請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99292完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬鴻文 | zh_TW |
| dc.contributor.advisor | Hwong-Wen Ma | en |
| dc.contributor.author | 陳柏翰 | zh_TW |
| dc.contributor.author | Po-Han Chen | en |
| dc.date.accessioned | 2025-08-21T17:09:14Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | Centers for Disease Control and Prevention (CDC). (2013). Information for Workers Health Problems Caused by Lead. National Institute for Occupational Safety and Health (NIOSH). https://web.archive.org/web/20161018215410/http://www.cdc.gov/niosh/topics/lead/health.html
United States Environmental Protection Agency (USEPA). (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities-Unified Guidance World Health Organization (WHO). (2019). International agency for research on cancer. World Health Organization (WHO). (2025). Lead poisoning. https://www.who.int/zh/news-room/fact-sheets/detail/lead-poisoning-and-health Ahmed, M., Matsumoto, M., & Kurosawa, K. (2018). Heavy metal contamination of irrigation water, soil, and vegetables in a multi-industry district of Bangladesh. International Journal of Environmental Research, 12(4), 531–542. Al-Subu, M. M., Haddad, M., Mizyed, N., & Mizyed, I. (2003). Impacts of irrigation with water containing heavy metals on soil and groundwater–a simulation study. Water, air, and soil pollution, 146, 141–152. Alloway, B. J. (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media. Araújo, E., Strawn, D. G., Morra, M., Moore, A., & Alleoni, L. R. F. (2019). Association between extracted copper and dissolved organic matter in dairy-manure amended soils. Environmental Pollution, 246, 1020–1026. Arroyo-Ortega, I., Chavarin-Pineda, Y., & Torres, E. (2024). Assessing contamination in transitional waters using geospatial technologies: a review. ISPRS International Journal of Geo-Information, 13(6), 196. Bahadir, T., Bakan, G., Altas, L., & Buyukgungor, H. (2007). The investigation of lead removal by biosorption: An application at storage battery industry wastewaters. Enzyme and microbial technology, 41(1-2), 98–102. Barceloux, D. G., & Barceloux, D. (1999). Nickel. Journal of Toxicology: Clinical Toxicology, 37(2), 239–258. Barry, J. D. (2005). Diagnosis and management of the poisoned child. Pediatric annals, 34(12), 937–946. Baselt, R. (2014). Encyclopedia of toxicology. In: Oxford University Press. Bayarkhuu, T. (2024). Pattern Analysis for Heavy Metal Contamination by Irrigation in Taoyuan Farmland Using the SOMCM Approach 國立中央大學]. Borrelli, P., Ballabio, C., Yang, J. E., Robinson, D. A., & Panagos, P. (2022). GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion. Scientific Data, 9(1), 406. Brandes, E., Greenaway, H., & Stone, H. (1956). Ductility in chromium. Nature, 178(4533), 587–587. Brown, E., Caraco, D., & Pitt, R. (2004). Illicit discharge detection and elimination: a guidance manual for program development and technical assessments. Water Permits Division, Office of Water and Wastewater, US Environmental …. Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford university press. Candelone, J. P., Hong, S., Pellone, C., & Boutron, C. F. (1995). Post‐Industrial Revolution changes in large‐scale atmospheric pollution of the northern hemisphere by heavy metals as documented in central Greenland snow and ice. Journal of Geophysical Research: Atmospheres, 100(D8), 16605–16616. Casado, M., Anawar, H., Garcia-Sanchez, A., & Regina, I. S. (2008). Cadmium and zinc in polluted mining soils and uptake by plants (El Losar mine, Spain). International Journal of Environment and Pollution, 33(2-3), 146–159. Çetin, D., Dönmez, S., & Dönmez, G. (2008). The treatment of textile wastewater including chromium (VI) and reactive dye by sulfate-reducing bacterial enrichment. Journal of environmental management, 88(1), 76–82. Chen, H., He, Y., & Chen, L. (2010). The monitoring process of heavy metals in soils and its quality control measures. J. Environmental Monitoring in China, 26(5). Chen, T., Chang, Q., Liu, J., Clevers, J., & Kooistra, L. (2016). Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Science of The Total Environment, 565, 155–164. Chen, Y., Feng, S., Yang, T., Zhang, W., & Wang, S. (2013). Statistical characteristics of organic matter content from different soil classes in China. Journal of Fudan University (Natural Science, 52, 220–224. Chiang, L.-C., & Liao, C.-J. (2022). The Analysis of Heavy Metal Transport Mechanism and Electrolytic Reduction Method for Remediation of Agricultural Ditches. Modern Environmental Science and Engineering, 8, 439–447. https://doi.org/10.15341/mese(2333-2581)/08.08.2022/003 Craddock, P. T. (1978). The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations: 3. The Origins and Early Use of Brass. Journal of Archaeological Science, 5(1), 1–16. https://doi.org/10.1016/0305-4403(78)90015-8 Danni, X., Jinting, W., & Zibing, Y. (2021). Temporal-spatial variations, source apportionment, and formation mechanisms of PM2. 5 pollution over Fenwei Plain. China, 41(4), 1184–1198. Das, D., Samanta, G., Mandal, B. K., Roy Chowdhury, T., Chanda, C. R., Chowdhury, P. P., Basu, G. K., & Chakraborti, D. (1996). Arsenic in groundwater in six districts of West Bengal, India. Environmental Geochemistry and Health, 18, 5–15. Davis, H. T., Aelion, C. M., McDermott, S., & Lawson, A. B. (2009). Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environmental Pollution, 157(8-9), 2378–2385. Do Hur, S., Cunde, X., Hong, S., Barbante, C., Gabrielli, P., Lee, K., Boutron, C. F., & Ming, Y. (2007). Seasonal patterns of heavy metal deposition to the snow on Lambert Glacier basin, East Antarctica. Atmospheric Environment, 41(38), 8567–8578. Doyle, A., Saavedra, A., Tristão, M., & Aucelio, R. (2015). Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate. Fuel, 162, 39–46. Duan, Y., Sun, Y., Feng, J., & Peng, M. (2010). Thermal stability and elastic properties of intermetallics Mg2Pb. Physica B: Condensed Matter, 405(2), 701–704. Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793–807. Eliferdoganj. (2015, 2015/11/16). 4 Big Pollution Diseases of Japan. Ecoist Magazine. Eto, K. (2000). Minamata disease. Neuropathology, 20, 14–19. Formigoni, A., Fustini, M., Archetti, L., Emanuele, S., Sniffen, C., & Biagi, G. (2011). Effects of an organic source of copper, manganese and zinc on dairy cattle productive performance, health status and fertility. Animal Feed Science and Technology, 164(3-4), 191–198. Gamble, A. (2019). Ullmann’s encyclopedia of industrial chemistry. The Charleston Advisor, 20(4), 46–50. Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health, 17(3), 679. Gök, G., Tulun, Ş., & Çelebi, H. (2024). Mapping of heavy metal pollution density and source distribution of campus soil using geographical information system. Scientific Reports, 14(1), 1–18. Görlach, U., & Boutron, C. (1992). Variations in heavy metals concentrations in Antarctic snows from 1940 to 1980. Journal of Atmospheric Chemistry, 14(1), 205–222. Griffiths, L., Loeffler, S., Socha, M., Tomlinson, D., & Johnson, A. (2007). Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology, 137(1-2), 69–83. Group, E. W. (1985). Health assessment document for nickel. Environ. Prot. Agency (US) Publ. AP Ser. Hannum, K., Wellstead, A. M., Howlett, M., & Gofen, A. (2025). Leveraging GIS for policy design: spatial analytics as a strategic tool. Policy Design and Practice, 8(1), 35–49. Hassan, N. E., & Umer, M. I. (2022). Primary treatment of landfill leachate effects on heavy metal and soil chemical properties in Kwashe Industrial Area in Duhok Province, Kurdistan Region of Iraq. Horiguchi, H. (2014). Encyclopedia of Toxicology (P. Wexler, Ed. Third Edition ed.). https://doi.org/10.1016/B978-0-12-386454-3.00033-6 Hou, D., O'Connor, D., Nathanail, P., Tian, L., & Ma, Y. (2017). Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environmental Pollution, 231, 1188–1200. Hradil, D., Grygar, T., Hradilová, J., Bezdička, P., Grűnwaldová, V., Fogaš, I., & Miliani, C. (2007). Microanalytical identification of Pb-Sb-Sn yellow pigment in historical European paintings and its differentiation from lead tin and Naples yellows. Journal of Cultural Heritage, 8(4), 377–386. Iyebor, E., Ngah, S., Abam, T., Ubong, I., & Ule, O. (2020). Assessment of Heavy Metals in Soil around Leaking Underground Petroleum Facilities in Rivers State. International Journal of Scientific and Technical Research in Engineering, 5(2), 12–27. Jensen, J., Larsen, M. M., & Bak, J. (2016). National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry. Environmental Pollution, 214, 334–340. Jones, D. H., Yu, X., Guo, Q., Duan, X., & Jia, C. (2022). Racial disparities in the heavy metal contamination of urban soil in the Southeastern United States. International journal of environmental research and public health, 19(3), 1105. Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC press. Levels, M. R. (2018). The Agency for Toxic Substances and Disease Registry. Minimal Risk Levels (MRLs) for Hazardous Substances. Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173–189. Lobinski, R., Boutron, C. F., Candelone, J.-P., Hong, S., Szpunar-Lobinska, J., & Adams, F. C. (1994). Present century snow core record of organolead pollution in Greenland. Environmental science & technology, 28(8), 1467–1471. Lozet, J., Mathieu, C., & Jamagne, M. (1991). Dictionary of soil science. Lu, T., Kim, S. Y., & Marshall, J. D. (2025). High‐Resolution Geospatial Database: National Criteria‐Air‐Pollutant Concentrations in the Contiguous US, 2016–2020. Geoscience data journal, 12(2), e70005. Lyman, W. (2020). Transport and transformation processes. In Fundamentals of Aquatic Toxicology (pp. 449–492). CRC Press. Mariussen, E., Johnsen, I. V., & Strømseng, A. E. (2017). Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires. Environmental Science and Pollution Research, 24, 10182–10196. Matschullat, J. (2000). Arsenic in the geosphere — a review. Science of The Total Environment, 249(1-3), 297–312. https://doi.org/10.1016/S0048-9697(99)00524-0 McHenry, R. (1992). The New Encyclopaedia Britannica (Vol. 1). Encyclopaedia britannica. Merck. (2011). The Merck manual home health handbook. John Wiley & Sons. Morgan, L. G., & Usher, V. (1994). Health problems associated with nickel refining and use. The Annals of occupational hygiene, 38(2), 189–198. Morris, C. G. (1992). Academic press dictionary of science and technology. Gulf Professional Publishing. Naeem, M., Abbas, M., Ala'a, H., Farid, M., Haider, M. A., Musharavati, F., Rehan, M., Khan, M. I., Naqvi, M., & Nizami, A.-S. (2025). Evaluating heavy metal contamination from leachate percolation for sustainable remediation strategies. Journal of Hazardous Materials Advances, 17, 100582. Nakashima, T., Hayashi, H., Tashiro, H., & Matsushita, T. (1998). Gender and hierarchical differences in lead-contaminated Japanese bone from the Edo period. Journal of Occupational Health, 40(1), 55–60. Nielsen, G., Flyvholm, M., & Sunderman, F. (1984). Nickel in the human environment. In (pp. 333–338): Oxford Univ. Press Oxford, UK. O'Dell, K., Kondragunta, S., Zhang, H., Goldberg, D. L., Kerr, G. H., Wei, Z., Henderson, B. H., & Anenberg, S. C. (2024). Public health benefits from improved identification of severe air pollution events with geostationary satellite data. GeoHealth, 8(1), e2023GH000890. Parker, S. P. (1989). McGraw-Hill dictionary of scientific and technical terms. Pope, A. M., & Rall, D. P. (1995). Case Studies in Environmental Medicine. In Environmental Medicine: Integrating a Missing Element into Medical Education. National Academies Press (US). Pressley, M. (2024). EPA, DOJ and State of Illinois File Complaint Against City of East St. Louis for Unlawful Discharges of Untreated Sewage. United States Environmental Protection Agency (USEPA). https://www.epa.gov/newsreleases/epa-doj-and-state-illinois-file-complaint-against-city-east-st-louis-unlawful Prohaska, T., Irrgeher, J., Benefield, J., Böhlke, J. K., Chesson, L. A., Coplen, T. B., Ding, T., Dunn, P. J., Gröning, M., & Holden, N. E. (2022). Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry, 94(5), 573–600. Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A.-a. (2017). Cadmium toxicity and treatment: An update. Caspian journal of internal medicine, 8(3), 135. Ramírez-Cota, M., Escobar-Sánchez, O., Betancourt-Lozano, M., Frías-Espericueta, M. G., Zamora-Arellano, N. Y., & Osuna-Martínez, C. C. (2025). Heavy metals in drinking water sources in northern Mexico: a review of concentrations and human health risks assessment. Journal of Water and Health, 23(6), 684–700. Ren, S., Song, C., Ye, S., Cheng, C., & Gao, P. (2022). The spatiotemporal variation in heavy metals in China's farmland soil over the past 20 years: A meta-analysis. Science of The Total Environment, 806. https://doi.org/10.1016/j.scitotenv.2021.150322 Roederer, I. U., Kratz, K.-L., Frebel, A., Christlieb, N., Pfeiffer, B., Cowan, J. J., & Sneden, C. (2009). The end of nucleosynthesis: production of lead and thorium in the early galaxy. The Astrophysical Journal, 698(2), 1963. Services, U. D. o. H. H. (1999). Agency for Toxic Substances and Disease Registry-ATSDR. Shi, H., Fetzer, R., Tang, C., Szabó, D. V., Schlabach, S., Heinzel, A., Weisenburger, A., Jianu, A., & Müller, G. (2021). The influence of Y and Nb addition on the corrosion resistance of Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten Pb. Corrosion Science, 179, 109152. Shi, T., Zhang, J., Shen, W., Wang, J., & Li, X. (2022). Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China. Ecotoxicology and Environmental Safety, 245, 114107. Sokol, R. (2005). Lead exposure and its effects on the reproductive system. Metals, Fertility, and Reproductive Toxicity. Boca Raton, FL: Taylor and Francis, 117–154. Stanczak, M. (2005). A brief history of copper. CSA Discovery Guides. Sun, Y., Liu, D., Wu, Y., He, X., Luo, Y., Zhou, X., Chen, W., Chen, W., & Li, S. (2023). Updated spatial distribution and health risk assessment of heavy metals in soils of the Yangtze River Basin, China. Frontiers in Environmental Science, 11, 1197634. Terribile, F., Acutis, M., Agrillo, A., Anzalone, E., Azam‐Ali, S., Bancheri, M., Baumann, P., Birli, B., Bonfante, A., & Botta, M. (2024). The LANDSUPPORT geospatial decision support system (S‐DSS) vision: Operational tools to implement sustainability policies in land planning and management. Land Degradation & Development, 35(2), 813–834. Criminal charges assessed for unpermitted distillery wastewater discharge, (2021). https://www.nixonpeabody.com/insights/alerts/2021/01/26/unpermitted-wastewater-discharge Tungate, M. (2011). Branded beauty: How marketing changed the way we look. Kogan Page Publishers. Van De Velde, K., Vallelonga, P., Candelone, J.-P., Rosman, K., Gaspari, V., Cozzi, G., Barbante, C., Udisti, R., Cescon, P., & Boutron, C. F. (2005). Pb isotope record over one century in snow from Victoria Land, Antarctica. Earth and Planetary Science Letters, 232(1-2), 95–108. Vithanage, M., Bandara, P. C., Novo, L. A., Kumar, A., Ambade, B., Naveendrakumar, G., Ranagalage, M., & Magana-Arachchi, D. N. (2022). Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere, 303, 135051. Wang, X., Wang, Y., Pang, Y., Wang, K., & Yu, J. (2024). Pollution Load Coordination and Eco-Compensation for Trans-Boundary Water Pollution Control: The Case of the Tri-Border Region of the Yangtze Delta. Sustainability, 16(3), 1151. White, N. E., Lochner, J., Rohrbach, G., & Cochrane, K. (2003). What is your Cosmic Connection to the Elements? Xue, W., Ying, D., Li, Y., Sheng, Y., He, T., Shi, P., Liu, M., & Zhao, L. (2023). Method for establishing soil contaminant discharge inventory: An arsenic-contaminated site case study. Environmental Research, 227, 115700. Ye, S., Lu, S., Bai, X., & Gu, J. (2020). ResNet-locust-BN network-based automatic identification of east asian migratory locust species and instars from RGB images. Insects, 11(8), 458. Zhang, Z., & Shi, H. (2021). Tracer Application of Several Heavy Metal Isotopes in Environmental Pollution. Frontiers in Sustainable Development, 1(7), 126–132. Zhou, Z., Peng, C., Liu, X., Jiang, Z., Guo, Z., & Xiao, X. (2022). Pollution and risk assessments of heavy metal (loid) s in the soil around lead-zinc smelteries via data integration analysis. International journal of environmental research and public health, 19(15), 9698. 蔡鴻德、沈志修、楊鎧行、吳雅婷 (2009)。 GIS技術於土壤及地下水污染調查與整治工作之應用與未來展望。 國土資訊系統通訊, 70, 28–44。 陳柏翰 (2014)。 稻殼添加對兩種排水不良砷污染土壤中糙米砷濃度的影響 國立臺灣大學]。 陳寧、葉鎮中 (2019)。 肥水落田|豬牛糞尿回灌農田再利用。 我們的島 our island。 https://ourisland.pts.org.tw/content/4801 環境部-全國環境水質監測資訊網 (2020)。 河川污染指數 (RPI)。 https://wq.moenv.gov.tw/EWQP/zh/Encyclopedia/NounDefinition/Pedia_37.aspx 環境部-全國環境水質監測資訊網 (2025)。 歷史數據 環境部-水質保護網 (2025)。 總量管制。 https://water.moenv.gov.tw/Public/CHT/WaterPurif/con_control.aspx 環境部 (2003)。 灌溉溝渠底泥處置作業行政指引。 水污染防治法 (2018a)。 https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040001 水污染防治法施行細則 (2018b)。 https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040002 環境部 (2019)。 農地土壤定期監測作業原則。 (環署土字第1080093098號)。 環境部 (2025a)。 環境部沿革。 https://www.moenv.gov.tw/aboutus/history/historical-overview/614.html 水污染防治措施及檢測申報管理辦法 (2025b)。 https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040054 環境部環境管理署-底泥品質地理資訊平臺 (2025)。 底泥品質地理資訊平臺。 環境部環境管理署-底泥品質檢測資訊網 (2025a)。 底泥品質檢測資訊網。 環境部環境管理署-底泥品質檢測資訊網 (2025b)。 認識底泥。 https://sed.moenv.gov.tw/sediments_public/Introduction 環境部環境管理署-土壤及地下水污染整治基金管理會 (2025)。 場址資訊雲端展示查詢-列管場址查詢。 環境部環境管理署 (2023a)。 事業土壤及地下水自主污染預防管理參考手冊。 環境部環境管理署。 環境部環境管理署 (2023b)。 土壤及地下水污染預防管理 事業分群分級管理流程與查核計畫 作業參考手冊。 環境部環境管理署 (2025)。 列管場址查詢。 環境部水質保護司 (2025)。 全國畜牧糞尿資源化網站。 https://epafarm.moenv.gov.tw/ 黃健文 (2014)。 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析 國立中央大學]。 經濟部產業發展署 (1992)。 皮革工廠廢水污染防治。 財團法人中國技術服務社。 李依庭 (2014)。 施用奈米零價鐵與石灰及堆肥於鎘污染土壤對水稻吸收鎘之影響 國立臺灣大學]。 李政萱 (2016)。 以離子樹脂縮時包監測水中重金屬 (Publication Number 2016) 國立臺灣大學]。 林淳純、駱尚廉 (2023)。 灌排不完全分離下水中懸浮固體是造成農田土壤重金屬累積的主要來源-以台灣彰化為例 [The suspended solid induced impact on farmland soil heavy metal accumulation in a drainage-converged irrigation channel-in changhua county, taiwan]。 中國土木水利工程學刊, 35(7), 731–742。 https://doi.org/10.6652/JoCICHE.202311_35(7).0010 林慧貞 (2019)。 《工輔法》三讀守住落日條款,農地違章工廠大限再延20年。 報導者THE REPORTER. https://www.twreporter.org/a/illegal-factory-on-agricultural-land-law 馬寅秋、李厚恩、楊軍、趙琛 (2023)。 湘江支流灌溉渠道沉積物中重金屬污染特徵。 灌溉排水學報, 42(12), 117。 內政部 (2025)。 TGOS-全國門牌地址定位服務。 https://www.tgos.tw/tgos/Addr 農業部農田水利署桃園管理處 (2023)。 灌溉水質資訊。 農業資料開放平臺 (2025)。 農田水利灌排渠道系統圖。 蘇惠璋、鄭彩堂、洪本善 (2009)。 空間多圖籍套疊作業之研究 [A Study of Spatial Overlay for Multiple Maps]。 地籍測量:中華民國地籍測量學會會刊, 28(3), 32–50。 https://doi.org/10.29609/yywyll.200909.0003 台灣烏腳病醫療紀念館 (2025)。 認識烏腳病。 http://www.blackfoot.org.tw/know/know.html 臺灣省諮議會 (1996, 1996/11/8)。 宜蘭縣疑似烏腳病事件調查工作協調會會議紀錄 宜蘭縣疑似烏腳病事件調查工作協調會, 省立宜蘭醫院三樓會議室。 臺中市政府環境保護局 (2020)。 109 年度土壤及地下水污染調查及查證工作計畫-臺中市。 王昶崴 (2025)。 我國水污染總量管制策略評析-以桃園南崁溪為例 國立臺灣大學]。 王鵬飛、沈娟章、譚衛紅 (2018)。 穩定同位素技術在林產品產地溯源與摻假鑑別的應用研究進展。 浙江農林大學學報, 35(5), 968–974。 吳佳豪 (2021)。 探討雲林地區施灌不同類型畜牧廢水對農田土壤品質影響評估 朝陽科技大學]。 吳明駿 (2019)。 環境刑法之適用疑義-以日月光公司排放毒廢水至後勁溪案件為例 (臺灣嘉義地方檢察署108 年度自行研究報告, Issue。 臺灣嘉義地方檢察署。 新北市政府環境保護局 (2023)。 112年度土壤及地下水污染調查及查證工作計畫-期末報告。 新北市政府環境保護局環保稽查科 (2022)。 稽查員不畏寒風 環保局查獲樹林電鍍工廠繞流偷排廢水。 新北市政府環境保護局。 https://www.epd.ntpc.gov.tw/Article/Info?ID=7971 新北市政府資料開放平臺 (2025)。 新北市都市計畫土地使用分區及範圍圖。 行政院環境保護署 (2008)。 灌溉水監測網路系統之重金屬檢測計畫期末報告 (定稿本)。 (EPA-96-G102-02-200)。 行政院環境保護署。 徐炳文。 (2021) 大發工業區金屬工廠繞流排放廢水 環保局依法開罰移送偵辦。 風傳媒。 https://www.storm.mg/article/4090401 亞洲大學附屬醫院 (2025a)。 鎳與鎳毒性。 https://www.auh.org.tw/NewsInfo/HealthEducationInfo?docid=900 亞洲大學附屬醫院 (2025b)。 銅與銅中毒。 https://www.auh.org.tw/NewsInfo/HealthEducationInfo?docid=903 閻涵文 (2010)。 灌溉水質對農地土壤重金屬污染與水稻重金屬含量及根圈土壤低分子量有機酸之影響 (Publication Number 2010) 朝陽科技大學]。 葉信伶、鄒惠貞、江宏哲、江博煌、劉德明 (2013)。 利用階層式分群法點熱圖以瞭解工業污染地區的死亡風險因子。 醫療資訊雜誌, 22(2), 1–14。 遠見雜誌整合傳播部 (2019)。 穩懋半導體 砷化鎵晶圓產量世界第一。 https://www.gvm.com.tw/article/68905 張淑麗 (2012)。 工業區綜合污水處理廠營運管理制度之研究 國立中央大學]。 張雄風 (2025)。 河川重度污染7站創新低 環部計畫4年20處加嚴管制。 中央社CNA。 https://www.cna.com.tw/news/ahel/202502170195.aspx 張育禎 (2023)。 WASP水質模式結合概似不確定性估計於灌溉渠道中重金屬傳輸路徑分析 國立臺北科技大學]。 趙舜卿 (2019)。 鋅在兒童生長的角色。 長庚醫訊, 40(10), 27–28。 政府資料開放平臺 (2023)。 非都市土地使用分區圖(112年)。 鄭汝芬 (2009)。 灌排分離。 資源問題研究會 (2009)。 世界資源真相和你想的不一樣。 大是文化。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99292 | - |
| dc.description.abstract | 臺灣工商業發達,事業類別繁多。早期土地利用與都市規劃不完全,事業未經妥善管理,工業活動與農業生產相互爭奪土地資源。早年環保意識不足,事業廢污水放流路徑與農業灌溉渠道混合,導致渠道水體、底泥與周邊農地土壤面臨潛在重金屬污染風險,終將進入生物鏈,影響人體健康。為保護環境品質,同時增進行政效率,新北市政府環境保護局於2023年提出「事業污染潛勢地圖整合灌溉渠道預防管理作業」的發想概念,但整體架構仍有許多不足,因此本研究將以此為基礎,改良並建置一套簡化分析的方法。
本研究應用地理資訊系統 (Geographic Information System,GIS) 整合引用的資料,包含具污染潛勢事業分布、灌溉渠道水體、灌溉渠道底泥與周邊農地土壤之重金屬濃度監測結果,建置一套簡化分析的架構,並以視覺化呈現各界質重金屬濃度分布空間關聯性,供政府直觀快速識別可能污染來源與潛在污染熱區。 本研究領域為新北市轄內兩條灌溉渠道—二甲九圳、石頭溪圳,及其周圍灌溉農田,引用底泥及土壤背景重金屬濃度,再引用水質 (樹脂包)、底泥、土壤重金屬濃度,將各項環境濃度推估結果與事業污染潛勢圖堆疊圖層比較。研究結果顯示二甲九圳中游段及石頭溪圳下游段可以直觀辨識出鋅污染潛勢事業與各介質鋅濃度分布結果在空間上可能有高度關聯性,顯示本方法架構確實具有可行性,可供政府機關參考使用。但此方法仍受到許多條件限制,包含:1.源 (事業名單) 的完整性、2.流 (灌溉渠道) 的完整性及3.源、流、匯時空一致性,致使過往調查數據不易直接與現有資料連結。 建議政府機關優先針對事業密集的二甲九圳中游段及石頭溪圳中、下游段進行事業輔導,預防污染,針對二甲九圳下游段查證具鉛、鋅污染潛勢事業;石頭溪上、中游段查證具鋅污染潛勢事業。盡量補齊既有事業基線資料,造冊登記尚未掌握的非法事業。針對超標土壤及底泥辦理定期監測,同時針對渠道進行疏濬作業,已開挖底泥禁作其他用途。持續推動總量管制政策,增加劃定加嚴管制區,並希望能將本研究領域的兩灌溉渠道納入。未來若實施都市計畫,建議將事業分級分類,設置工業區集中管理。最後建議後人優化此架構,供中央機關實際應用分析。 | zh_TW |
| dc.description.abstract | Taiwan has a highly developed industrial and commercial sector with many different types of businesses. Due to incomplete land use planning and urban development in the past, industrial activities were not properly regulated, leading to competition for land between industrial and agricultural uses. In addition, weak environmental awareness in earlier decades allowed industrial wastewater discharge into agricultural irrigation channels. This may lead to heavy metal pollution in the water, sediment, and farmland soil. These pollutants may enter the food chain and pose risks to human health finally. To protect environmental quality and improve administrative efficiency, the Environmental Protection Department of New Taipei City Government proposed the concept of an “Industries Pollution Potential Map Integrated with Irrigation Channel Preventive Management” in 2023. However, the proposed framework remains incomplete. This study aims to build upon that concept by developing an improved and simplified analytical approach.
This research applies Geographic Information Systems (GIS) to integrate referenced data, including the distribution of industries with pollution potential and monitoring results of heavy metal concentrations in irrigation water, channel sediment, and nearby farmland soil. A simplified analysis framework was constructed to visualize spatial relationships among environmental media and heavy metal concentrations, enabling the government to intuitively and efficiently identify potential pollution sources and contamination hotspots. The study area focuses on two irrigation channels in New Taipei City—RJJ-Channel and STS-channel—and the surrounding irrigated farmland. Background concentrations of heavy metals in sediment and soil were referenced, along with data on heavy metal concentrations in water (Ion Exchange Resin Packs), sediment, and soil. These environmental concentration estimates were then compared with the spatial distribution of pollution-prone industries through GIS layer overlays. The results show a clear spatial link between potentially zinc-polluting industries and high zinc concentrations in the midstream of the RJJ-channel and downstream of the STS-channel. This indicates that the proposed analytical framework is feasible and may serve as a useful reference for government agencies. However, the approach remains subject to several limitations, including: (1) the completeness of “source” data (i.e., industries lists), (2) the completeness of “flow” data (i.e., irrigation channel), and (3) the spatial and temporal consistency between “sources”, “flows”, and “sinks”. These limitations make it difficult to directly align historical monitoring data with current information. The study suggests that the government should focus on industry management and counseling industries to preventing pollution in the midstream RJJ-channel and the middle and downstream STS-channel. It should also investigate the potentially lead-polluting and zinc-polluting factories in the downstream RJJ-channel and potentially zinc-polluting industries in the up and middlestream STS-channel. Missing baseline data on industries should be completed, including illegal factories. Soil and sediment with high heavy metal levels should be monitored regularly, and dredged sediment should not be reused. The government should keep pushing Total Quantity Control (TQC) policies, expand TQC district, and consider including these two channels. Future city planning should classify and group industries into industrial park. Finally, future researchers are encouraged to improve this framework for practical use by Taiwan goverment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:09:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T17:09:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目次 v 圖次 vii 表次 x 第一章 緒論 1 1.1 研究背景 1 1.2 政府作為 1 1.3 研究目的 2 1.4 研究架構 3 第二章 文獻回顧 5 2.1 八項重金屬 5 2.2事業污染途徑 11 2.3 渠道水體、底泥與周圍農地土壤重金屬關聯性 13 2.4 GIS技術於環境污染調查之應用 15 第三章 研究方法 18 3.1 研究流程 18 3.2 方法步驟 18 3.2.1 設定研究領域 18 3.2.2 設定重金屬污染途徑—源 19 3.2.3 設定重金屬污染途徑—流 21 3.2.4 設定重金屬污染途徑—匯 24 3.2.5 重金屬污染途徑 (源、流、匯) 資料比對 26 第四章 結果與討論 27 4.1 研究領域 27 4.2 重金屬污染途徑—源 28 4.2.1 河川水質 28 4.2.2 事業污染潛勢分布 28 4.3 重金屬污染途徑—流 37 4.3.1 水質 (水體) 重金屬濃度 37 4.3.2 水質 (樹脂包) 重金屬濃度比值 38 4.4 重金屬污染途徑—匯 42 4.4.1 底泥重金屬濃度 42 4.4.2 土壤重金屬濃度 45 4.5 重金屬污染途徑 (源、流、匯) 關聯性 53 4.5.1 二甲九圳及其周邊灌溉渠道 53 4.5.2 石頭溪圳及其周邊灌溉渠道 56 4.5.3土壤及底泥背景重金屬可能污染源探討 59 第五章 結論與建議 63 5.1 結論 63 5.2 建議 64 參考文獻 65 附錄表 79 附錄圖 92 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | GIS | zh_TW |
| dc.subject | 事業 | zh_TW |
| dc.subject | 灌溉水 | zh_TW |
| dc.subject | 底泥 | zh_TW |
| dc.subject | 土壤 | zh_TW |
| dc.subject | 重金屬污染 | zh_TW |
| dc.subject | industries | en |
| dc.subject | soil | en |
| dc.subject | GIS | en |
| dc.subject | heavy metal pollution | en |
| dc.subject | irrigation water | en |
| dc.subject | sediment | en |
| dc.title | 應用GIS整合事業污染潛勢與灌溉渠道重金屬濃度—以新北市為例 | zh_TW |
| dc.title | Integrating Industrial Pollution Potential and Heavy Metal Concentrations in Irrigation Channels Using GIS: A Case Study of New Taipei City | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 闕蓓德;李家興 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Te Chiueh;Chia-Hsing Lee | en |
| dc.subject.keyword | GIS,事業,灌溉水,底泥,土壤,重金屬污染, | zh_TW |
| dc.subject.keyword | GIS,industries,irrigation water,sediment,soil,heavy metal pollution, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU202503649 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 17.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
