi-stage verification process was conducted, including Finite Element Analysis (FEA), vibration table testing, and classical shock experiments. The analysis demonstrated that the established viscoelastic model not only accurately describes material mechanical behavior over a wide frequency range but also reliably predicts the dynamic response of isolators after assembly. Furthermore, critical IMU sensing components—gyroscopes and accelerometers—were evaluated for Vibration Rectification Error (VRE) performance, examining how material properties and isolation structure design impact sensor stability and measurement error. Results indicate that appropriate material selection combined with effective structural decoupling design can significantly suppress external vibrations transmitted into the IMU core, thereby reducing VRE effects and enhancing measurement precision and long-term stability. This research successfully integrates four key aspects: materials experimentation, theoretical modeling, dynamic simulation, and system-level validation. It proposes a versatile isolation design and modeling workflow applicable to other precision sensing platforms, offering high engineering value. The developed models provide a theoretical foundation for the optimization and development of next-generation high-performance IMU, supporting improved vibration suppression and sensing accuracy in aerospace, precision navigation, and dynamic monitoring applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-22T16:07:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-22T16:07:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 IV 目次 VIII 圖次 XI 表次 XVII 符號列表 XVIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 論文內容簡介 9 第二章 黏彈性材料建模理論與辨識方法 13 2.1 黏彈性材料數學模型 13 2.1.1 拉伸試驗產生的遲滯現象 13 2.1.2 典型的廣義Maxwell模型 14 2.1.3 壓縮變形和潛變 16 2.2 隔振彈性體參數識別法 17 2.2.1 隔振橡膠的靜態剛度 17 2.2.2 隔振橡膠的潛變和應力鬆弛特性 17 2.2.3 隔振橡膠的動態測量分析(DMA) 19 2.3 慣性測量單元(Inertia Measurement Unit)力學模型 21 2.3.1 建構六自由度(6DOF)隔振系統動力學 21 2.4 本章小結 32 第三章 材料實驗設計與參數擷取 39 3.1 隔振橡膠的拉伸測試 39 3.2 隔振橡膠的潛變和應力鬆弛特性 41 3.3 慣性測量單元隔振器設計與製造 44 3.4 隔振器的靜態剛性 46 3.5 隔振器的動態機械分析(dynamic mechanical analysis) 47 3.6 隔振器的動態系統與衝擊吸收 48 3.6.1 隔振器共振頻率量測試驗 49 3.6.2 古典衝擊隔振模擬 52 3.6.3 古典衝擊隔振試驗 53 3.7 本章小結 56 第四章 隔振器設計與六自由度動力模型建構 75 4.1 設計需求分析 75 4.2 幾何配置與解耦設計 76 4.2.1 隔振器正八點設計佈局 77 4.2.2 隔振器正四點設計佈局 78 4.2.3 隔振器底四點設計佈局 78 4.2.4 隔振器斜四點設計佈局 81 4.2.5 隔振器對角四點設計佈局 82 4.3 有限元素法(FEM)隨機振動模擬 82 4.3.1 有限元素法(FEM)建模流程 83 4.3.2 隨機振動理論模型比較結果 85 4.4 隨機振動理論模型用於估算慣性測量單元角速度誤差 85 4.5 本章小結 87 第五章 系統驗證與振動校正誤差(VRE)性能評估 105 5.1 隔振系統設計方法 105 5.2 隔振系統模擬分析與振動實驗 106 5.3 慣性測量單元隔振系統振動校正誤差(VRE)測試 108 5.3.1 實驗架設準備 108 5.3.2 頻譜數據分析 108 5.4 本章小結 110 第六章 結論與未來展望 146 6.1 結論 146 6.2 未來展望 148 參考文獻 151 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 黏彈性模型 | zh_TW |
| dc.subject | 動態量測分析 | zh_TW |
| dc.subject | 古典衝擊 | zh_TW |
| dc.subject | 慣性測量單元 | zh_TW |
| dc.subject | 振動隔離系統 | zh_TW |
| dc.subject | 隨機振動 | zh_TW |
| dc.subject | 振動校正誤差 | zh_TW |
| dc.subject | random vibration | en |
| dc.subject | vibration rectification error (VRE) | en |
| dc.subject | viscoelastic model | en |
| dc.subject | dynamic measurement analysis | en |
| dc.subject | classical shock | en |
| dc.subject | inertial measurement unit (IMU) | en |
| dc.subject | vibration isolation system | en |
| dc.title | 結合系統動力學與黏彈性材料建模之慣性測量單元於隔振平台設計與效能驗證 | zh_TW |
| dc.title | Integration of System Dynamics and viscoelastic Material Modeling for Inertial Measurement Unit in Vibration Isolation Platform Design and Performance Validation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 莊嘉揚;李振榮;陳重德;王怡仁;郭永麟 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Yang Juang;Chen-Jung Li;Chung-De Chen;Yi-Ren Wang;Yong-Lin Kuo | en |
| dc.subject.keyword | 黏彈性模型,動態量測分析,古典衝擊,慣性測量單元,振動隔離系統,隨機振動,振動校正誤差, | zh_TW |
| dc.subject.keyword | viscoelastic model,dynamic measurement analysis,classical shock,inertial measurement unit (IMU),vibration isolation system,random vibration,vibration rectification error (VRE), | en |
| dc.relation.page | 160 | - |
| dc.identifier.doi | 10.6342/NTU202503510 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 12.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
