Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99285
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬zh_TW
dc.contributor.advisorChii-Wann Linen
dc.contributor.author林冠汝zh_TW
dc.contributor.authorKuan-Ju Linen
dc.date.accessioned2025-08-21T17:07:38Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1] 衛生福利部國民健康署. 全國社區失智症流行病學調查結果. https: //www.mohw.gov.tw/cp-16-78102-1.html, 2023.
[2] Alzheimer’s Disease International. World alzheimer report 2015: The global impact of dementia–an analysis of prevalence, incidence, cost and trends, 2015. Accessed: 2025-06-28.
[3] World Health Organization. Dementia. Fact sheet, 2025. Accessed: 2025-06-30.
[4] Alzheimer’s Association. Stages of alzheimer’s disease, 2025. Accessed: 2025-07- 04.
[5] Ziad S Nasreddine, Natalie A Phillips, Valérie Bédirian, Simon Charbonneau, Vic- tor Whitehead, Isabelle Collin, Jeffrey L Cummings, and Howard Chertkow. The montreal cognitive assessment, moca: a brief screening tool for mild cognitive im- pairment. Journal of the American Geriatrics Society, 53(4):695–699, 2005.
[6] Guy M McKhann, David S Knopman, Howard Chertkow, Bradley T Hyman, Clif- ford R Jack Jr, Claudia H Kawas, William E Klunk, Walter J Koroshetz, Jennifer J Manly, Richard Mayeux, et al. The diagnosis of dementia due to alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association work-groups on diagnostic guidelines for alzheimer’s disease. Alzheimer’s & dementia, 7(3):263–269, 2011.
[7] James M. Noble and Nikolaos Scarmeas. Chapter 7 Application of Pet Imaging to Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment1, pages 133–149. Elsevier, 2009.
[8] TreySunderland,GaryLinker,NadeemMirza,KarenTPutnam,DavidLFriedman, Lida H Kimmel, Judy Bergeson, Guy J Manetti, Matthew Zimmermann, Brian Tang, et al. Decreased 𝛽-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with alzheimer disease. Jama, 289(16):2094–2103, 2003.
[9] John Hardy and Gerald Higgins. Alzheimer’s disease: the amyloid cascade hypoth- esis. Science, 256(5054):184–185, 1992.
[10] H Braak and E Braak. Neuropathological stageing of alzheimer-related changes. Acta Neuropathologica, 82(4):239–259, 1991.
[11] Michael T. Heneka et al. Neuroinflammation in alzheimer’s disease. Lancet Neurology, 14(4):388–405, 2015.
[12] Diego Mastroeni, Andrew Grover, Elaine Delvaux, Charisse Whiteside, Paul D Coleman, and Joseph Rogers. Epigenetic mechanisms in alzheimer’s disease. Neurobiology of aging, 32(7):1161–1180, 2011.
[13] Geraldine Zimmer-Bensch and Hans Zempel. Dna methylation in genetic and spo- radic forms of neurodegeneration: lessons from alzheimer’s, related tauopathies and genetic tauopathies. Cells, 10(11):3064, 2021.
[14] Vivek K Sharma, Vineet Mehta, and Thakur Gurjeet Singh. Alzheimer’s disor- der: epigenetic connection and associated risk factors. Current neuropharmacology, 18(8):740–753, 2020.
[15] Zhiying Chen, Moxin Wu, Qin Lai, Weixin Zhou, Xiaoqing Wen, and Xiaoping Yin. Epigenetic regulation of synaptic disorder in Alzheimer’s disease. Frontiers in Neuroscience, 16, aug 3 2022.
[16] Christian E. Cajavilca, Rajan R. Gadhia, and Gustavo C. Román. Mthfr Gene Mu- tations Correlate with White Matter Disease Burden and Predict Cerebrovascular Disease and Dementia. Brain Sciences, 9(9):211, aug 22 2019.
[17] Sun-Chong Wang, Beatrice Oelze, and Axel Schumacher. Age-Specific Epigenetic Drift in Late-Onset Alzheimer’s Disease. PLoS ONE, 3(7):e2698, jul 16 2008.
[18] Janou AY Roubroeks, Adam R Smith, Rebecca G Smith, Ehsan Pishva, Zina Ibrahim, Martina Sattlecker, Eilis J Hannon, Iwona Kłoszewska, Patrizia Mecocci, Hilkka Soininen, et al. An epigenome-wide association study of alzheimer’s disease blood highlights robust dna hypermethylation in the hoxb6 gene. Neurobiology of Aging, 95:26–45, 2020.
[19] Bertrand Hutlet, Nicolas Theys, Cécile Coste, Marie-Thérèse Ahn, Konstantin Doshishti-Agolli, Benoît Lizen, and Françoise Gofflot. Systematic expression anal- ysis of hox genes at adulthood reveals novel patterns in the central nervous system. Brain Structure and Function, 221:1223–1243, 2016.
[20] Janou AY Roubroeks, Adam R Smith, Rebecca G Smith, Ehsan Pishva, Zina Ibrahim, Martina Sattlecker, Eilis J Hannon, Iwona Kłoszewska, Patrizia Mecocci, Hilkka Soininen, et al. An epigenome-wide association study of alzheimer’s disease blood highlights robust dna hypermethylation in the hoxb6 gene. Neurobiology of Aging, 95:26–45, 2020.
[21] Raúl Fernández Pérez, Juan José Alba-Linares, Juan Ramón Tejedor, Agustín Fernández Fernández, Miguel Calero, Aurora Román-Domínguez, Consuelo Borrás, José Viña, Jesús Ávila, Miguel Medina, et al. Blood dna methyla- tion patterns in older adults with evolving dementia. The Journals of Gerontology: Series A, 77(9):1743–1749, 2022.
[22] Miren Altuna, Amaya Urdánoz-Casado, Javier Sánchez-Ruiz de Gordoa, María V Zelaya, Alberto Labarga, Julie MJ Lepesant, Miren Roldán, Idoia Blanco-Luquin, Álvaro Perdones, Rosa Larumbe, et al. Dna methylation signature of human hip- pocampus in alzheimer’s disease is linked to neurogenesis. Clinical epigenetics, 11:1–16, 2019.
[23] Adam Labadorf, Andrew G Hoss, Valentina Lagomarsino, Jeanne C Latourelle, Tiffany C Hadzi, Joli Bregu, Marcy E MacDonald, James F Gusella, Jiang-Fan Chen, Schahram Akbarian, et al. Rna sequence analysis of human huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PloS one, 10(12):e0143563, 2015.
[24] Maria Genua, Laurie-Amandine Garçon, Violette Mounier, Hillary Wehry, Arnaud Buhot, Martial Billon, Roberto Calemczuk, David Bonnaffé, Yanxia Hou, and Thierry Livache. Spr imaging based electronic tongue via landscape images for complex mixture analysis. Talanta, 130:49–54, 12 2014.
[25] Amirali Aghazadeh, Adam Y Lin, Mona A Sheikh, Allen L Chen, Lisa M Atkins, Coreen L Johnson, Joseph F Petrosino, Rebekah A Drezek, and Richard G Baraniuk. Universal microbial diagnostics using random dna probes. Science advances, 2(9):e1600025, 2016.
[26] Juewen Liu. Adsorption of dna onto gold nanoparticles and graphene oxide: sur- face science and applications. Physical chemistry chemical physics, 14(30):10485– 10496, 2012.
[27] Chia-Chen Chang, Nan-Fu Chiu, David Shenhsiung Lin, Yu Chu-Su, Yang-Hung Liang, and Chii-Wann Lin. High-sensitivity detection of carbohydrate antigen 15- 3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Analytical chemistry, 82(4):1207–1212, 2010.
[28] Shang-ChenHsieh,Chia-ChenChang,Chia-ChenLu,Chia-FongWei,Chuan-Sheng Lin, Hsin-Chih Lai, and Chii-Wann Lin. Rapid identification of mycobacterium tu- berculosis infection by a new array format-based surface plasmon resonance method. Nanoscale research letters, 7:1–6, 2012.
[29] Badreddine Douzi. Protein–protein interactions: Surface plasmon resonance. Bacterial Protein Secretion Systems: Methods and Protocols, pages 257–275, 2017.
[30] Chia-Chen Chang. Recent advancements in aptamer-based surface plasmon reso- nance biosensing strategies. Biosensors, 11(7):233, 2021.
[31] David G Myszka and Rebecca L Rich. Implementing surface plasmon resonance biosensors in drug discovery. Pharmaceutical science & technology today, 3(9):310– 317, 2000.
[32] Annette B Vogel, Isis Kanevsky, Ye Che, Kena A Swanson, Alexander Muik, Math- ias Vormehr, Lena M Kranz, Kerstin C Walzer, Stephanie Hein, Alptekin Güler, et al.A prefusion sars-cov-2 spike rna vaccine is highly immunogenic and prevents lung infection in non-human primates. BioRxiv, pages 2020–09, 2020.
[33] SoocheolKim,JinHwaRyu,HoesungYang,KyuwonHan,HyunseokKim,Kwang- soo Cho, Soyoung Park, Sang Gi Hong, and Kangbok Lee. Spectrometer-based wavelength interrogation spr imaging via hadamard transform. Optics Letters, 48(4):992–995, 2023.
[34] Kari Kukanskis, Jerome Elkind, Jose Melendez, Tiffany Murphy, Gregory Miller, and Harold Garner. Detection of dna hybridization using the tispr-1 surface plasmon resonance biosensor. Analytical biochemistry, 274(1):7–17, 1999.
[35] Jiandong Hu and Xiangyang Zhao. An improved centroid algorithm for a surface plasmon resonance bioanalyzer using microprocessors. In 2009 Symposium on Photonics and Optoelectronics, pages 1–4. IEEE, 2009.
[36] Al A Kolomenskii, PD Gershon, and HA Schuessler. Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Applied optics, 36(25):6539–6547, 1997.
[37] Kitsada Thadson, Suvicha Sasivimolkul, Phitsini Suvarnaphaet, Sarinporn Visitsat- tapongse, and Suejit Pechprasarn. Measurement precision enhancement of surface plasmon resonance based angular scanning detection using deep learning. Scientific Reports, 12(1):2052, 2022.
[38] E. Kretschmann and H. Raether. Notizen: Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 23(12):2135–2136, 1968.
[39] Marianne Frommer, Louise E McDonald, Douglas S Millar, Christina M Collis, Fu- jiko Watt, Geoffrey W Grigg, Peter L Molloy, and Cheryl L Paul. A genomic se- quencing protocol that yields a positive display of 5-methylcytosine residues in indi- vidual dna strands. Proceedings of the National Academy of Sciences, 89(5):1827– 1831, 1992.
[40] Kaori Tsukakoshi, Koichi Abe, Koji Sode, and Kazunori Ikebukuro. Selection of dna aptamers that recognize 𝛼-synuclein oligomers using a competitive screening method. Analytical chemistry, 84(13):5542–5547, 2012.
[41] SohamSarkar,AtanuMaity,AdityaSarmaPhukon,SoumadwipGhosh,andRajarshi Chakrabarti. Salt induced structural collapse, swelling, and signature of aggregation of two ssdna strands: insights from molecular dynamics simulation. The Journal of Physical Chemistry B, 123(1):47–56, 2018.
[42] Amit Nain, Yu-Ting Tseng, Shih-Chun Wei, Arun Prakash Periasamy, Chih-Ching Huang, Fan-Gang Tseng, and Huan-Tsung Chang. Capping 1, 3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. Journal of Hazardous Materials, 389:121821, 2020.
[43] HuangxianJu,BaofenYe,andJiayinGu.Supermolecularinteractionofferrocenium with yeast dna and application in electrochemical sensing for hybridization recogni- tion of yeast dna. Sensors, 4(5):71–83, 2004.
[44] Jaroslaw Drelich, Jan D Miller, and Jan Hupka. The effect of drop size on contact angle over a wide range of drop volumes. Journal of colloid and interface science, 155(2):379–385, 1993.
[45] Cynthia A Brewer, Geoffrey W Hatchard, and Mark A Harrower. Colorbrewer in print: a catalog of color schemes for maps. Cartography and geographic information science, 30(1):5–32, 2003.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99285-
dc.description.abstract阿茲海默症(AD)為最常見之神經退化性疾病,主要影響高齡族群,臨床上以漸進性認知功能衰退為特徵。傳統病理機制聚焦於 β 類澱粉蛋白(Aβ)沉積與 tau 蛋白形成之神經纖維異常纏繞;然而,近年研究指出,表觀遺傳調控亦參與疾病早期發展,尤以 DNA 甲基化異常被視為具潛力之早期生物標記。本研究針對 HOXB6 基因的 DNA 甲基化位點進行分析,該位點於多項阿茲海默症患者的全基因組甲基化資料中呈現顯著過度甲基化,可能與神經發育基因的表現失衡相關,參與早期病理機制。為探討其作為生物標記之可行性,本研究設計模擬甲基化與非甲基化狀態之單股 DNA(ssDNA)探針,並建構基於表面電漿子共振(SPR)技術之光學偵測平台,以評估該序列於不同金表面修飾條件下的分子吸附動力學與光學訊號表現。研究中設計四種具不同親疏水性與官能基的金屬修飾表面,針對甲基化、未甲基化及控制組 ssDNA 分別進行 SPR 測定,建立訊號熱圖並進行可視化分析。為解決 SPR 底角辨識受光譜不對稱干擾之問題,進一步開發自適應底角搜尋演算法,採用四層決策樹(Decision Tree)架構以自動辨識 SPR 光譜之底角位置,平均誤差僅 2.8 mdeg,顯著優於多項式擬合與質心法等傳統方法。最終將訊號特徵與底角變化進行主成分分析(PCA)投影,結果顯示在單一最適表面條件下即可達成 97.5\% 的平均準確率,兩類樣本的 F1-score 均接近 0.97,產生具穩定性與高鑑別力之分群。整體而言,本研究成功結合表面修飾策略與光譜特徵分析,建立一套無標記 SPR 偵測平台,具潛力應用於阿茲海默症相關表觀遺傳變化之早期診斷。zh_TW
dc.description.abstractAlzheimer's disease (AD) is the most common neurodegenerative disorder, primarily affecting the elderly population and clinically characterized by progressive cognitive decline. Traditionally, the pathological mechanisms of AD have been attributed to β-amyloid (Aβ) plaque accumulation and neurofibrillary tangles formed by tau protein. However, recent studies have indicated that epigenetic regulation also plays a critical role in the early development of the disease, with DNA methylation abnormalities recognized as potential early biomarkers. This study focuses on the DNA methylation site of the HOXB6 gene, which has been identified as significantly hypermethylated in multiple genome-wide methylation analyses of AD patient samples. Such abnormal methylation is presumed to be associated with impaired regulation of gene expression involved in neural development, potentially contributing to early pathogenic processes. To evaluate its biomarker potential, we designed synthetic single-stranded DNA (ssDNA) probes representing both methylated and unmethylated states of the target sequence, and established a label-free optical detection platform based on surface plasmon resonance (SPR) to assess the molecular absorbing dynamics and optical response under various gold surface modification conditions. Four gold surfaces with distinct hydrophobicity and functional group characteristics were modificated for the study. SPR measurements were conducted using methylated, unmethylated, and control ssDNA, followed by signal mapping and heatmap-based visualization. Furthermore, to address the issue of angle recognition errors caused by asymmetric SPR spectra, we developed an adaptive dip-angle detection algorithm based on a four-layer decision tree model, achieving an average prediction error of only 2.8 mdeg—markedly outperforming conventional polynomial fitting and centroid methods. Principal component analysis (PCA) was performed on the extracted signal features and dip-angle variations, revealing that under a single optimized surface condition, an average classification accuracy of 97.5\% was achieved. Both methylated and unmethylated samples yielded F1-scores of approximately 0.97, indicating highly stable and well-separated clustering performance. Overall, this study successfully combines surface modification strategies with spectral feature analysis to establish a label-free SPR detection platform with strong potential for the early diagnosis of Alzheimer's disease through epigenetic biomarker profiling.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:07:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T17:07:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書.......................... i
致謝.......................... iii
摘要 .......................... v
Abstract .......................... vii
目次 .......................... xi
圖次 .......................... xv
表次 .......................... xvii
符號列表 .......................... xix
第一章 緒論 .......................... 1
1 1.1 阿茲海默症(AD).......................... 1
1.1.1 流行病學與病程階段......................... 1
1.1.2 臨床症狀與診斷準則......................... 2
1.1.3 阿茲海默症病理假說......................... 3
1.2 表觀遺傳學於阿茲海默症之研究................... 4
1.2.1 表觀遺傳學的基本概念 ....................... 4
1.2.2 AD患者中的DNA甲基化異常現象................ 5
1.2.3 HOXB6基因的研究發現與潛力 .................. 5
1.2.4 HOXB6 在神經系統功能中的角色與阿茲海默症的潛在關聯 ....... 6
1.3 非專一性之模式辨認 (Pattern Recognition) .................................. 7
1.3.1 非專一性交互作用與訊號特徵擷取 ............................................ 8
1.3.2 應用於 DNA 甲基化狀態之分類辨識 .......................................... 9
1.4 表面電漿子共振 (SPR) 底角辨識 .............................................. 10
1.4.1 表面電漿子共振技術簡介 ...................................................... 10
1.4.2 SPR 與生物標記結合的優勢與限制 ............................................. 10
1.4.3 針對 SPR 曲線解析之動態區域決策回歸 (DR-DTR) 演算法設計與應用 .. 11
1.5 研究動機與目標 ............................................................... 12
1.5.1 研究背景與挑戰 .............................................................. 12
1.5.2 研究創新與核心技術整合 .................................................... 13
第二章 材料與方法 ...................................................... 15
2.1 表面電漿子共振原理與實驗儀器架構 .......................................... 15
2.1.1 表面電漿子共振原理 ......................................................... 15
2.1.2 表面電漿子共振儀實驗架構 .................................................. 16
2.2 DNA 序列設計與樣本準備 ..................................................... 17
2.2.1 甲基化基因轉換序列設計 ..................................................... 17
2.2.2 實驗目標序列與結構比較 ..................................................... 19
2.2.3 濃度梯度與樣本準備流程 ..................................................... 20
2.2.4 緩衝溶液選擇與鹽濃度設計 ................................................... 21
2.3 金屬感測晶片製作與表面修飾流程 ............................................. 22
2.3.1 SPR 感測晶片製備 ............................................................ 22
2.3.2 金屬表面修飾策略與處理條件設計 ............................................. 22
2.3.3 大氣電漿預處理流程 .......................................................... 23
2.3.4 SAM 化學修飾流程 ............................................................. 24
2.3.5 接觸角分析方法 .............................................................. 26
2.4 表面電漿子共振底角辨識演算法 .............................................. 27
2.4.1 底角精準辨識之重要性 ....................................................... 27
2.4.2 傳統底角定位演算法 ......................................................... 29
2.4.3 動態區域決策樹演算法 (DR-DTR) .............................................. 30
2.4.4 演算法流程與擬合邏輯 ....................................................... 31
2.4.5 模擬驗證與評估架構 ......................................................... 33
2.5 表面電漿子共振響應訊號分析 ................................................ 35
2.5.1 訊號特徵擷取與模型擬合 ..................................................... 35
2.5.2 資料正規化與熱圖視覺化 ..................................................... 37
2.5.3 降維與分類分析 .............................................................. 38
2.6 整體實驗架構與參數設計 ...................................................... 40
Chapter 3 實驗結果與討論 .................................................. 43
第三章 金表面修飾結果 ............................................................. 43
3.1.1 接觸角於不同表面之分析 ..................................................... 44
3.1.2 接觸角量測誤差來源與實驗控制 ............................................... 45
3.2 DR-DTR 演算法於底角辨識之精準度提升分析 ............................... 46
3.2.1 模擬模型下 DR-DTR 演算法效能評估 .......................................... 46
3.2.2 實驗數據中 DR-DTR 與多項式法比較 ......................................... 48
3.3 DNA 序列於不同表面之吸附行為分析 ........................................ 49
3.3.1 SPR 實驗響應訊號結果與曲線解析 ............................................. 49
3.3.2 熱圖結果 ................................................................ 50
3.3.3 Langmuir 模型參數之吸附行為分析 .............................................. 52
3.3.4 初始反射率變化 (Initial ΔR) .................................................. 53
3.3.5 折射率下降值 (ΔRID) .......................................................... 53
3.3.6 角度變化 (ΔAngle) ............................................................. 53
3.4 演算法與多特徵分析 ........................................................... 54
3.4.1 整體 PCA 分析與特徵權重分析 .................................................. 54
3.4.2 不同表面條件下的 PCA 分群效能比較 .......................................... 56
3.4.3 綜合比較與最適表面條件歸納(表面 C) ....................................... 57
3.4.4 表面 C 之三重複穩定性驗證 .................................................... 58
3.4.5 SVM 分類效能於表面 C 之驗證 ................................................ 60
第四章 結論與未來展望 .................................................. 63
4.1 研究成果與結論 ............................................................. 63
4.2 應用潛力與技術貢獻 .......................................................... 64
4.2.1 未來展望與研究建議 .......................................................... 65
4.2.2 總結與願景 ................................................................ 66
參考文獻 .................................................................. 67
-
dc.language.isozh_TW-
dc.subject阿茲海默症zh_TW
dc.subject表觀基因組關聯研究zh_TW
dc.subjectHOXB6 基因甲基化zh_TW
dc.subject金表面化學修飾zh_TW
dc.subject表面電漿子共振儀zh_TW
dc.subject動態區域決策樹演算法zh_TW
dc.subjectHOXB6 Gene Methylationen
dc.subjectAlzheimer’s Disease (AD)en
dc.subjectDynamic Region Decision Tree Regression (DR-DTR) Algorithmen
dc.subjectSurface Plasmon Resonance (SPR) Sensoren
dc.subjectGold Surface Chemical Modificationen
dc.subjectEpigenome-Wide Association Study (EWAS)en
dc.title基於表面電漿子共振技術與機器學習進行阿茲海默症表觀遺傳變化之模式辨識分析zh_TW
dc.titleLabel-Free Detection of Epigenetic Changes in Alzheimer's Disease via Surface Modified SPR Platforms and Machine Learning analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宗宏;林靜嫻zh_TW
dc.contributor.oralexamcommitteeZong-Hong Lin;Chin-Hsien Linen
dc.subject.keyword阿茲海默症,表觀基因組關聯研究,HOXB6 基因甲基化,金表面化學修飾,表面電漿子共振儀,動態區域決策樹演算法,zh_TW
dc.subject.keywordAlzheimer’s Disease (AD),Epigenome-Wide Association Study (EWAS),HOXB6 Gene Methylation,Gold Surface Chemical Modification,Surface Plasmon Resonance (SPR) Sensor,Dynamic Region Decision Tree Regression (DR-DTR) Algorithm,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202502404-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf25.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved