Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99304
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭zh_TW
dc.contributor.advisorAnthony J. T. Leeen
dc.contributor.author張芳瑜zh_TW
dc.contributor.authorFang-Yu Changen
dc.date.accessioned2025-08-22T16:06:24Z-
dc.date.available2025-08-23-
dc.date.copyright2025-08-22-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citationBudhi GS, Chiong R (2023) A multi-type classifier ensemble for detecting fake reviews through textual-based feature extraction. ACM Transactions on Internet Technology 23(1):1–24. https://doi.org/10.1145/3568676
Cao C (2023) The impact of fake reviews of online goods on consumers. BCP Business Management 39:420–425. https://doi.org/10.54691/bcpbm.v39i.4208
Cao C, Li S, Yu S, Chen Z (2021) Fake reviewer group detection in online review systems. Proceedings of International Conference on Data Mining Workshops. 935–942. https://doi.org/10.1109/ICDMW53433.2021.00122
Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. Proceedings of the 37th International Conference on Machine Learning. 1597–1607. https://doi.org/10.48550/arXiv.2002.05709
Chen T, Samaranayake P, Cen X, Qi M, Lan YC (2022) The impact of online reviews on consumers’ purchasing decisions: Evidence from an eye-tracking study. Frontiers Psychology 13:865702. https://doi.org/10.3389/fpsyg.2022.865702
De Campos LM, Fernández-Luna JM, Huete JF, Redondo-Expósito L (2018) Positive unlabeled learning for building recommender systems in a parliamentary setting. Information Sciences 433–434:221–232. https://doi.org/10.1016/j.ins.2017.12.046
De Comité F, Denis F, Gilleron R, Letouzey F (1999) Positive and unlabeled examples help learning. Algorithmic Learning Theory 1720:219–230. https://doi.org/10.1007/3-540-46769-6_18
Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. https://arxiv.org/abs/1810.04805.
Fusilier DH, Montes-y-Gomez M, Cabrera RG, Rosso P (2013) Using PU-learning to detect deceptive opinion spam. Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. 38–45.
Gemma Team, Mesnard T, Hardin C, Dadashi R, Bhupatiraju S, Pathak S, Sifre L, et al. (2024) Gemma: Open models based on Gemini research and technology. arXiv:2403.08295. https://arxiv.org/abs/2403.08295.
Gong C, Shi H, Yang Jie, Yang Jian (2020) Multi-manifold positive and unlabeled learning for visual analysis. IEEE Trans. Circuits Syst. Video Technol. 30(5):1396–1409. https://doi.org/10.1109/TCSVT.2019.2903563
He D, Pan M, Hong K, Cheng Y, Chan S, Liu X, Guizani N (2020) Fake review detection based on PU learning and behavior density. IEEE Network 34(4):298–303. https://doi.org/10.1109/MNET.001.1900542
He S, Hollenbeck B, Proserpio D (2022) The market for fake reviews. Marketing Science 41(5):896–921. https://doi.org/10.1287/mksc.2022.1353
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hyder SB, Tariq N, Moqurrab SA, Ashraf M, Yoo J, Srivastava G (2024) BERT-based deceptive review detection in social media: Introducing DeceptiveBERT. IEEE Transactions on Computational Social Systems PP(99):1–10. https://doi.org/10.1109/TCSS.2024.3403937
Li H, Chen Z, Liu B, Wei X, Shao J (2014) Spotting fake reviews via collective positive-unlabeled learning. Proceedings of the IEEE International Conference on Data Mining. 899–904. https://doi.org/10.1109/ICDM.2014.47
Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. arXiv:1708.02002. https://arxiv.org/abs/1708.02002.
Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692. https://arxiv.org/abs/1907.11692.
Lu J, Yang J, Batra D, Parikh D (2016) Hierarchical question-image co-attention for visual question answering. arXiv:1606.00061. https://arxiv.org/abs/1606.00061.
Luca M, Zervas G (2016) Fake it till you make it: Reputation, competition, and Yelp review fraud. Management Science 62(12):3412–3427. https://doi.org/10.1287/mnsc.2015.2304
Luo J, Luo J, Nan G, Li D (2023) Fake review detection system for online e-commerce platforms: A supervised general mixed probability approach. Decision Support Systems 175:114045. https://doi.org/10.1016/j.dss.2023.114045
Munzel A (2016) Assisting consumers in detecting fake reviews: The role of identity information disclosure and consensus. Journal of Retailing and Consumer Services 32:96–108. https://doi.org/10.1016/j.jretconser.2016.06.002
Rayana S, Akoglu L (2015) Collective opinion spam detection: Bridging review networks and metadata. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 985–994. https://doi.org/10.1145/2783258.2783370
Schuckert M, Liu X, Law R (2016) Insights into suspicious online ratings: Direct evidence from tripAdvisor. Asia Pacific Journal of Tourism Research 21(3):259–272. https://doi.org/10.1080/10941665.2015.1029954
Song Y, Wang L, Zhang Z, Hikkerova L (2023) Do fake reviews promote consumers’ purchase intention? Journal of Business Research 164:113971. https://doi.org/10.1016/j.jbusres.2023.113971
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv:1706.03762. https://arxiv.org/abs/1706.03762.
Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2017) Graph attention networks. arXiv:1710.10903. https://arxiv.org/abs/1710.10903.
Xu S, Cuan H, Yin Z, Yin C (2024) A hybridized approach for enhanced fake review detection. IEEE Transactions on Computational Social Systems. 1–19. https://doi.org/10.1109/TCSS.2024.3411635
Xu Y, Liu H, Ge J, Zhang X, Hu J, Wu Y, Lv H, Shi H, Zhou W (2023) Mining weak relations between reviews for opinion spam detection. IEEE/ACM Transactions on Audio Speech Language Processing 31:152–162. https://doi.org/10.1109/TASLP.2022.3221008
Yang P, Li X, Chua HN, Kwoh CK, Ng SK (2014) Ensemble positive unlabeled learning for disease gene identification. PLoS ONE 9(5):e97079. https://doi.org/10.1371/journal.pone.0097079
Yao Y, Chen L, Zhang D, Qin L (2024) MAGAT-HOS: A multi-attention graph neural network for fake review detection by incorporating high-order semantic information. Proceedings of International Joint Conference on Neural Networks. 1–9. https://doi.org/10.1109/IJCNN60899.2024.10650582
Yin C, Cuan H, Zhu Y, Yin Z (2021) Improved fake reviews detection model based on vertical ensemble tri-training and active learning. ACM Transactions on Intelligent Systems Technology 12(3):1–19. https://doi.org/10.1145/3450285
Zhang D, Li W, Niu B, Wu C (2023) A deep learning approach for detecting fake reviewers: Exploiting reviewing behavior and textual information. Decision Support Systems 166:113911. https://doi.org/10.1016/j.dss.2022.113911
Zhang S, Zhu A, Zhu G, Wei Z, Li K (2023) Building fake review detection model based on sentiment intensity and PU learning. IEEE Transactions on Neural Networks Learning Systems 34(10):6926–6939. https://doi.org/10.1109/TNNLS.2023.3234427
Zhang Z, Zhou M, Wan J, Lu K, Chen G, Liao H (2023) Spammer detection via ranking aggregation of group behavior. Expert Systems with Applications 216:119454. https://doi.org/10.1016/j.eswa.2022.119454
Zhao J, Shao M, Tang H, Liu J, Du L, Wang H (2023) RHGNN: Fake reviewer detection based on reinforced heterogeneous graph neural networks. Knowledge-Based Systems 280:111029. https://doi.org/10.1016/j.knosys.2023.111029
Zhou W, Duan W (2016) Do professional reviews affect online user choices through user reviews? An empirical study. Journal of Management Information Systems 33(1):202–228. https://doi.org/10.1080/07421222.2016.1172460
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99304-
dc.description.abstract隨著線上購物日益普及,消費者越來越依賴線上消費者評論來做購買決策。然而,逐漸增長的假評論可能扭曲消費者的購買決策,並對線上市場的信譽構成巨大威脅。以往大多數的假評論偵測模型都沒有考慮到評論中隱含的面向和情感特徵,以及評論和評論者之間的互動關係,而且,它們也沒有考慮到真實評論與假評論,以及已標記評論與未標記評論分佈不平衡的問題。為了解決這些問題,本研究提出了一種新穎的半監督式深度學習模型來偵測假評論和假評論者。所提出的模型包含六個模組:評論者特徵提取、評論特徵提取、特徵互動、平行共注意力、對比式學習、正-負-未標記學習 (PNU 學習)。首先,我們使用前兩個模組來提取評論和評論者的特徵。接著,我們採用特徵互動模組來學習評論和評論者之間的互動關係,並利用平行共注意力模組來學習所提取的評論和評論者特徵之間的相互關係。然後,我們利用對比式學習模組來增強評論和評論者的表徵。最後,我們運用 PNU 學習模組從未標記資料中迭代找出可靠的正樣本和負樣本,並將它們納入已標記資料集中,以解決真實評論與假評論以及已標記評論與未標記評論分佈不平衡的問題。實驗結果顯示,本研究提出的模型在精確率 (precision)、召回率 (recall) 和 F1-分數 (F1-score) 方面均優於比較模型。我們的模型可以幫助平台提供可靠的線上消費者評論,進而提高消費者對線上評論的信任,並為企業提供公平的競爭環境。zh_TW
dc.description.abstractWith increasing online shopping, consumers are progressively depending on online consumer reviews (OCRs) to make their purchasing decisions. However, the growing prevalence of fake reviews distorts consumer purchase decisions and poses great threat to the credibility of online marketplaces. Most previous fake review detection models do not consider the aspect and sentiment features implicitly hidden in reviews, and the interaction relationships between reviews and reviewers. Nor do they consider the imbalanced distributions of genuine and fake and of labeled and unlabeled reviews. Therefore, in this study, we propose a novel semi-supervised deep learning model to detect fake reviews and reviewers. The proposed model contains six modules namely, reviewer feature extraction, review feature extraction, feature interaction, parallel co-attention, contrastive learning, and positive-negative-unlabeled (PNU) learning. First, we use the first two modules to extract the features of reviews and reviewers. Next, we employ the feature interaction module to learn the interaction relationships between reviews and reviewers, and the parallel co-attention module to learn inter-relationships among the extracted review and reviewer features. Also, we utilize the contrastive learning module to enhance the representations of reviews and reviewers. Last, we exploit the PNU learning module to iteratively identify reliable positive and negative samples from the unlabeled data and include them in the labeled dataset to deal with the imbalanced distributions of genuine and fake and of labeled and unlabeled reviews. The experimental results show that the proposed model outperforms the compared models in terms of precision, recall and F1-score. Our model can help platforms provide reliable online consumer reviews (OCRs), which in turn improves consumer trust in OCRs, and offers fair competition among businesses.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-22T16:06:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-22T16:06:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Table of Contents iv
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
Chapter 2 Related Work 4
2.1 Fake Review Detection 4
2.2 Fake Reviewer Detection 5
2.3 PU Learning 6
Chapter 3 The Proposed Framework 8
3.1 Reviewer Feature Extraction Module 9
3.2 Review Feature Extraction Module 11
3.3 Feature Interaction Module 12
3.4 Parallel Co-Attention 13
3.5 Contrastive Learning 13
3.6 PNU Learning 14
Chapter 4 Experimental Results 17
4.1 Datasets 17
4.2 Evaluation Metrics 17
4.3 Experiment Settings 18
4.4 Performance Evaluation 20
4.5 Ablation Study 23
Chapter 5 Conclusions and Future Work 25
References 27
-
dc.language.isoen-
dc.subject假評論者偵測zh_TW
dc.subject假評論偵測zh_TW
dc.subject平行共注意力zh_TW
dc.subject圖注意力網路zh_TW
dc.subject對比式學習zh_TW
dc.subjectcontrastive learningen
dc.subjectgraph attention networken
dc.subjectparallel co-attentionen
dc.subjectfake reviewer detectionen
dc.subjectfake review detectionen
dc.title半監督式深度學習假評論預測模型zh_TW
dc.titleA Semi-Supervised Deep Learning Model for Fake Review Detectionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳怡瑾;戴敏育zh_TW
dc.contributor.oralexamcommitteeI-Chin Wu;Min-Yuh Dayen
dc.subject.keyword假評論偵測,假評論者偵測,對比式學習,圖注意力網路,平行共注意力,zh_TW
dc.subject.keywordfake review detection,fake reviewer detection,contrastive learning,graph attention network,parallel co-attention,en
dc.relation.page30-
dc.identifier.doi10.6342/NTU202504394-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-liftN/A-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved