Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99287
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立仁zh_TW
dc.contributor.advisorLi-Jen Chenen
dc.contributor.author謝騏鴻zh_TW
dc.contributor.authorChi-Hung Hsiehen
dc.date.accessioned2025-08-21T17:08:05Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A. Iced-airfoil aerodynamics. Progress in Aerospace Sciences 2005, 41 (5), 323–362.
2. Gao, L.; Hu, H. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines. Proceedings of the National Academy of Sciences 2021, 118 (42), e2111461118.
3. Walker, C. L.; Khattak, A. J.; Umer Farooq, M.; Cecava, J.; Anderson, M. R. Investigation of winter weather crash injury severity using winter storm classification techniques. Transportation Research Interdisciplinary Perspectives 2024, 24, 101073.
4. Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Transactions of the Faraday Society 1944, 40 (0), 546–551, 10.1039/TF9444000546.
5. Lafuma, A.; Quéré, D. Superhydrophobic states. Nature Materials 2003, 2 (7), 457–460.
6. Lv, J.; Song, Y.; Jiang, L.; Wang, J. Bio-Inspired Strategies for Anti-Icing. ACS Nano 2014, 8 (4), 3152–3169.
7. Wang, D.; Sun, Q.; Hokkanen, M. J.; Zhang, C.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of robust superhydrophobic surfaces. Nature 2020, 582 (7810), 55–59.
8. Wang, L.; Tian, Z.; Jiang, G.; Luo, X.; Chen, C.; Hu, X.; Zhang, H.; Zhong, M. Spontaneous dewetting transitions of droplets during icing & melting cycle. Nature Communications 2022, 13 (1), 378.
9. Young, T. III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 1805, 95, 65–87.
10. Wenzel, R. N. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry 1936, 28 (8), 988–994.
11. Cassie, A. B. D. Contact angles. Discussions of the Faraday Society 1948, 3 (0), 11–16, 10.1039/DF9480300011.
12. Quéré, D. Wetting and Roughness. Annual Review of Materials Research 2008, 38 (Volume 38, 2008), 71–99.
13. Huhtamäki, T.; Tian, X.; Korhonen, J. T.; Ras, R. H. Surface-wetting characterization using contact-angle measurements. Nature protocols 2018, 13 (7), 1521–1538.
14. Liu, Y.-M.; Wu, Z.-Q.; Yin, D.-C. Measurement of contact angle under different gravity generated by a long-arm centrifuge. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 588, 124381.
15. Johnson, R. E. Contact angle, wettability, and adhesion. Advances in chemistry series 1964, 43, 112.
16. Barnett, T. P.; Adam, J. C.; Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438 (7066), 303–309.
17. Serreze, M. C.; Barry, R. G. Processes and impacts of Arctic amplification: A research synthesis. Global and planetary change 2011, 77 (1-2), 85–96.
18. Solangi, A. R. Icing effects on power lines and anti-icing and de-icing methods. 2018.
19. Qiu, L.; Nixon, W. A. Effects of adverse weather on traffic crashes: systematic review and meta-analysis. Transportation Research Record 2008, 2055 (1), 139–146.
20. Akhtar, S.; Xu, M.; Mohit, M.; Sasmito, A. P. A comprehensive review of modeling water solidification for droplet freezing applications. Renewable and Sustainable Energy Reviews 2023, 188, 113768.
21. Hindmarsh, J.; Russell, A.; Chen, X. Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet. International Journal of Heat and Mass Transfer 2003, 46 (7), 1199–1213.
22. Meng, Z.; Zhang, P. Dynamic propagation of ice-water phase front in a supercooled water droplet. International Journal of Heat and Mass Transfer 2020, 152, 119468.
23. Petrenko, V. F.; Whitworth, R. W. Physics of ice. 1999.
24. Gibbs, J. W. On the equilibrium of heterogeneous substances. American journal of science 1878, 3 (96), 441–458.
25. Mullin, J. W. Crystallization. 2001.
26. Fletcher, N. H. Size effect in heterogeneous nucleation. The Journal of chemical physics 1958, 29 (3), 572–576.
27. Liu, C.; Cheng, Q.; Li, B.; Liu, X.; Rao, Z. Recent advances of sugar alcohols phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews 2023, 188, 113805.
28. Xu, Z.; Wang, G.; Li, S.; Li, D.; Zhou, W.; Yang, C.; Sun, H.; Liu, Y. Thermodynamic mechanisms governing icing: Key insights for designing passive anti-icing surfaces. iScience 2025, 28 (2).
29. Pourbagian, M.; Habashi, W. G. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode. International Journal of Heat and Fluid Flow 2015, 54, 167–182.
30. Yang, S.; Li, Q.; Du, B.; Ying, Y.; Zeng, Y.; Jin, Y.; Qin, X.; Gao, S.; Wang, S.; Wang, Z. Photothermal superhydrophobic copper nanowire assemblies: fabrication and deicing/defrosting applications. International Journal of Extreme Manufacturing 2023, 5 (4), 045501.
31. Zhao, Z.; Chen, H.; Liu, X.; Wang, Z.; Zhu, Y.; Zhou, Y. The development of electric heating coating with temperature controlling capability for anti-icing/de-icing. Cold regions science and technology 2021, 184, 103234.
32. Su, X.; Lai, Y.; Liu, Y.; Ma, D.; Wang, P. Research of deicing and melting snow on airport asphalt pavement by carbon fiber heating wire. Advances in Materials Science and Engineering 2020, 2020 (1), 5209350.
33. Li, H.; Zhang, Q.; Xiao, H. Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites. Cold Regions Science and Technology 2013, 86, 22–35.
34. Shah, A.; Niksan, O.; Jain, M. C.; Colegrave, K.; Wagih, M.; Zarifi, M. H. Microwaves see thin ice: A review of ice and snow sensing using microwave techniques. IEEE Microwave Magazine 2023, 24 (10), 24–39.
35. Hansman Jr, R. J. Microwave ice prevention system. 1982.
36. Suslick, K. S. Sonochemistry. science 1990, 247 (4949), 1439–1445.
37. Jiang, X.; Wang, Y. Studies on the electro-impulse de-icing system of aircraft. Aerospace 2019, 6 (6), 67.
38. Wang, Y.; Jiang, X. Design research and experimental verification of the electro-impulse de-icing system for wind turbine blades in the xuefeng mountain natural icing station. IEEE Access 2020, 8, 28915–28924.
39. Zhao, Y.; Peng, Y.; Zhao, Q.; Chen, Y.; Chu, X. Preparation of a green sustained-release microcapsule-type anti-icing agent for asphalt pavement and its application demonstration project. ACS omega 2023, 8 (5), 4906–4920.
40. Zhang, Q.; Chen, Y.; Liu, R.; Luo, J. Efficiently all-weather anti-icing and de-icing coatings enabled by polyaniline microcapsules encapsulated phase change materials. Chemical Engineering Journal 2024, 499, 156122.
41. Rekuviene, R.; Saeidiharzand, S.; Mažeika, L.; Samaitis, V.; Jankauskas, A.; Sadaghiani, A. K.; Gharib, G.; Muganlı, Z.; Koşar, A. A review on passive and active anti-icing and de-icing technologies. Applied Thermal Engineering 2024, 250, 123474.
42. He, Z.; Wang, J. Anti-icing strategies are on the way. The Innovation 2022, 3 (5).
43. He, H.; Guo, Z. Superhydrophobic materials used for anti-icing Theory, application, and development. Iscience 2021, 24 (11).
44. Richard, D.; Clanet, C.; Quéré, D. Contact time of a bouncing drop. Nature 2002, 417 (6891), 811–811.
45. Guo, C.; Zhang, M.; Hu, J. Icing delay of sessile water droplets on superhydrophobic titanium alloy surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 621, 126587.
46. Hou, W.; Shen, Y.; Tao, J.; Xu, Y.; Jiang, J.; Chen, H.; Jia, Z. Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 586, 124180.
47. Zhang, Y.; Li, X.; Lu, L.; Guan, Y. Anti-icing polyurethane coating on glass fiber-reinforced plastics induced by femtosecond laser texturing. Applied Surface Science 2024, 662, 160077.
48. Wang, L.; Jiang, G.; Tian, Z.; Chen, C.; Hu, X.; Peng, R.; Zhang, H.; Fan, P.; Zhong, M. Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell? Materials Horizons 2023, 10 (1), 209–220.
49. Lu, Y. Temperature dependent anti-icing performance of the microstructure surface: wettability change and ice nucleation. Coatings 2023, 13 (9), 1485.
50. Yang, Q.; Zhu, Z.; Tan, S.; Luo, Y.; Luo, Z. How micro-/nanostructure evolution influences dynamic wetting and natural deicing abilities of bionic lotus surfaces. Langmuir 2020, 36 (15), 4005–4014.
51. Wong, T.-S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477 (7365), 443–447.
52. Zehui, Z.; Zelinlan, W.; Guang, L.; Dengke, C.; Kaiteng, Z.; Yantong, Z.; Jichen, C.; Shize, S.; Xiaolin, L.; Huawei, C. Liquid-like slippery surface with passive-multi active strategy integration for anti-icing/de-icing. Chemical Engineering Journal 2023, 474, 145541.
53. Sakuraba, K.; Kitano, S.; Kowalski, D.; Aoki, Y.; Habazaki, H. Slippery liquid-infused porous surfaces on aluminum for corrosion protection with improved self-healing ability. ACS applied materials & interfaces 2021, 13 (37), 45089–45096.
54. del Campo, A.; Greiner, C. SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. Journal of micromechanics and microengineering 2007, 17 (6), R81.
55. Wang, C.; Chen, Y. S.; Chen, L. J. Evaporation-indu∘ed deposition morphology of suspension droplets on hydrophobic surfaces manipulated by controlling the relative humidity. International Journal of Heat and Mass Transfer 2023, 202, 123709.
56. Krishna, A.; Aravinda, L.; Murugan, A.; Kumar, N. S.; Sankar, M. R.; Reddy, K. N.; Balashanmugam, N. A study on wafer scalable, industrially applicable CNT based nanocomposites of Al-CNT, Cu-CNT, Ti-CNT, and Ni-CNT as thermal interface materials synthesised by thin film techniques. Surface and Coatings Technology 2022, 429, 127926.
57. Simoncelli, M.; Mauri, F.; Marzari, N. Thermal conductivity of glasses: first-principles theory and applications. npj computational materials 2023, 9 (1), 106.
58. Nosonovsky, M.; Bhushan, B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Current Opinion in Colloid & Interface Science 2009, 14 (4), 270–280.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99287-
dc.description.abstract本研究針對液滴濕潤行為與抗冰性能,系統性比較不同微結構設計與表面改質方式在兩種表面基材(NOA65與sol-gel)上的影響,並評估單層與雙層微/奈米粗糙度結構的抗冰效能。透過製備一系列具有方柱微結構的樣品,分別應用物理吸附型防潑水劑(市售型防潑水劑Glaco)與化學矽烷化修飾(十八烷基三氯矽烷OTS)賦予表面疏水性,並進行接觸角、滑動角以及結冰實驗之量測與行為分析。
NOA65樣品經Glaco處理形成雙層微奈米結構表面,在室溫下展現出前進與後退接觸角皆超過150度且滑動角低於5度的超疏水特性。變溫實驗中,液滴於冷卻過程發生Cassie至Wenzel態轉變並出現冰橋,導致接觸角劇降;融冰後則觀察到液滴可自發回復高接觸角,顯示強烈去濕潤傾向。定溫實驗顯示,在高濕度條件下,NOA65雙層表面因塗層物理吸附不穩,冷凝水滲入結構間隙破壞氣墊層,導致抗冰時長無顯著優勢,反而單層塗佈Teflon樣品在乾燥環境中表現出2000秒以上不結冰的穩定行為,說明熱傳導係數與塗層一致性對抗冰效果具決定性影響。
Sol-gel基材透過共價矽烷化改質方式提升塗層穩定性,於高溫燒結下製備之雙層結構具備微柱與均勻奈米粒子覆蓋,展現高接觸角與滑動角小於5°的超疏水性能。在定溫結冰實驗中(表面溫度約為 −19.5 ± 0.2 °C),單層結構因低溫下濕潤狀態轉變,隨柱高增加導致接觸面積上升,結冰時間反而縮短,平面樣品平均結冰時間為973秒。相較之下,雙層結構於低柱高下可維持穩定氣墊層,有效延緩冰晶成核,平均結冰時間可達4521.5秒,顯示顯著抗冰潛力,但是當柱高超過臨界值後,氣墊層穩定性下降,延遲效益隨之減弱,平均結冰時間減為270.9 ± 213.1秒。
變溫實驗進一步揭示Sol-gel雙層表面具冰橋形成、去濕潤回復Cassie狀態與接觸角恢復的能力,且該回復行為與柱高緊密相關,較高結構有利於氣墊穩定與氣流導引,提升融冰後的接觸角與液滴脫附能力。
zh_TW
dc.description.abstractThis study systematically investigates the effects of various microstructure designs and surface modification methods on droplet wetting behavior and anti-icing performance, using two types of substrate materials: NOA65 and sol-gel. The anti-icing capabilities of surfaces with single- and dual-scale micro/nanostructured roughness were evaluated. A series of samples with square micropillar structures were fabricated and subjected to hydrophobic treatment through either physical adsorption of a commercial water-repellent agent (Glaco) or chemical silanization with octadecyltrichlorosilane (OTS). Measurements of contact angle, sliding angle, and icing behavior were conducted to analyze surface properties and phase transitions.
NOA65 samples treated with Glaco exhibited dual-scale micro/nanostructures, showing superhydrophobicity at room temperature, with both advancing and receding contact angles exceeding 150° and sliding angles below 5°. During dynamic icing experiments, droplets underwent a Cassie-to-Wenzel state transition accompanied by ice bridge formation, resulting in a sharp decline in contact angle. However, after melting, droplets were observed to spontaneous dewetting transition and recover high contact angles. In contrast, isothermal temperature freezing tests under even low humidity revealed that the physically adsorbed coating on NOA65 lacked stability; infiltrating condensate disrupted the air cushion layer, leading to no significant improvement in icing delay. Conversely, single-layer Teflon-coated samples demonstrated robust anti-icing performance in dry environments, with droplets remaining unfrozen for over 2000 seconds, highlighting the critical roles of thermal conductivity and coating uniformity in determining anti-icing effectiveness.
The sol-gel substrate was modified via covalent silanization to enhance coating stability. The fabricated dual-scale structures, prepared through high-temperature sintering, featured micropillars uniformly covered with silica nanoparticles, exhibiting superhydrophobic properties characterized by a high dynamic contact angle and a sliding angle below 5°. In the isothermal icing experiments (surface temperature approximately −19.5 ± 0.2 °C), the single-layer structures exhibited a decrease in freezing time with increasing pillar height. This behavior is attributed to the wetting state transition under low temperatures, where larger pillar heights led to increased solid–liquid contact area and promoted heterogeneous nucleation. The average freezing time on the flat surface was 973 seconds. In contrast, the dual-layer structures demonstrated significantly enhanced anti-icing performance. At lower pillar heights, a stable air cushion was maintained, effectively delaying ice nucleation, with the average freezing time reaching up to 4521.5 seconds. However, when the pillar height exceeded a critical threshold, the air cushion became unstable, leading to increased contact and reduced freezing delay, with the average freezing time dropping to 270.9 ± 213.1 seconds. Dynamic icing experiments further revealed that sol-gel dual-layer surfaces exhibited ice bridge formation, dewetting recovery to the Cassie state, and contact angle restoration. These recovery behaviors were strongly correlated with pillar height. Taller structures favored air cushion stability and airflow guidance, enhancing post-melting contact angle and droplet shedding capability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:08:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T17:08:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
摘要 ii
Abstract iii
目次 v
圖次 viii
表次 xi
第一章 前言 1
第二章 文獻回顧 3
2.1 濕潤現象簡介 3
2.1.1 理想表面上之濕潤行為 3
2.1.2 非理想表面上之濕潤行為 4
2.2 動態接觸角 7
2.2.1前進接觸角、後退接觸角與遲滯接觸角 7
2.2.2 滑動角 8
2.3 結冰現象與問題 9
2.4 液滴結冰機制 10
2.4.1 冰晶成核與成長 11
2.5 主動抗冰技術 13
2.5.1 熱能型方法 13
2.5.2 機械型方法 14
2.5.3 化學型方法 14
2.6 被動抗冰技術 15
2.6.1 超疏水表面 15
2.6.2 光滑注液多孔表面 17
第三章 實驗方法 18
3.1 實驗藥品與器材 18
3.2 實驗裝置 19
3.2.1 實驗用操作儀器 19
3.2.2 實驗測量分析儀器 19
3.2.3 其餘實驗用器材 20
3.3 樣品製備流程 20
3.3.1 半導體微影蝕刻製備具有微米結構SU-8母片 20
3.3.2 PDMS印章模型製作 21
3.3.3 軟壓印法及UV光固化法製備NOA65樣品 22
3.3.4 軟壓印法製備Sol-Gel樣品 24
3.4 前進接觸角、後退接觸角與滑動角測量 27
3.4.1 埋針法測量前進接觸角與後退接觸角 27
3.4.2 滑動角測量 29
3.5 液滴結冰實驗 29
3.5.1 靜態結冰實驗 29
3.5.2 動態結冰實驗 30
第四章 結果與討論 32
4.1 NOA65表面的抗冰行為探討 32
4.1.1 NOA65表面的規格與接觸角量測 32
4.1.2 NOA65表面之定溫結冰分析 39
4.1.3 NOA65表面之變溫結冰分析 41
4.2 Sol-gel表面的抗冰行為探討 50
4.2.1 Sol-gel表面的規格與接觸角量測 50
4.2.2 Sol-gel表面之定溫結冰分析 57
4.2.3 Sol-gel表面之變溫結冰分析 59
第五章 結論 67
參考文獻 69
附錄 74
-
dc.language.isozh_TW-
dc.subject超疏水表面zh_TW
dc.subject結冰延遲zh_TW
dc.subjectCassie 狀態zh_TW
dc.subjectWenzel 狀態zh_TW
dc.subject去濕潤轉換zh_TW
dc.subjectCassie stateen
dc.subjectsuperhydrophobic surfacesen
dc.subjectspontaneous dewetting transitionen
dc.subjectWenzel stateen
dc.subjecticing delayen
dc.title微奈米結構與表面改質對液滴濕潤狀態轉變及抗冰行為分析zh_TW
dc.titleEffects of Micro/Nano-Structures and Surface Modification on Droplet Wetting Transitions and Anti-Icing Behavioren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee崔宏瑋;李旻璁zh_TW
dc.contributor.oralexamcommitteeHung-Wei Tsui;Ming-Tsung Leeen
dc.subject.keyword超疏水表面,結冰延遲,Cassie 狀態,Wenzel 狀態,去濕潤轉換,zh_TW
dc.subject.keywordsuperhydrophobic surfaces,icing delay,Cassie state,Wenzel state,spontaneous dewetting transition,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202503444-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf6.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved