請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99294完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳日騰 | zh_TW |
| dc.contributor.advisor | Rih-Teng Wu | en |
| dc.contributor.author | 黃揚升 | zh_TW |
| dc.contributor.author | Yang-Sheng Huang | en |
| dc.date.accessioned | 2025-08-21T17:09:40Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | T. Ma, X. Su, H. Dong, Y. Wang, and C. Zhang. Review of bandgap characteristics and acousto-optical coupling in phoxonic crystals. Chinese Journal of Theoretical and Applied Mechanics, 49(4):743–757, 2017.
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng. Locally resonant sonic materials. science, 289(5485):1734–1736, 2000. M. Miniaci, A. Krushynska, F. Bosia, and N. M. Pugno. Large scale mechanical metamaterials as seismic shields. New Journal of Physics, 18(8):083041, 2016. S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau. Experiments on seismic meta materials: molding surface waves. Physical review letters, 112(13):133901, 2014. A. Colombi, P. Roux, S. Guenneau, P. Gueguen, and R. V. Craster. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Scientific reports, 6(1):19238, 2016. S. Krödel, N. Thomé, and C. Daraio. Wide band-gap seismic metastructures. Extreme Mechanics Letters, 4:111–117, 2015. X. Zheng, Y. Jin, R. Cai, T. Rabczuk, H. Zhu, and X. Zhuang. Elastic surface wave attenuation in layered soil by metastructures. Low-Carbon Materials and Green Construction, 2(1):5, 2024. O. Casablanca, G. Ventura, F. Garescì, B. Azzerboni, B. Chiaia, M. Chiappini, and G. Finocchio. Seismic isolation of buildings using composite foundations based on metamaterials. Journal of Applied Physics, 123(17):174903, 2018. N. C. Nanda. Seismic modelling and inversion. In Seismic data interpretation and evaluation for hydrocarbon exploration and production: a practitioner's guide, pages 223–241. Springer, 2021. T. Furumura. Large-scale parallel simulation of seismic wave propagation and strong ground motions for the past and future earthquakes in japan. Journal of the Earth Simulator, 3:29–38, 2005. R. Taborda and J. Bielak. Ground-motion simulation and validation of the 2008 chino hills, california, earthquake using different velocity models. Bulletin of the Seismological Society of America, 104(4):1876–1898, 2014. S. Stein and M. Wysession. An introduction to seismology, earthquakes, and earth structure. John Wiley & Sons, 2009. D. F. Freitas, R. Siqueira, M. Cetale, M. González, and D. M. Soares. 3d velocity model building of búzios oil field—improvements and updates. Proceedings of the IX Simpósio Brasileiro de Geofísica, Curitiba, PR, Brazil, pages 4–6, 2022. A. M. Dziewonski and D. L. Anderson. Preliminary reference earth model. Physics of the earth and planetary interiors, 25(4):297–356, 1981. B. L. N. Kennett and E. R. Engdahl. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2):429–465, 1991. B. L. N. Kennett, E. R. Engdahl, and R. Buland. Constraints on seismic velocities in the earth from traveltimes. Geophysical Journal International, 122(1):108–124, 1995. Earthquake Research Committee, The Headquarters for Earthquake Research Pro motion. Procedures to build a subsurface velocity structure model. Technical report, The Headquarters for Earthquake Research Promotion, 2022. English translation of the original Japanese document published in April, 2017. C.-T. Chen, C.-H. Kuo, C.-M. Lin, J.-Y. Huang, and K.-L. Wen. Investigation of shallow s-wave velocity structure and site response parameters in taiwan by using high-density microtremor measurements. Engineering Geology, 297:106498, 2022. H. Li and X. Chang. A review of the microseismic focal mechanism research. Science China Earth Sciences, 64:351–363, 2021. V. Cronin. A primer on focal mechanism solutions for geologists. Science Education Resource Center, Carleton College, page 14, 2010. P. Anderson. Microseismic moment tensors: the good, the bad and the ugly, 2010. Available at: https://csegrecorder.com/articles/view/microseismic-moment-tensors-the-good-the-bad-and-the-ugly. R. Allen. Berkeley seismological laboratory. Available at: https://seismo.berkeley.edu/mt/. J. Šílený and A. Milev. Source mechanism: Dipole vs. single force application to mining induced seismic events in deep level gold mines in south africa. In Expanded Abstracts, pages 259–265, 2005. A. D. Miller, G. R. Foulger, and B. R. Julian. Non-double-couple earthquakes 2. observations. Reviews of Geophysics, 36(4):551–568, 1998. E. Tinti, E. Fukuyama, A. Piatanesi, and M. Cocco. A kinematic source-time func tion compatible with earthquake dynamics. Bulletin of the Seismological Society of America, 95(4):1211–1223, 2005. 林冠慧, 林宗弘, 張宜君, 葉錦勳, 劉季宇, 詹忠翰, and 胡伯維. 地震, 屋毀與傷亡: 集集地震風險的因果分析. 都市與計劃, 44(1):83–112, 2017. R. A. Shelby, D. R. Smith, and S. Schultz. Experimental verification of a negative index of refraction. science, 292(5514):77–79, 2001. V. G. Veselago. The electrodynamics of substances with simultaneously negative values of and. Usp. fiz. nauk, 92(3):517–526, 1967. J. B. Pendry. Negative refraction makes a perfect lens. Physical review letters, 85(18):3966, 2000. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani. Acoustic band structure of periodic elastic composites. Physical review letters, 71(13):2022, 1993. Y. Yan, Z. Cheng, F. Menq, Y. L. Mo, Y. Tang, and Z. Shi. Three dimensional periodic foundations for base seismic isolation. Smart Materials and Structures, 24(7):075006, 2015. T. T. Huang, X. Ren, Y. Zeng, Y. Zhang, C. Luo, X. Y. Zhang, and Y. M. Xie. Based on auxetic foam: A novel type of seismic metamaterial for lamb waves. Engineering Structures, 246:112976, 2021. J. M. Carcione, G. C. Herman, and A. P. E. Ten Kroode. Seismic modeling. Geophysics, 67(4):1304–1325, 2002. J. Virieux, S. Operto, H. Ben-Hadj-Ali, R. Brossier, V. Etienne, F. Sourbier, L. Gi raud, and A. Haidar. Seismic wave modeling for seismic imaging. The Leading Edge, 28(5):538–544, 2009. S.-J. Lee, D. Komatitsch, B.-S. Huang, and J. Tromp. Effects of topography on seismic-wave propagation: An example from northern taiwan. Bulletin of the Seismological Society of America, 99(1):314–325, 2009. S. A. Sipkin. Rapid determination of global moment-tensor solutions. Geophysical Research Letters, 21(16):1667–1670, 1994. T. Lay and T. Wallace. Modern Global Seimology, volume 58. 01 1995. 李冠慧、汪向榮、蘇于琪、游忠翰、張國鎮、陳東陽. 地震超材料設計之減震分析及效益評估. 中國土木水利工程學刊, 32(7):597–607, Nov 2020. 吳逸軒、汪向榮、張國鎮、陳東陽. 多類型複合地震超結構之寬頻帶設計與分析. 中國土木水利工程學刊, 31(1):103–118, Mar 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99294 | - |
| dc.description.abstract | 超材料之發展最早起源於電磁波與光學領域,其利用超材料內單元晶格之特殊性質,以達到控制波傳之目的。透過自身所反映出之負的材料參數,其可突破一般自然界中所看不到的物理性質。而地震超材料亦為一新興外部隔減震技術,其概念繼承原先超材料技術所展現出之效果,藉由設置於待保護區域周圍之方式,同時獲得大面積保護效果與不影響原建物之兩項優點。經過分析單元晶格之頻散曲線,其可以由帶隙得知超材料之濾波範圍。為了使帶隙與地震主頻率 (<10Hz) 重合,局部共振所帶來之亞波長特性經常被用作於縮小單元晶格尺寸之手段。隨著此領域對於超材料的設計日漸完善,帶隙範圍逐漸能夠覆蓋地震發生時之震波頻率,而對於超材料之減震效益分析,過去的研究通常採取將其放置於均質土壤之方式來進行純體波與表面波的波傳衰減測試。本研究將從地震波傳之角度切入,探討地震超材料於真實震波下之反應。藉由引入地球速度模型與淺層速度模型之地質數據,其即可獲得地震波於岩層中傳遞所需之介質資訊,並由埋入式波源之輸入來達成地震波場模擬之環境建置。此外,本研究也將探討地震超材料之各種擺置對於波傳衰減之影響,提供一個地震超材料發展之新思路與啟發。 | zh_TW |
| dc.description.abstract | The development of metamaterials initially originated in electromagnetics and op tics, where their specially designed unit cells were used to control wave propagation. By exhibiting negative material parameters, they reveal physical properties that are otherwise unattainable. Seismic metamaterials, as an emerging wave attenuation technology, inherit the core concept of conventional metamaterials and achieve two advantages, including wide-area protection and avoiding direct alterations to existing structures by surrounding the area to be protected. By analyzing the dispersion curves of unit cells, one can iden tify the frequency band gaps that define the filtering range of metamaterials. To align the band gap with the dominant frequency of seismic waves (below 10 Hz), the subwavelength characteristics induced by local resonance are often utilized to reduce the unit cell size. As the design of seismic metamaterials has become increasingly refined, the resulting band gaps are now more capable of covering the frequency range of seismic events. In most prior studies, the effectiveness of seismic metamaterials in wave attenuation was evaluated using homogeneous soil models, focusing on the reduction of body and surface wave propagation. In this study, we approach it from the perspective of seismic wave propagation to investigate the performance of seismic metamaterials under realistic ground motion. By introducing geological parameters from global and shallow velocity models, we acquire essential material properties for wave propagation in the simulation. A buried source is employed to construct a seismic wavefield simulation environment. Furthermore, this study explores the influence of various metamaterial configurations on wave attenuation, offering new insights for the development of seismic metamaterials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:09:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T17:09:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝辭 iii 摘要 v Abstract vii 目次 ix 圖次 xiii 表次 xix 第一章 緒論 1 1.1 前言與研究動機 1 1.2 研究目標 2 1.3 本文架構 2 第二章 文獻回顧 5 2.1 地震超材料之發展 5 2.2 地震超材料之減震分析 8 2.3 地震波模擬 9 2.4 文獻回顧之啟發 16 第三章 研究方法 21 3.1 數值模擬方法 21 3.2 速度模型 23 3.2.1 一維地球速度模型 24 3.2.2 速度結構模型之建立 25 3.3 震源模型 30 3.3.1 震源機制解 30 3.3.2 震源球 33 3.3.3 地震矩張量 35 3.3.4 震源時間函數 38 3.3.5 震源於模擬中之設定 41 3.4 超材料 45 3.4.1 晶格與倒晶格 45 3.4.2 布里淵區與布洛赫定理 47 3.4.3 頻散曲線 50 3.4.4 局部共振與帶隙 53 3.4.5 單元晶格之設計 56 第四章 數值分析與減震評估 63 4.1 地震超材料於典型環境中之分析 63 4.1.1 P 波與 S 波折減測試之設置 65 4.1.1.1 P 波之折減測試 69 4.1.1.2 S 波之折減測試 69 4.1.2 表面波折減測試 75 4.2 地震超材料於真實地質下之表面波分析 82 4.2.1 真實地質下表面波之折減測試 83 4.2.2 真實地質對表面波影響之探討 90 4.2.3 真實地質下之地震波能量流 96 4.3 地震超材料於真實環境中之分析 101 4.3.1 真實波場之模擬 104 4.3.2 單側擺置之折減測試 106 4.3.3 雙側擺置之折減測試 114 4.3.4 包覆型擺置之折減測試 136 第五章 結論與未來展望 149 5.1 結論 149 5.2 未來展望 150 參考文獻 153 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 局部共振 | zh_TW |
| dc.subject | 地震超材料 | zh_TW |
| dc.subject | 地震動 (ground motion) | zh_TW |
| dc.subject | 震源機制 | zh_TW |
| dc.subject | 速度模型 | zh_TW |
| dc.subject | velocity model | en |
| dc.subject | focal mechanism | en |
| dc.subject | ground motion | en |
| dc.subject | local resonance | en |
| dc.subject | seismic metamaterials | en |
| dc.title | 以地震超材料設計為考量之震波傳遞行為模擬與探討 | zh_TW |
| dc.title | Effects of Wave Propagation Using Earth Velocity Model for Seismic Metamaterial Design | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張國鎮;陳東陽;蘇于琪;劉庭瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Chun Chang;Tung-Yang Chen;Yu-Chi Su;Ting-Wei Liu | en |
| dc.subject.keyword | 地震超材料,局部共振,速度模型,震源機制,地震動 (ground motion), | zh_TW |
| dc.subject.keyword | seismic metamaterials,local resonance,velocity model,focal mechanism,ground motion, | en |
| dc.relation.page | 157 | - |
| dc.identifier.doi | 10.6342/NTU202502878 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 33.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
