請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99289| 標題: | 從音訊到樂譜與音色:探討以吉他為核心的音樂資訊 檢索中的表示法與轉換 From Audio to Score and Tone: Exploring Representations and Transformations in Guitar-Oriented Music Information Retrieval |
| 作者: | 陳宥華 Yu-Hua Chen |
| 指導教授: | 張智星 Jyh-Shing Roger Jang |
| 共同指導教授: | 楊奕軒 Yi-Hsuan Yang |
| 關鍵字: | 音樂資訊檢索,電吉他,轉譜,虛擬類比建模,音訊效果建模, Music Information Retrieval,Electric Guitar,Transcription,Virtual Analog Modeling,Effect Modeling, |
| 出版年 : | 2025 |
| 學位: | 博士 |
| 摘要: | 電吉他是現代音樂的重要元素,其與原聲吉他及鋼琴的最大區別,在於其音色高度依賴經由擴大器與效果器處理後所產生的各種變化。然而,相較於以鋼琴為主的研究,吉他導向的音樂資訊檢索(Music Information Retrieval, MIR)發展相對落後,主因包括資料集稀缺(受限於版權與蒐集困難)以及效果處理音訊所需的特殊表示需求。本論文致力於推進吉他導向的 MIR,提出兩項核心貢獻:首先,建立並釋出兩個新資料集──Electric Guitar Database(EGDB)及其擴充版本 EGDB-PG;其次,針對兩項關鍵表示轉換任務設計創新深度學習演算法:(1)透過電吉他自動轉譜,實現由效果處理音訊轉換為符號樂譜的 audio-to-score 轉換;(2)透過電吉他音箱音色建模,實現由乾淨音色轉換為帶有效果的音色的 clean-to-wet 轉換,並探索無監督與零樣本等深度學習場景以重建多樣音色效果。透過實驗驗證,本研究有效提升吉他音訊、樂譜與音色的表示能力,有效解決電吉他效果處理所帶來的挑戰,為更穩健的基於深度學習的吉他音樂分析與吉他音箱模擬奠定基礎。 Electric guitars, central to modern music, are distinguished from acoustic guitars and pianos by their reliance on effects processing through amplifiers and pedals, which introduces complex tonal variations. However, guitar-oriented music information retrieval (MIR) lags behind piano-oriented research due to scarce datasets, constrained by copyright and collection challenges, and the unique representational demands of effect-laden audio. This thesis advances guitar-oriented MIR by curating novel datasets, the Electric Guitar Database (EGDB) and its expanded version (EGDB-PG), and proposing original deep learning algorithms for two key representation transformations: (1) audio-to-score transformation via electric guitar transcription, leveraging EGDB and EGDB-PG to map effect-processed audio to symbolic notation; and (2) clean-to-wet audio transformation through electric guitar amplifier tone modeling, exploring unsupervised and zero-shot paradigms to replicate diverse effects. Validated through empirical evaluations, these contributions enhance audio, score, and tone representations in guitar-oriented MIR, addressing the distinct challenges posed by electric guitar effects and paving the way for robust deep-learning based electric guitar music analysis and effect modeling systems. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99289 |
| DOI: | 10.6342/NTU202502953 |
| 全文授權: | 未授權 |
| 電子全文公開日期: | N/A |
| 顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
