Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99297
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor郭鴻基zh_TW
dc.contributor.advisorHung-Chi Kuoen
dc.contributor.author游廷碩zh_TW
dc.contributor.authorTing-Shuo Yoen
dc.date.accessioned2025-08-22T16:04:37Z-
dc.date.available2025-08-23-
dc.date.copyright2025-08-22-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citationAal E Ali, R. S., Meng, J., Khan, M. E. I., & Jiang, X. (2024). Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry. Artificial Intelligence Chemistry, 2(1), 100049. https://doi.org/10.1016/j.aichem.2024.100049
Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., & Hickey, J. (2019). Machine Learning for Precipitation Nowcasting from Radar Images. arXiv:1912.12132 [Cs, Stat]. http://arxiv.org/abs/1912.12132
Alshahrani, H. M., Al-Wesabi, F. N., Al Duhayyim, M., Nemri, N., Kadry, S., & Alqaralleh, B. A. Y. (2021). An automated deep learning based satellite imagery analysis for ecology management. Ecological Informatics, 66, 101452. https://doi.org/10.1016/j.ecoinf.2021.101452
Al-Zoghby, A. M., Al-Awadly, E. M. K., Ebada, A. I., & Awad, W. A. (2025). Overview of Multimodal Machine Learning. ACM Transactions on Asian and Low-Resource Language Information Processing, 24(1), 1–20. https://doi.org/10.1145/3701031
Amarasinghe, K., Rodolfa, K. T., Lamba, H., & Ghani, R. (2023). Explainable machine learning for public policy: Use cases, gaps, and research directions. Data & Policy, 5, e5. https://doi.org/10.1017/dap.2023.2
Amiri, M., & Soleimani, S. (2022). A Hybrid Atmospheric Satellite Image-Processing Method for Dust and Horizontal Visibility Detection through Feature Extraction and Machine Learning Techniques. Journal of the Indian Society of Remote Sensing, 50(3), 523–532. https://doi.org/10.1007/s12524-021-01460-0
Austin, P. M. (1987). Relation between Measured Radar Reflectivity and Surface Rainfall. Monthly Weather Review, 115(5), Article 5. https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2
Bellon, A., & Austin, G. L. (1984). The accuracy of short-term radar rainfall forecasts. Journal of Hydrology, 70(1), Article 1. https://doi.org/10.1016/0022-1694(84)90112-4
Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1–127. https://doi.org/10.1561/2200000006
Bengio, Y., Courville, A., & Vincent, P. (2013a). Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2013.50
Bengio, Y., Courville, A., & Vincent, P. (2013b). Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), Article 8. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2013.50
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023). Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619(7970), 533–538. https://doi.org/10.1038/s41586-023-06185-3
Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer-Verlag. https://www.springer.com/gp/book/9780387310732
Bort, W., Baskin, I. I., Gimadiev, T., Mukanov, A., Nugmanov, R., Sidorov, P., Marcou, G., Horvath, D., Klimchuk, O., Madzhidov, T., & Varnek, A. (2021). Discovery of novel chemical reactions by deep generative recurrent neural network. Scientific Reports, 11(1), 3178. https://doi.org/10.1038/s41598-021-81889-y
Brandes, E. A. (1975). Optimizing Rainfall Estimates with the Aid of Radar. Journal of Applied Meteorology, 14(7), Article 7. https://doi.org/10.1175/1520-0450(1975)014<1339:OREWTA>2.0.CO;2
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Bromberg, C. L., Gazen, C., Hickey, J. J., Burge, J., Barrington, L., & Agrawal, S. (2019). Machine Learning for Precipitation Nowcasting from Radar Images. 4.
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning for molecular and materials science. Nature, 559(7715), 547–555. https://doi.org/10.1038/s41586-018-0337-2
Cai, X., Bi, Y., & Nicholl, P. (2022). Tampered VAE for Improved Satellite Image Time Series Classification (arXiv:2203.16149). arXiv. https://doi.org/10.48550/arXiv.2203.16149
Chang, J.-C. (1996). Natural hazards in Taiwan. GeoJournal, 38(3), Article 3.
Chapman, W. E., Subramanian, A. C., Delle Monache, L., Xie, S. P., & Ralph, F. M. (2019a). Improving Atmospheric River Forecasts With Machine Learning. Geophysical Research Letters, 46(17–18), 10627–10635. https://doi.org/10.1029/2019GL083662
Chapman, W. E., Subramanian, A. C., Delle Monache, L., Xie, S. P., & Ralph, F. M. (2019b). Improving Atmospheric River Forecasts With Machine Learning. Geophysical Research Letters, 46(17–18), 10627–10635. https://doi.org/10.1029/2019GL083662
Chen, B.-F., Chen, B., Lin, H.-T., & Elsberry, R. L. (2019). Estimating Tropical Cyclone Intensity by Satellite Imagery Utilizing Convolutional Neural Networks. Weather and Forecasting, 34(2), 447–465. https://doi.org/10.1175/WAF-D-18-0136.1
Chen, S.-T., Liu, B.-W., & Yu, P.-S. (2010). QPESUMS Rainfall Adjustment Using Support Vector Machines and Radial Basis Function Neural Network. Journal of Taiwan Agricultural Engineering, 56(3), Article 3.
Chen, S.-T., Yu, P.-S., & Liu, B.-W. (2011). Comparison of neural network architectures and inputs for radar rainfall adjustment for typhoon events. Journal of Hydrology, 405, 150–160. https://doi.org/10.1016/j.jhydrol.2011.05.017
Chiang, Y.-M., Chang, F.-J., Jou, B. J.-D., & Lin, P.-F. (2007). Dynamic ANN for precipitation estimation and forecasting from radar observations. Journal of Hydrology, 334(1), Article 1. https://doi.org/10.1016/j.jhydrol.2006.10.021
Chiou, Y.-M., Chang, F.-J., Jou, B. J.-D., & Lin, P.-F. (2004). Quantitative Precipitation Estimation using multiple sensors. 8th Conf. on Atmospheric Sciences, Tao-Yuan, Taiwan.
Ciesielski, P. E., Haertel, P. T., Johnson, R. H., Wang, J., & Loehrer, S. M. (2012). Developing High-Quality Field Program Sounding Datasets. Bulletin of the American Meteorological Society, 93(3), 325–336. https://doi.org/10.1175/BAMS-D-11-00091.1
Ciesielski, P. E., Johnson, R. H., & Wang, J. (2009). Correction of Humidity Biases in Vaisala RS80-H Sondes during NAME. Journal of Atmospheric and Oceanic Technology, 26(9), 1763–1780. https://doi.org/10.1175/2009JTECHA1222.1
Collins, W. G. (2001). The Operational Complex Quality Control of Radiosonde Heights and Temperatures at the National Centers for Environmental Prediction. Part II: Examples of Error Diagnosis and Correction from Operational Use. Journal of Applied Meteorology and Climatology, 40(2), 152–168.
Connell, B. H., & Miller, D. R. (1995). An Interpretation of Radiosonde Errors in the Atmospheric Boundary Layer. Journal of Applied Meteorology (1988-2005), 34(5), 1070–1081.
Crosson, W. L., Duchon, C. E., Raghavan, R., & Goodman, S. J. (1996). Assessment of Rainfall Estimates Using a Standard Z-R Relationship and the Probability Matching Method Applied to Composite Radar Data in Central Florida. Journal of Applied Meteorology, 35(8), Article 8. https://doi.org/10.1175/1520-0450(1996)035<1203:AOREUA>2.0.CO;2
D’Adderio, L., & Bates, D. W. (2025). Transforming diagnosis through artificial intelligence. Npj Digital Medicine, 8(1), 1–4. https://doi.org/10.1038/s41746-025-01460-1
Deiana, A. M., Tran, N., Agar, J., Blott, M., Di Guglielmo, G., Duarte, J., Harris, P., Hauck, S., Liu, M., Neubauer, M. S., Ngadiuba, J., Ogrenci-Memik, S., Pierini, M., Aarrestad, T., Bähr, S., Becker, J., Berthold, A.-S., Bonventre, R. J., Müller Bravo, T. E., … Warburton, T. K. (2022). Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Data, 5. https://www.frontiersin.org/articles/10.3389/fdata.2022.787421
Dhillon, A., & Verma, G. K. (2019). Convolutional neural network: A review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9, Article 9. https://doi.org/10.1007/s13748-019-00203-0
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., & Vömel, H. (2014). Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmospheric Measurement Techniques, 7(12), 4463–4490. https://doi.org/10.5194/amt-7-4463-2014
Domingos, P. (2018). The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, Inc.
Dong, H., Ma, W., Wu, Y., Zhang, J., & Jiao, L. (2020). Self-Supervised Representation Learning for Remote Sensing Image Change Detection Based on Temporal Prediction. Remote Sensing, 12(11), Article 11. https://doi.org/10.3390/rs12111868
Dupont, J.-C., Haeffelin, M., Badosa, J., Clain, G., Raux, C., & Vignelles, D. (2020). Characterization and Corrections of Relative Humidity Measurement from Meteomodem M10 Radiosondes at Midlatitude Stations. Journal of Atmospheric and Oceanic Technology, 37(5), 857–871. https://doi.org/10.1175/JTECH-D-18-0205.1
Dzambo, A. M., Turner, D. D., & Mlawer, E. J. (2016). Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms. Atmospheric Measurement Techniques, 9(4), 1613–1626. https://doi.org/10.5194/amt-9-1613-2016
Dzupire, N. C., Ngare, P., & Odongo, L. (2018). A Poisson-Gamma Model for Zero Inflated Rainfall Data [Research article]. Journal of Probability and Statistics. https://doi.org/10.1155/2018/1012647
Fablet, R., Amar, M. M., Febvre, Q., Beauchamp, M., & Chapron, B. (2021, July 4). End-to-end physics-informed representation learning from and for satellite ocean remote sensing data. XXIV ISPRS 2021 : Intenational Society for Photogrammetry and Remote Sensing Congress. https://hal.archives-ouvertes.fr/hal-03189218
Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5), 1189–1232.
Fuller, A. (2024). Antofuller/SatViT [Python]. https://github.com/antofuller/SatViT (Original work published 2021)
Fuller, A., Millard, K., & Green, J. R. (2022a). SatViT: Pretraining Transformers for Earth Observation. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2022.3201489
Fuller, A., Millard, K., & Green, J. R. (2022b). Transfer Learning with Pretrained Remote Sensing Transformers (arXiv:2209.14969). arXiv. https://doi.org/10.48550/arXiv.2209.14969
Gadzicki, K., Khamsehashari, R., & Zetzsche, C. (2020). Early vs Late Fusion in Multimodal Convolutional Neural Networks. 2020 IEEE 23rd International Conference on Information Fusion (FUSION), 1–6. https://doi.org/10.23919/FUSION45008.2020.9190246
Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018). Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), 80–89. https://doi.org/10.1109/DSAA.2018.00018
Gourley, J. J., Maddox, R. A., Howard, K. W., & Burgess, D. W. (2002). An Exploratory Multisensor Technique for Quantitative Estimation of Stratiform Rainfall. Journal of Hydrometeorology, 3(2), Article 2. https://doi.org/10.1175/1525-7541(2002)003<0166:AEMTFQ>2.0.CO;2
Gulyanon, S., Limprasert, W., Songmuang, P., & Kongkachandra, R. (2022). Data Generation for Satellite Image Classification Using Self-Supervised Representation Learning (arXiv:2205.14418). arXiv. https://doi.org/10.48550/arXiv.2205.14418
Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review, 53(2), 217–288. https://doi.org/10.1137/090771806
Halko, N., Martinsson, P.-G., & Tropp, J. A. (2010). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. arXiv:0909.4061 [Math]. http://arxiv.org/abs/0909.4061
Han, L., Sun, J., & Zhang, W. (2020). Convolutional Neural Network for Convective Storm Nowcasting Using 3-D Doppler Weather Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 58(2), Article 2. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2019.2948070
Han, L., Sun, J., Zhang, W., Xiu, Y., Feng, H., & Lin, Y. (2017). A machine learning nowcasting method based on real-time reanalysis data. Journal of Geophysical Research: Atmospheres, 4038–4051. https://doi.org/10.1002/2016JD025783
Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y., Zhang, A., Zhang, L., Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, Z., Lu, Z., Qiu, X., Song, R., … Zhu, J. (2021). Pre-trained models: Past, present and future. AI Open, 2, 225–250. https://doi.org/10.1016/j.aiopen.2021.08.002
Hasan, A., Roozbehani, M., & Dahleh, M. (2024). WeatherFormer: A Pretrained Encoder Model for Learning Robust Weather Representations from Small Datasets (arXiv:2405.17455). arXiv. https://doi.org/10.48550/arXiv.2405.17455
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (2nd ed.). Springer-Verlag. https://doi.org/10.1007/978-0-387-84858-7
He, K., Girshick, R., & Dollar, P. (2019). Rethinking ImageNet Pre-Training. Proceedings of the IEEE/CVF International Conference on Computer Vision, 4918–4927. https://openaccess.thecvf.com/content_ICCV_2019/html/He_Rethinking_ImageNet_Pre-Training_ICCV_2019_paper.html
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778. https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
Hendrycks, D., Lee, K., & Mazeika, M. (2019). Using Pre-Training Can Improve Model Robustness and Uncertainty. Proceedings of the 36th International Conference on Machine Learning, 2712–2721. https://proceedings.mlr.press/v97/hendrycks19a.html
Hoshino, S., Sugidachi, T., Shimizu, K., Kobayashi, E., Fujiwara, M., & Iwabuchi, M. (2022). Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan. Atmospheric Measurement Techniques, 15(20), 5917–5948. https://doi.org/10.5194/amt-15-5917-2022
Huang, X., Ma, T., Jia, L., Zhang, Y., Rong, H., & Alnabhan, N. (2023). An effective multimodal representation and fusion method for multimodal intent recognition. Neurocomputing, 548, 126373. https://doi.org/10.1016/j.neucom.2023.126373
Hwang, W.-C., Lin, P.-H., & Yu, H. (2020). The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations. Atmospheric Measurement Techniques, 13(10), 5395–5406. https://doi.org/10.5194/amt-13-5395-2020
Jangra, A., Mukherjee, S., Jatowt, A., Saha, S., & Hasanuzzaman, M. (2023). A Survey on Multi-modal Summarization. ACM Comput. Surv., 55(13s), 296:1-296:36. https://doi.org/10.1145/3584700
Jean, N., Wang, S., Samar, A., Azzari, G., Lobell, D., & Ermon, S. (2019). Tile2Vec: Unsupervised Representation Learning for Spatially Distributed Data. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), Article 01. https://doi.org/10.1609/aaai.v33i01.33013967
Jiao, T., Guo, C., Feng, X., Chen, Y., & Song, J. (2024). A Comprehensive Survey on Deep Learning Multi-Modal Fusion: Methods, Technologies and Applications. Computers, Materials and Continua, 80(1), 1–35. https://doi.org/10.32604/cmc.2024.053204
Jolliffe, I. T., & Stephenson, D. B. (Eds.). (2011). Forecast Verification: A Practitioner’s Guide in Atmospheric Science (second edition). Wiley.
Jolliffe, I. T., & Stephenson, D. B. (Eds.). (2012). Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd Edition | Wiley (2nd ed.). Wiley. https://www.wiley.com/en-us/Forecast+Verification%3A+A+Practitioner%27s+Guide+in+Atmospheric+Science%2C+2nd+Edition-p-9780470660713
Jou, B. J.-D., Jung, U. C.-J., & Hsiu, R. R.-G. (2015). Quantitative Precipitation Estimation Using S-Band Polarimetric Radars in Taiwan Meiyu Season (S波段雙偏極化雷達在梅雨季豪大雨天氣系統定量降雨估計之應用). Atmospheric Sciences (大氣科學), 43(2), Article 2.
Kalchbrenner, N., & Sønderby, C. (2020, March 25). A Neural Weather Model for Eight-Hour Precipitation Forecasting [Blog]. Google AI Blog. http://ai.googleblog.com/2020/03/a-neural-weather-model-for-eight-hour.html
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440. https://doi.org/10.1038/s42254-021-00314-5
Khan, M., Srivatsa, P., Rane, A., Chenniappa, S., Anand, R., Ozair, S., & Maes, P. (2021). Pretrained Encoders are All You Need (arXiv:2106.05139). arXiv. https://doi.org/10.48550/arXiv.2106.05139
Khastavaneh, H., & Ebrahimpour-Komleh, H. (2020). Representation Learning Techniques: An Overview. In M. Bohlouli, B. Sadeghi Bigham, Z. Narimani, M. Vasighi, & E. Ansari (Eds.), Data Science: From Research to Application (pp. 89–104). Springer International Publishing. https://doi.org/10.1007/978-3-030-37309-2_8
Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv:1312.6114 [Cs, Stat]. http://arxiv.org/abs/1312.6114
Kizu, N., Sugidachi, T., Kobayashi, E., Hoshino, S., Shimizu, K., Maeda, R., & Fujiwara, M. (2018, February 21). Technical characteristics and GRUAN data processing for the Meisei RS-11G and iMS-100 radiosondes. GRUANLead Centre. https://www.gruan.org/documentation/gruan/td/gruan-td-5
Knapp, K. R., Ansari, S., Bain, C. L., Bourassa, M. A., Dickinson, M. J., Funk, C., Helms, C. N., Hennon, C. C., Holmes, C. D., Huffman, G. J., Kossin, J. P., Lee, H.-T., Loew, A., & Magnusdottir, G. (2011). Globally Gridded Satellite Observations for Climate Studies. Bulletin of the American Meteorological Society, 92(7), 893–907. https://doi.org/10.1175/2011BAMS3039.1
Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., & Houlsby, N. (2020). Big Transfer (BiT): General Visual Representation Learning. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 (pp. 491–507). Springer International Publishing. https://doi.org/10.1007/978-3-030-58558-7_29
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012a). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25. https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012b). ImageNet Classification with Deep Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (pp. 1097–1105). Curran Associates, Inc. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Krones, F., Marikkar, U., Parsons, G., Szmul, A., & Mahdi, A. (2024). Review of multimodal machine learning approaches in healthcare (arXiv:2402.02460). arXiv. https://doi.org/10.48550/arXiv.2402.02460
Krones, F., Marikkar, U., Parsons, G., Szmul, A., & Mahdi, A. (2025). Review of multimodal machine learning approaches in healthcare. Information Fusion, 114, 102690. https://doi.org/10.1016/j.inffus.2024.102690
Kuo, H.-C., Yo, T.-S., Yu, H., Su, S.-H., Liu, C.-H., & Lin, P.-H. (2025). Data Quality Control and Calibration for Mini-Radiosonde System “Storm Tracker” in Taiwan. Journal of the Meteorological Society of Japan. 103. https://doi.org/10.2151/jmsj.2025-029
Kuo, K.-T., & Wu, C.-M. (2019). The Precipitation Hotspots of Afternoon Thunderstorms over the Taipei Basin: Idealized Numerical Simulations. Journal of the Meteorological Society of Japan. Ser. II, 97(2), Article 2. https://doi.org/10.2151/jmsj.2019-031
Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., & Battaglia, P. (2023). Learning skillful medium-range global weather forecasting. Science, 382(6677), 1416–1421. https://doi.org/10.1126/science.adi2336
Lang, S., Alexe, M., Chantry, M., Dramsch, J., Pinault, F., Raoult, B., Clare, M. C. A., Lessig, C., Maier-Gerber, M., Magnusson, L., Bouallègue, Z. B., Nemesio, A. P., Dueben, P. D., Brown, A., Pappenberger, F., & Rabier, F. (2024). AIFS -- ECMWF’s data-driven forecasting system (arXiv:2406.01465). arXiv. https://doi.org/10.48550/arXiv.2406.01465
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), Article 7553. https://doi.org/10.1038/nature14539
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten Digit Recognition with a Back-Propagation Network. In D. S. Touretzky (Ed.), Advances in Neural Information Processing Systems 2 (pp. 396–404). Morgan-Kaufmann. http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86, 2278–2324. https://doi.org/10.1109/5.726791
Lee, S.-W., Kim, S., Lee, Y.-S., Choi, B. I., Kang, W., Oh, Y. K., Park, S., Yoo, J.-K., Lee, J., Lee, S., Kwon, S., & Kim, Y.-G. (2022). Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator. Atmospheric Measurement Techniques, 15(5), 1107–1121. https://doi.org/10.5194/amt-15-1107-2022
Le-Khac, P. H., Healy, G., & Smeaton, A. F. (2020). Contrastive Representation Learning: A Framework and Review. IEEE Access, 8, 193907–193934. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3031549
Lesht, B., & Richardson, S. (2002, January 1). The Vaisala RS80H Radiosonde Dry-Bias Correction Redux. PROCEEDINGS OF THE NINTH ATMOSPHERIC RADIATION MEASUREMENT (ARM) SCIENCE TEAM MEETING 2002. ARM-CONF-2002, St. Petersburg, Florida.
Li, C., Yang, J., Zhang, P., Gao, M., Xiao, B., Dai, X., Yuan, L., & Gao, J. (2022). Efficient Self-supervised Vision Transformers for Representation Learning (arXiv:2106.09785). arXiv. https://doi.org/10.48550/arXiv.2106.09785
Liang, P. P., Zadeh, A., & Morency, L.-P. (2024). Foundations & Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. ACM Comput. Surv., 56(10), 264:1-264:42. https://doi.org/10.1145/3656580
Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2021). Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy, 23(1), Article 1. https://doi.org/10.3390/e23010018
Liu, C.-C., Hsu, K., Peng, M. S., Chen, D.-S., Chang, P.-L., Hsiao, L.-F., Fong, C.-T., Hong, J.-S., Cheng, C.-P., Lu, K.-C., Chen, C.-R., & Kuo, H.-C. (2024). Evaluation of five global AI models for predicting weather in Eastern Asia and Western Pacific. Npj Climate and Atmospheric Science, 7(1), 1–12. https://doi.org/10.1038/s41612-024-00769-0
Lu, C., Lu, C., Lange, R. T., Foerster, J., Clune, J., & Ha, D. (2024). The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery (arXiv:2408.06292). arXiv. https://doi.org/10.48550/arXiv.2408.06292
Lu, X., Zheng, X., & Yuan, Y. (2017). Remote Sensing Scene Classification by Unsupervised Representation Learning. IEEE Transactions on Geoscience and Remote Sensing, 55(9), 5148–5157. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2017.2702596
Lucas, C., & Zipser, E. J. (2000). Environmental Variability during TOGA COARE. Journal of the Atmospheric Sciences, 57(15), 2333–2350. https://doi.org/10.1175/1520-0469(2000)057<2333:EVDTC>2.0.CO;2
Luers, J. (1989). The Influence of Environmental Factors on the Temperature of the Radiosonde Thermistor. Doctoral Dissertations. https://trace.tennessee.edu/utk_graddiss/1913
Luers, J. K. (1997). Temperature Error of the Vaisala RS90 Radiosonde. Journal of Atmospheric and Oceanic Technology, 14(6), 1520–1532. https://doi.org/10.1175/1520-0426(1997)014<1520:TEOTVR>2.0.CO;2
Luers, J. K., & Eskridge, R. E. (1998). Use of Radiosonde Temperature Data in Climate Studies. Journal of Climate, 11(5), 1002–1019. https://doi.org/10.1175/1520-0442(1998)011<1002:UORTDI>2.0.CO;2
Marshall, J. S., & Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of Meteorology, 5(4), Article 4. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
Mattioli, V., Westwater, E. R., Cimini, D., Liljegren, J. C., Lesht, B. M., Gutman, S. I., & Schmidlin, F. J. (2007). Analysis of Radiosonde and Ground-Based Remotely Sensed PWV Data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. Journal of Atmospheric and Oceanic Technology, 24(3), 415–431. https://doi.org/10.1175/JTECH1982.1
McGovern, A., Lagerquist, R., Gagne, D. J., Jergensen, G. E., Elmore, K. L., Homeyer, C. R., & Smith, T. (2019). Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning. Bulletin of the American Meteorological Society, 100(11), Article 11. https://doi.org/10.1175/BAMS-D-18-0195.1
McMillin, L., Uddstrom, M., & Coletti, A. (1992). A Procedure for Correcting Radiosonde Reports for Radiation Errors. Journal of Atmospheric and Oceanic Technology, 9(6), 801–811. https://doi.org/10.1175/1520-0426(1992)009<0801:APFCRR>2.0.CO;2
Miao, J.-E., & Yang, M.-J. (2020). A Modeling Study of the Severe Afternoon Thunderstorm Event at Taipei on 14 June 2015: The Roles of Sea Breeze, Microphysics, and Terrain. Journal of the Meteorological Society of Japan. Ser. II, 98(1), Article 1. https://doi.org/10.2151/jmsj.2020-008
Miller, E. R., Wang, J., & Cole, H. L. (1999, March). Correction for dry bias in Vaisala radiosonde RH data. PROCEEDINGS OF THE NINTH ATMOSPHERIC RADIATION MEASUREMENT (ARM) SCIENCE TEAM MEETING 1999. ARM-CONF-1999, San Antonio, Texas.
Miloshevich, L. M., Paukkunen, A., Vömel, H., & Oltmans, S. J. (2004). Development and Validation of a Time-Lag Correction for Vaisala Radiosonde Humidity Measurements. Journal of Atmospheric and Oceanic Technology, 21(9), 1305–1327. https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2
Miloshevich, L. M., Vömel, H., Paukkunen, A., Heymsfield, A. J., & Oltmans, S. J. (2001). Characterization and Correction of Relative Humidity Measurements from Vaisala RS80-A Radiosondes at Cold Temperatures. Journal of Atmospheric and Oceanic Technology, 18(2), 135–156. https://doi.org/10.1175/1520-0426(2001)018<0135:CACORH>2.0.CO;2
Mjolsness, E., & DeCoste, D. (2001). Machine Learning for Science: State of the Art and Future Prospects. Science, 293(5537), 2051–2055. https://doi.org/10.1126/science.293.5537.2051
Mobarak, M. H., Mimona, M. A., Islam, Md. A., Hossain, N., Zohura, F. T., Imtiaz, I., & Rimon, M. I. H. (2023). Scope of machine learning in materials research—A review. Applied Surface Science Advances, 18, 100523. https://doi.org/10.1016/j.apsadv.2023.100523
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071–22080. https://doi.org/10.1073/pnas.1900654116
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370–384. https://doi.org/10.2307/2344614
Neumann, M., Pinto, A. S., Zhai, X., & Houlsby, N. (2019). In-domain representation learning for remote sensing (arXiv:1911.06721). arXiv. https://doi.org/10.48550/arXiv.1911.06721
Nikolaou, N., Salazar, D., RaviPrakash, H., Gonçalves, M., Mulla, R., Burlutskiy, N., Markuzon, N., & Jacob, E. (2025). A machine learning approach for multimodal data fusion for survival prediction in cancer patients. Npj Precision Oncology, 9(1), 1–14. https://doi.org/10.1038/s41698-025-00917-6
Novembre, J., & Stephens, M. (2008). Interpreting principal component analyses of spatial population genetic variation. Nature Genetics, 40(5), 646–649. https://doi.org/10.1038/ng.139
Nuret, M., Lafore, J.-P., Guichard, F., Redelsperger, J.-L., Bock, O., Agusti-Panareda, A., & N’Gamini, J.-B. (2008). Correction of Humidity Bias for Vaisala RS80-A Sondes during the AMMA 2006 Observing Period. Journal of Atmospheric and Oceanic Technology, 25(11), 2152–2158. https://doi.org/10.1175/2008JTECHA1103.1
Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., & Anandkumar, A. (2022). FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators (arXiv:2202.11214). arXiv. https://doi.org/10.48550/arXiv.2202.11214
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/14786440109462720
Podesta, M. de, Bell, S., & Underwood, R. (2018). Air temperature sensors: Dependence of radiative errors on sensor diameter in precision metrology and meteorology. Metrologia, 55(2), 229. https://doi.org/10.1088/1681-7575/aaaa52
Pradhan, R., Aygun, R. S., Maskey, M., Ramachandran, R., & Cecil, D. J. (2018). Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network. IEEE Transactions on Image Processing, 27(2), 692–702. https://doi.org/10.1109/TIP.2017.2766358
Proll, M. (2019). Variational~Auto-Encoders for Satellite Images of Fields [Aalto University]. https://aaltodoc.aalto.fi/bitstream/handle/123456789/38943/master_Proll_Maximilian_2019.pdf
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), Article 7743. https://doi.org/10.1038/s41586-019-0912-1
Roebber, P. J. (2009). Visualizing Multiple Measures of Forecast Quality. Weather and Forecasting, 24(2), 601–608. https://doi.org/10.1175/2008WAF2222159.1
Rohden, C. von, Sommer, M., Naebert, T., Motuz, V., & Dirksen, R. J. (2022). Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41. Atmospheric Measurement Techniques, 15(2), 383–405. https://doi.org/10.5194/amt-15-383-2022
Sanchez, E., Serrurier, M., & Ortner, M. (2019). Learning Disentangled Representations of Satellite Image Time Series (arXiv:1903.08863). arXiv. https://doi.org/10.48550/arXiv.1903.08863
Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
Schneider, D. P., Deser, C., Fasullo, J., & Trenberth, K. E. (2013). Climate Data Guide Spurs Discovery and Understanding. Eos, Transactions American Geophysical Union, 94(13), 121–122. https://doi.org/10.1002/2013EO130001
Shaik, T., Tao, X., Li, L., Xie, H., & Velásquez, J. D. (2024). A survey of multimodal information fusion for smart healthcare: Mapping the journey from data to wisdom. Information Fusion, 102, 102040. https://doi.org/10.1016/j.inffus.2023.102040
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., & Woo, W. (2015). Convolutional LSTM Network: A machine learning approach for precipitation nowcasting. Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, 802–810.
Simonyan, K., & Zisserman, A. (2015, April 10). Very Deep Convolutional Networks for Large-Scale Image Recognition. Conference Track Proceedings of 3rd International Conference on Learning Representations. International Conference on Learning Representations, arXiv:1409.1556 [cs]. http://arxiv.org/abs/1409.1556
Sinha, S., Giffard-Roisin, S., Karbou, F., Deschâtres, M., Karas, A., Eckert, N., & Monteleoni, C. (2019, December). Detecting Avalanche Deposits using Variational Autoencoder on Sentinel-1 Satellite Imagery. NeurIPS 2019 Workshop : Tackling Climate Change with Machine Learning NeurIPS Workshop. https://hal.archives-ouvertes.fr/hal-02318407
Sleeman, W. C., Kapoor, R., & Ghosh, P. (2022). Multimodal Classification: Current Landscape, Taxonomy and Future Directions. ACM Comput. Surv., 55(7), 150:1-150:31. https://doi.org/10.1145/3543848
Sommer, M., von Rohden, C., Simeonov, T., Oelsner, P., Naebert, T., Romanens, G., Jauhiainen, H., Survo, P., & Dirksen, R. (2023, June 28). GRUAN characterisation and data processing of the Vaisala RS41 radiosonde. GRUAN Lead Centre. https://www.gruan.org/documentation/gruan/td/gruan-td-8
Sorek-Hamer, M., Von Pohle, M., Sahasrabhojanee, A., Akbari Asanjan, A., Deardorff, E., Suel, E., Lingenfelter, V., Das, K., Oza, N. C., Ezzati, M., & Brauer, M. (2022). A Deep Learning Approach for Meter-Scale Air Quality Estimation in Urban Environments Using Very High-Spatial-Resolution Satellite Imagery. Atmosphere, 13(5), Article 5. https://doi.org/10.3390/atmos13050696
Steiner, M., Smith, J. A., Burges, S. J., Alonso, C. V., & Darden, R. W. (1999). Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resources Research, 35(8), Article 8. https://doi.org/10.1029/1999WR900142
Su, S.-H., Chu, J.-L., Yo, T.-S., & Lin, L.-Y. (2018). Identification of synoptic weather types over Taiwan area with multiple classifiers. Atmospheric Science Letters, 19(12), e861. https://doi.org/10.1002/asl.861
Su, S.-H., Kuo, H.-C., Hsu, L.-H., & Yang, Y.-T. (2012). Temporal and Spatial Characteristics of Typhoon Extreme Rainfall in Taiwan. Journal of the Meteorological Society of Japan. Ser. II, 90, 721–736. https://doi.org/10.2151/jmsj.2012-510
Sumbul, G., Charfuelan, M., Demir, B., & Markl, V. (2019). BigEarthNet: A Large-Scale Benchmark Archive For Remote Sensing Image Understanding. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 5901–5904. https://doi.org/10.1109/IGARSS.2019.8900532
Sun, B., Reale, A., Schroeder, S., Seidel, D. J., & Ballish, B. (2013). Toward improved corrections for radiation-induced biases in radiosonde temperature observations. Journal of Geophysical Research: Atmospheres, 118(10), 4231–4243. https://doi.org/10.1002/jgrd.50369
Taherdoost, H., & Ghofrani, A. (2024). AI’s role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. Intelligent Pharmacy, 2(5), 643–650. https://doi.org/10.1016/j.ipha.2024.08.005
Tarasiou, M., Chavez, E., & Zafeiriou, S. (2023). ViTs for SITS: Vision Transformers for Satellite Image Time Series. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10418–10428. https://doi.org/10.1109/CVPR52729.2023.01004
Teng, W.-H., Hsu, M.-H., Wu, C.-H., & Chen, A. S. (2006). Impact of Flood Disasters on Taiwan in the Last Quarter Century. Natural Hazards, 37(1), Article 1. https://doi.org/10.1007/s11069-005-4667-7
Thiyagalingam, J., Shankar, M., Fox, G., & Hey, T. (2022). Scientific machine learning benchmarks. Nature Reviews Physics, 4(6), Article 6. https://doi.org/10.1038/s42254-022-00441-7
Tom, M., Jiang, Y., Baltsavias, E., & Schindler, K. (2021). Learning a Sensor-invariant Embedding of Satellite Data: A Case Study for Lake Ice Monitoring (arXiv:2107.09092). arXiv. https://doi.org/10.48550/arXiv.2107.09092
Trenberth, K. E. (1997). The Definition of El Niño. Bulletin of the American Meteorological Society, 78(12), 2771–2778. https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
Valero, S., Agulló, F., & Inglada, J. (2021). Unsupervised Learning of Low Dimensional Satellite Image Representations via Variational Autoencoders. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2987–2990. https://doi.org/10.1109/IGARSS47720.2021.9554661
Vömel, H., Selkirk, H., Miloshevich, L., Valverde-Canossa, J., Valdés, J., Kyrö, E., Kivi, R., Stolz, W., Peng, G., & Diaz, J. A. (2007). Radiation Dry Bias of the Vaisala RS92 Humidity Sensor. Journal of Atmospheric and Oceanic Technology, 24(6), 953–963. https://doi.org/10.1175/JTECH2019.1
Wang, J., Zhang, L., Dai, A., Immler, F., Sommer, M., & Vömel, H. (2013). Radiation Dry Bias Correction of Vaisala RS92 Humidity Data and Its Impacts on Historical Radiosonde Data. Journal of Atmospheric and Oceanic Technology, 30(2), 197–214. https://doi.org/10.1175/JTECH-D-12-00113.1
Wang, P., Smeaton, A., Lao, S., O’connor, E., Ling, Y., & O’connor, N. (2009). Short-Term Rainfall Nowcasting: Using Rainfall Radar Imaging. Eurographics Ireland.
Wu, W., Kitzmiller, D., & Wu, S. (2012). Evaluation of Radar Precipitation Estimates from the National Mosaic and Multisensor Quantitative Precipitation Estimation System and the WSR-88D Precipitation Processing System over the Conterminous United States. Journal of Hydrometeorology, 13(3), Article 3. https://doi.org/10.1175/JHM-D-11-064.1
Yo, T.-S., Su, S.-H., Chu, J.-L., Chang, C.-W., & Kuo, H.-C. (2020). A Volume to Point Framework for QPE with Radar Data. Open Data Platform. https://osf.io/pkxu6/
Yo, T.-S., Su, S.-H., Chu, J.-L., Chang, C.-W., & Kuo, H.-C. (2021). A Deep Learning Approach to Radar-Based QPE. Earth and Space Science, 8(3), e2020EA001340. https://doi.org/10.1029/2020EA001340
Yo, T.-S., Su, S.-H., Wu, C.-M., Chen, W.-T., Chu, J.-L., Chang, C.-W., & Kuo, H.-C. (2023). Learning Representations of Satellite Images with Evaluations on Synoptic Weather Events. https://www.authorea.com/users/539149/articles/642937-learning-representations-of-satellite-images-with-evaluations-on-synoptic-weather-events
Yoneyama, K., Fujita, M., Sato, N., Fujiwara, M., Inai, Y., & Hasebe, F. (2008). Correction for Radiation Dry Bias Found in RS92 Radiosonde Data during the MISMO Field Experiment. Sola, 4, 13–16. https://doi.org/10.2151/sola.2008-004
Yu, H., Kuo, H.-C., Lin, P.-H., Huang, W.-C., Liu, C.-H., Su, S. H., & Yang, J.-H. (2020, October 13). Quality-Controlled High-Resolution Upper-Air Sounding Dataset for TASSE: Development and Corrections of the “Storm Tracker” Observations. 2020 Conference on Weather Analysis and Forecasting. 2020 Conference on Weather Analysis and Forecasting, Taipei. https://conf.cwb.gov.tw/media/cwb_past_conferences/109/fulltext_main.htm
Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Van Cooten, S., Kelleher, K., Kitzmiller, D., Ding, F., Seo, D.-J., Wells, E., & Dempsey, C. (2011). National Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans. Bulletin of the American Meteorological Society, 92(10), Article 10. https://doi.org/10.1175/2011BAMS-D-11-00047.1
Zheng, G., Li, X., Zhang, R.-H., & Liu, B. (2020). Purely satellite data–driven deep learning forecast of complicated tropical instability waves. Science Advances, 6(29), eaba1482. https://doi.org/10.1126/sciadv.aba1482
Zheng, X., Ye, J., Chen, Y., Wistar, S., Li, J., Piedra Fernández, J. A., Steinberg, M. A., & Wang, J. Z. (2019). Detecting Comma-Shaped Clouds for Severe Weather Forecasting Using Shape and Motion. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3788–3801. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2018.2887206
Zhong, G., Wang, L.-N., Ling, X., & Dong, J. (2016). An overview on data representation learning: From traditional feature learning to recent deep learning. The Journal of Finance and Data Science, 2(4), 265–278. https://doi.org/10.1016/j.jfds.2017.05.001
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99297-
dc.description.abstract我們提出一個創新的多模態機器學習架構,將機器學習轉型為科學發現工具,並以大台北地區的劇烈降水預報作為測試。我們的研究整合了多種氣象資料,包括再分析資料、雷達資料、衛星影像和探空資料,透過四個已發表和發表中的研究,探討各種資料型態各自在降水預報中的應用與限制。
在個別資料模態研究方面,本論文指出機器學習結合再分析資料能有效預測鋒面、颱風和豪雨事件,其中豪雨預報命中率達78-83%。在雷達資料方面,基於深度學習的體到點(Volume-to-Point, VTP)架構在強降雨偵測上表現卓越,平均命中率達0.8,優於傳統方法。而針對衛星影像的表徵學習顯示,卷積自動編碼器(convolutional autoencoder, CAE)在多種天氣事件分類中表現最佳,但在豪雨預測方面受限於單一時間點資料的不足。探空資料研究則證明,低成本的storm tracker探空儀器經過校正後,能在低對流層提供可靠的高時間-空間解析度觀測,有助於理解與劇烈降水相關的深對流發展。
論文進一步測試了整合三種資料(再分析、雷達、衛星)的多模態預報架構,初步結果顯示,次日劇烈降水預報的命中率為0.71,且再分析資料在預報中顯示出較高的重要性 。總體而言,本研究強調了多模態機器學習在提升劇烈降水預報準確性方面的巨大潛力,並開闢了利用模型可解釋性進行科學探索的新途徑 。
zh_TW
dc.description.abstractThis dissertation presents an innovative multimodal machine learning framework designed to enhance severe rainfall forecasting in the greater Taipei area, thereby transforming machine learning into a tool for scientific discovery. The research integrates diverse meteorological datasets, including reanalysis data, radar data, satellite imagery, and sounding data, exploring their applications and limitations in precipitation forecasting.
In the individual data modality studies, the thesis demonstrates that machine learning combined with reanalysis data can effectively predict frontal, typhoon, and heavy rainfall events, achieving a hit rate of 78-83% for heavy rainfall forecasts. For radar data, the deep learning-based "volume-to-point" (VTP) architecture shows significant superiority in detecting heavy rainfall, with an average hit rate of 0.8, outperforming traditional methods. Representation learning from satellite imagery reveals that the Convolutional Autoencoder (CAE) performs best in classifying various weather events; however, its effectiveness in predicting heavy rainfall is limited by the relevancy between the daily infrared images and small-scale convective cells. The sounding data study confirms that, after calibration, the low-cost Storm Tracker radiosonde can provide reliable, high spatio-temporal resolution observations in the lower troposphere, aiding in the understanding of deep convection development associated with severe rainfall.
The dissertation further tests a multimodal forecasting framework integrating three data types (reanalysis, radar, satellite). Preliminary results show a next-day severe rainfall prediction hit rate of 0.71, with reanalysis data demonstrating higher importance in the forecast. Overall, this research highlights the significant potential of multimodal machine learning in enhancing the accuracy of severe rainfall forecasting and opens new avenues for scientific exploration through model interpretability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-22T16:04:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-22T16:04:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
英文摘要 Abstract iii
目次 iv
圖次 x
表次 xv
第一章 前言:科學與機器學習 1
1.1 人工智慧浪潮下的科學研究 2
1.1.1 資料分析與型態識別(Pattern Recognition)的強大工具 2
1.1.2 建立預測模型的方法 2
1.1.3 探勘資料內部結構與關聯性的架構 4
1.1.4 作為傳統科學方法的補充 5
1.2 可解釋的人工智慧 (Explainable AI) 6
1.2.1 可詮釋性(interpretability):揭示模型的運作機制(how) 7
1.2.2 可解釋性(explainability):證明模型決策的合理性(why) 8
1.3 多模態機器學習 (Multimodal Machine Learning) 9
1.3.1 多模態機器學習簡介 9
1.3.2 多模態機器學習中的資料融合(Data Fusion) 11
1.4 以多模態架構進行劇烈降水預報 12
1.4.1 結合可解釋人工智慧作為科學發現的工具 13
1.5 本論文的架構 15
第二章 以再分析資料預測綜觀天氣事件 17
2.1 研究導論 18
2.2 資料來源 19
2.2.1 鋒面事件 19
2.2.2 颱風事件 19
2.2.3 豪雨事件 19
2.2.4 再分析資料 20
2.3 分析方法 20
2.3.1 輸入與輸出資料 20
2.3.2 特性層的選擇 21
2.3.3 資料維度降減 21
2.3.4 選擇天氣事件辨識的演算法 22
2.4 實驗結果 23
2.4.1 二元預測結果的評估指標 23
2.4.2 交叉驗證與實驗結果 25
2.5 討論與結論 29
2.5.1 鋒面系統的識別 29
2.5.2 熱帶氣旋的檢測 30
2.5.3 豪雨事件的辨識 30
2.5.4 總結與未來展望 30
第三章 基於深度學習的雷達定量降水估計 32
3.1 研究背景 32
3.1.1 雷達與降水估計 33
3.1.2 Z-R 關係式與調整方法 33
3.1.3 體到點架構(volume-to-point, VTP) 34
3.2 資料與研究方法 35
3.2.1 資料集介紹 35
3.2.2 體對點的預測架構 38
3.2.3 評估方法 41
3.3 研究結果 42
3.3.1 結果分析:整體結果與地理位置 42
3.3.2 強降雨事件偵測能力 44
3.3.3 特殊個案:梅姬颱風期間的 VTP 表現 46
3.4 結論 48
3.4.1 敏感度測試 48
3.4.2 擴展 VTP 架構 48
3.4.3 VTP 架構在降水預報中的應用與潛力 49
3.4.4 總結 50
第四章 衛星影像的表徵學習 52
4.1 研究導論 52
4.2 方法 55
4.2.1 主成分分析 55
4.2.2 自動編碼器 56
4.2.3 預訓練模型 57
4.3 資料與實驗設計 57
4.3.1 GridSat-B1 CDR 57
4.3.2 天氣事件 58
4.3.3 實驗設計 60
4.4 結果 61
4.4.1 實驗 1:基準線 61
4.4.2 實驗 2:衛星影像的解析度 63
4.4.3 實驗 3:潛在空間的大小 66
4.5 討論與結論 68
4.5.1 潛在空間的重構 69
4.5.2 表徵的可解釋性 69
4.5.3 計算成本 72
4.5.4 總結 73
第五章 多模態預報架構的概念驗證 75
5.1 資料型態與劇烈降水 75
5.1.1 再分析資料 75
5.1.2 雷達資料 76
5.1.3 衛星影像 76
5.2 多模態預報架構的概念驗證 77
5.2.1 資料體(原始輸入) 78
5.2.2 預報(輸出) 78
5.2.3 資料預處理 78
5.2.4 多模態融合(multimodal fusion)與可解釋的預測模型 79
5.2.5 評估多模態預報架構 80
5.3 未來展望 81
5.4 總結 84
參考文獻 86
附錄一:探空資料與機器學習 105
A1.1 研究引言 106
A1.2 資料與前處理 111
A1.2.1 資料收集 111
A1.2.2 同步施放資料的前處理 112
A1.3 資料校正方法 117
A1.3.1 基於CDF的機率匹配 118
A1.3.2 通用線性模型 121
A1.4 結果 123
A1.5 討論 128
A1.5.1 ST的隨機誤差 128
A1.5.2 ST的總體性能 131
A1.5.3 ST在午後雷暴研究中的應用 136
A1.5.4 ST在海洋邊界層觀測研究中的應用 136
A1.6 結論 138
附錄二:給科學家的機器學習快速上手指南 140
A2.1. 科學與機器學習 140
A2.1.1 對科學家而言,機器學習是什麼? 142
A2.1.2 科學家為什麼要關心機器學習? 146
A2.1.3 這篇指南的目標與範圍 147
A2.2. 機器學習簡史:從概念到實踐 148
A2.2.1 「人工智慧」的誕生與早期的構思(1950年以前) 148
A2.2.2 早期 AI 的興起與沒落(1950s - 1970s) 150
A2.2.3 「專家系統」與第二波 AI 寒冬(1980s - 1990s) 154
A2.2.4 機器學習的再興:統計學習與資料探勘(1990s - 2010) 158
A2.3. 新典範:深度學習革命 162
A2.3.1 類神經網路的回歸:反向傳播演算法的突破 162
A2.3.2 何謂深度神經網路? 163
A2.3.3 深度學習的重要架構 166
A2.4. 當前面臨的挑戰與未來的發展方向 174
A2.4.1 了解「黑盒子」:可解釋性的人工智慧(explainable AI) 174
A2.4.2 資料的品質 176
A2.4.3 倫理考量與對社會的影響 178
A2.5. 延伸閱讀 182
A2.5.1 開放式教科書 182
A2.5.2 線上課程 182
A2.5.3 其他資源 183
-
dc.language.isozh_TW-
dc.subject多模態機器學習zh_TW
dc.subject劇烈降水zh_TW
dc.subject探空儀器zh_TW
dc.subject雷達zh_TW
dc.subject衛星影像zh_TW
dc.subject數值模式zh_TW
dc.subjectradiosondeen
dc.subjectmultimodal machine learningen
dc.subjectnumerical modelen
dc.subjectsatellite imagingen
dc.subjectradaren
dc.subjectheavy rainfallen
dc.title多模態機器學習架構於大台北地區劇烈降水預報之應用zh_TW
dc.titleA Multimodal Approach to Severe Rainfall Forecasting in the Taipei Areaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee楊明仁;周仲島;劉清煌;吳健銘;陳柏孚zh_TW
dc.contributor.oralexamcommitteeMing-Jen Yang;Ben Jong-Dao Jou;Ching-Hwang Liu;Chien-Ming Wu;Buo-Fu Chenen
dc.subject.keyword多模態機器學習,劇烈降水,探空儀器,雷達,衛星影像,數值模式,zh_TW
dc.subject.keywordmultimodal machine learning,heavy rainfall,radiosonde,radar,satellite imaging,numerical model,en
dc.relation.page183-
dc.identifier.doi10.6342/NTU202504003-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2030-08-05-
Appears in Collections:大氣科學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
4.86 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved