請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99308完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧中仁 | zh_TW |
| dc.contributor.advisor | Chung-Jen Lu | en |
| dc.contributor.author | 張昱雯 | zh_TW |
| dc.contributor.author | Yu-Wen Chang | en |
| dc.date.accessioned | 2025-08-22T16:07:20Z | - |
| dc.date.available | 2025-08-23 | - |
| dc.date.copyright | 2025-08-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | [1] M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, "Synchronization of clocks,"Physics Reports, vol. 517, no. 1-2, pp. 1-69, 2012.
[2] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, "Clustering and synchronization of n Huygens' clocks," Physica A: Satistical Mechanics and its Applications, vol. 388, no. 24,pp. 5013-5023, 2009. [3] 簡伯丞,"無幌擒縱器擺鐘的同步," 碩士,機械工程學研究所, 國立台灣大學, 北市, 2018. [4] 陳芝郁, "耦合擺鐘的同步型式分析," 碩士,機械工程學研究所, 國立台灣大學, 北市, 2020. [5] S.H. Strogatz, “Spontaneous synchronization in nature,” Proceedings of International Frequency Control Symposium, pp. 2-4, 1997. [6] M. Toiya, H. O. González-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein, "Synchronization of Chemical Micro-oscillators," The Journal of Physical Chemistry Letters, vol. 1, no. 8, pp. 1241-1246, 2010. [7] S. H. Strogatz, D. M. Abrams, A. Mcrobie, B. Eckhardt, and E. Ott, "Theoretical mechanics: crowd synchrony on the Millennium Bridge," Nature, vol. 438, no. 7064, pp. 43-4, Nov 3 2005. [8] M. Bennett, M. F. Schatz, H/ Rockwood, and K. Wiesenfeld, " Huygens's clocks," Proceedings-Royal Society. Mathematical, physical snd engineering sciences(Print), vol. 458, no. 2019, pp. 563-579, 2002. [9] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, "Huygens' odd sympathy experiment revisited," International Journal of Bifurcation and Chaos, vol. 21, no. 07, pp. 2047-2056, 2021. [10] J. Pantaleone, " Synchronization of metronomes," American Journal of Physics, vol. 70,no. 10,pp. 992-1000, 2002. [11] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, "Why two clocks synchronize: energy balance of the synchronized clocks," Chaos, vol. 21, no. 2, p. 023129, Jun 2011. [12] F. Hoogeboom, A. Pogromsky, and H. Nijmeijer, " Huygens' Synchronization: Experiments, Modeling, and Local Stability Analysis," International Federation of Automatic Control, vol. 48, no. 18, pp. 146-151, 2015. [13] Y. Wu, N. Wang,, L. Li, and J. Xiao, "Anti-phase Synchronization of two coupled mechanical metronomes," Chaos, vol. 22, no. 2, p. 023146, Jun 2012. [14] J. Pena Ramirez, L. A. Olvera, H. Nijmeijer, and J. Alvarez, "The sympathy of two pendulum clocks: beyond Huygens' observations," Scientific Reports, vol. 6, p. 23580, Mar 29 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99308 | - |
| dc.description.abstract | Huygens在1665年最早觀察到兩個懸掛在橫梁下擺鐘的同步現象,隨後有許多學者研究不同情形下擺鐘的同步型態,例如滑動台車和旋轉圓盤上的擺鐘。Czolczynski等人於2009年時,從能量觀點分析滑動台車上的 個擺鐘的同步型式。他們將擺鐘依穩態時的相角分類,同相角的擺鐘歸為一組。他們認為 個擺鐘同步時,除了所有擺鐘同相同步和兩兩一組反相同步外,只存在分為3組或5組(各組的擺鐘間同相同步)的同步型式。但是不管是在2018年使用諧和平衡法的簡伯丞,還是在2020年使用多重尺度法的陳芝郁在分析5個擺鐘時皆有發現其它的同步型式。然而,隨著擺鐘數目的持續增加,擺鐘複雜的運作機構使得分析擺鐘的同步型式變得非常的困難。
本論文旨在分析多個擺鐘固定於可水平移動的台車上時,其穩態運動所展現的同步型式。為了簡化分析,本文將結構複雜的無幌擒縱器擺鐘轉化為受衝擊力矩的單擺,並證明其定性行為與擺鐘相符。接著,使用多重尺度法推導單擺系統在小參數擾動下的一階近似解析解,建立振幅與相角之穩態關係式,並與數值積分方法結果交叉驗證。最後利用所得的穩態關係式,分析 個擺鐘可能的同步型式。 | zh_TW |
| dc.description.abstract | In 1665, Huygens was the first to observe the synchronization phenomenon which happened between two pendulum clocks suspended from a common horizontal beam. Since then, many researchers have studied the synchronization of pendulum clocks under various configurations, such as pendulum clocks on carts and rotating disks. In 2009, Czolczynski et al. analyzed the synchronization patterns of multiple pendulums on a cart from an energy-based perspective. They divided the pendulums into groups according to their phase angles in the steady state. Pendulums with identical phase angles are categorized as one cluster. They claimed that, apart from complete in-phase synchronization and pairwise anti-phase synchronization, only synchronization patterns involving three or five clusters are possible. Nonetheless, other types of synchronization for five pendulum clocks were observed by Po-Cheng Chien in 2018 using the harmonic balance method, and by Chih-Yu Chen in 2020 using the method of multiple scales. However, with the increasing number of pendulum clocks, the intricate nature of their mechanisms renders the analysis of their synchronization patterns highly challenging.
This thesisaims to analyze the steady-state synchronization behaviors of multiple pendulum clocks on a horizontally movable cart. The complex escapement mechanism of a real pendulum clock is modeled as a single pendulum subjected to impulsive torques. It is demonstrated that this simplified model qualitatively matches the dynamic behavior of a pendulum clock. Using the method of multiple scales, we derive a first-order approximate analytical solution under small perturbations, establishing steady-state relationships between amplitudes and phase angles of the pendulums. These results are cross-validated with numerical integration. Last, we use the derived steady-state relationships to analyze the possible synchronization patterns of multiple pendulums. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-22T16:07:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-22T16:07:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目次 vi 圖次 viii 表次 xii Chapter 1 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3論文架構 4 Chapter 2 擺鐘模型 6 2.1無幌擒縱器擺鐘 6 2.1.1 擺鐘工作原理 6 2.1.2 運動方程式 8 2.1.3 參數設定 9 2.1.4 固定於地面的擺鐘 10 2.2簡化模型 11 2.3台車上的單擺 16 Chapter 3 微擾分析 23 3.1一階近似方程式 23 3.2數值驗證 28 3.2.1單個單擺 28 3.2.2雙單擺 31 Chapter 4 穩態型式分析 37 4.1穩態關係式 37 4.2 個單擺的穩態型式 39 4.2.1雙單擺( ) 39 4.2.2三個單擺( ) 40 4.2.3四個單擺( ) 43 4.3大於四個單擺 49 Chapter 5 結論 72 REFERENCE 76 附錄A 78 附錄B 83 B.1分成兩組( ) 84 B.2分成三組( ) 85 附錄C 87 附錄D 89 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 同步 | zh_TW |
| dc.subject | 擺鐘 | zh_TW |
| dc.subject | 單擺 | zh_TW |
| dc.subject | 多重尺度法 | zh_TW |
| dc.subject | 台車系統 | zh_TW |
| dc.subject | 非線性動力學 | zh_TW |
| dc.subject | simple pendulum | en |
| dc.subject | synchronization | en |
| dc.subject | nonlinear dynamics | en |
| dc.subject | cart system | en |
| dc.subject | method of multiple scales | en |
| dc.subject | pendulum clocks | en |
| dc.title | 台車上擺鐘的同步型式分析 | zh_TW |
| dc.title | Synchronization Patterns of Pendulum Clocks Mounted on a Cart | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蘇春熺;劉建豪 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Hsi Su;Chien-Hao Liu | en |
| dc.subject.keyword | 同步,擺鐘,單擺,多重尺度法,台車系統,非線性動力學, | zh_TW |
| dc.subject.keyword | synchronization,pendulum clocks,simple pendulum,method of multiple scales,cart system,nonlinear dynamics, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202504269 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-08-07 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
