請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99282完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳日騰 | zh_TW |
| dc.contributor.advisor | Rih-Teng Wu | en |
| dc.contributor.author | 黎哲銘 | zh_TW |
| dc.contributor.author | Che-Ming Li | en |
| dc.date.accessioned | 2025-08-21T17:06:59Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | R. Sabelli, S. Mahin, and C. Chang. Seismic demands on steel braced frame buildings with buckling-restrained braces. Engineering Structures, 25(5):655–666, 2003. Advanced Stability and Seismicity Concepts for Performance-Based Design of Steel and Composite Structures - A Tribute to Dr Egor Popov.
Shawn Kiggins and Chia-Ming Uang. Reducing residual drift of buckling-restrained braced frames as a dual system. Engineering Structures, 28(11):1525–1532, 2006. Christopher Ariyaratana and Larry A. Fahnestock. Evaluation of buckling-restrained braced frame seismic performance considering reserve strength. Engineering Structures, 33(1):77–89, 2011. J. Enrique Luco. Effects of soil– structure interaction on seismic base isolation. Soil Dynamics and Earthquake Engineering, 66:167–177, 2014. Ari Sihvola. Metamaterials in electromagnetics. Metamaterials, 1(1):2–11, 2007. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305(5685):788–792, 2004. Kebin Fan and Willie J. Padilla. Dynamic electromagnetic metamaterials. Materials Today, 18(1):39–50, 2015. Yongdong Jin. Engineering plasmonic gold nanostructures and metamaterials for biosensing and nanomedicine. Advanced Materials, 24(38):5153–5165, 2012. Muhammad Zada, Izaz Ali Shah, and Hyoungsuk Yoo. Metamaterial-loaded compact high-gain dual-band circularly polarized implantable antenna system for multiple biomedical applications. IEEE Transactions on Antennas and Propagation, 68(2):1140–1144, 2020. Sultan Mahmud, Ali Nezaratizadeh, Alfredo Bayu Satriya, Yong-Kyu Yoon, John S. Ho, and Adam Khalifa. Harnessing metamaterials for efficient wireless power transfer for implantable medical devices. Bioelectronic Medicine, 10(7), 2024. Steven A Cummer and David Schurig. One path to acoustic cloaking. New Journal of Physics, 9(3):45, mar 2007. Huanyang Chen and C. T. Chan. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18):183518, 11 2007. Nansha Gao, Zhicheng Zhang, Jie Deng, Xinyu Guo, Baozhu Cheng, and Hong Hou. Acoustic metamaterials for noise reduction: A review. Advanced Materials Technologies, 7(6):2100698, 2022. Ian G. Buckle and Ronald L. Mayes. Seismic isolation: History, application, and performance—a world view. Earthquake Spectra, 6(2):161–201, 1990. T.T. Soong and B.F. Spencer. Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 24(3):243–259, 2002. G. E. M. Jauncey. The scattering of x-rays and bragg’s law. Proceedings of the National Academy of Sciences,10(2):57–60, 1924. P. H. Dederichs. Diffuse scattering from defect clusters near bragg reflections. Phys. Rev. B, 4:1041–1050, Aug 1971. NW Ashcroft. Solid state physics. Thomson Learning, 39, 1976. Peter J. Martin, Bruce G. Oldaker, Andrew H. Miklich, and David E. Pritchard. Bragg scattering of atoms from a standing light wave. Phys. Rev. Lett., 60:515–518, Feb 1988. G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, and W. D. Phillips. Bragg scattering from atoms in optical lattices. Phys. Rev. Lett., 75:2823–2826, Oct 1995. W. Witarto, S. J. Wang, C. Y. Yang, J. Wang, Y. L. Mo, K. C. Chang, and Y. Tang. Three-dimensional periodic materials as seismic base isolator for nuclear infrastructure. AIP Advances, 9(4):045014, 04 2019. Lei Gao, Chenzhi Cai, Cheuk Ming Mak, Xuhui He, Yunfeng Zou, and Dizi Wu. Surface wave attenuation by periodic hollow steel trenches with bragg band gap and local resonance band gap. Construction and Building Materials, 356:129289, 2022. Zhengyou Liu, Xixiang Zhang, Yiwei Mao, Yan Yang Zhu, Zhiyu Yang, Che Ting Chan, and Ping Sheng. Locally resonant sonic materials. science, 289(5485):1734–1736, 2000. Marco Miniaci, Anastasiia Krushynska, Federico Bosia, and Nicola M Pugno. Large scale mechanical metamaterials as seismic shields. New Journal of Physics, 11, 2016. Antonio Palermo, Matteo Vitali, and Alessandro Marzani. Metabarriers with multi-mass locally resonating units for broad band rayleigh waves attenuation. Soil Dynamics and Earthquake Engineering, 113:265–277, 2018. F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sánchez-Dehesa, C. López, and J. Llinares. Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal. Phys. Rev. B, 59:12169–12172, May 1999. S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau. Experiments on seismic metamaterials: Molding surface waves. Phys. Rev. Lett., 112:133901, Mar 2014. Xingbo Pu, Qingjuan Meng, and Zhifei Shi. Experimental studies on surface-wave isolation by periodic wave barriers. Soil Dynamics and Earthquake Engineering, 130:106000, 2020. C. T. Chan, Jensen Li, and K. H. Fung. On extending the concept of double negativity to acoustic waves. Journal of Zhejiang University-SCIENCE A, 7(1):24–28, 2006. Graeme W Milton and John R Willis. On modifications of newton’s second law and linear continuum elastodynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2079):855–880, 2007. Yi Zeng, Pai Peng, Qiu-Jiao Du, Yue-Sheng Wang, and Badreddine Assouar. Sub-wavelength seismic metamaterial with an ultra-low frequency bandgap. Journal of Applied Physics, 128(1):014901, 07 2020. Younes Achaoui, Bogdan Ungureanu, Stefan Enoch, Stéphane Brûlé, and Sébastien Guenneau. Seismic waves damping with arrays of inertial resonators. Extreme Mechanics Letters, 8:30–37, 2016. Nanomechanics: Bridging Spatial and Temporal Scales. J. Huang and Z. Shi. Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves. Journal of Sound and Vibration, 332(19):4423–4439, 2013. Qiujiao Du, Yi Zeng, Guoliang Huang, and Hongwu Yang. Elastic metamaterial-based seismic shield for both lamb and surface waves. AIP Advances, 7(7):075015, 07 2017. Ting Li, Qian Su, and Sakdirat Kaewunruen. Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track-soil dynamic interactions. Construction and Building Materials, 260:119936, 2020. Kai Zhang, Jie Luo, Fang Hong, and Zichen Deng. Seismic metamaterials with cross-like and square steel sections for low-frequency wide band gaps. Engineering Structures, 232:111870, 2021. Ting Ting Huang, Xin Ren, Yi Zeng, Yi Zhang, Chen Luo, Xiang Yu Zhang, and Yi Min Xie. Based on auxetic foam: A novel type of seismic metamaterial for lamb waves. Engineering Structures, 246:112976, 2021. Gaofeng Jia and Zhifei Shi. A new seismic isolation system and its feasibility study. Earthquake Engineering and Engineering Vibration, 9(1):75–82, 2010. H J Xiang, Z F Shi, S J Wang, and Y L Mo. Periodic materials-based vibration attenuation in layered foundations: experimental validation. Smart Materials and Structures, 21(11):112003, sep 2012. Z.B. Cheng and Z.F. Shi. Composite periodic foundation and its application for seismic isolation. Earthquake Engineering & Structural Dynamics, 47(4):925–944, 2018. Francesco Basone, Moritz Wenzel, Oreste S. Bursi, and Marinella Fossetti. Finite locally resonant metafoundations for the seismic protection of fuel storage tanks. Earthquake Engineering & Structural Dynamics, 48(2):232–252, 2019. A. Gupta, R. Sharma, and A. Thakur. Metamaterial foundation for seismic wave attenuation for low and wide frequency band. Scientific Reports, 13, 2023. H.H. Huang, C.T. Sun, and G.L. Huang. On the negative effective mass density in acoustic metamaterials. International Journal of Engineering Science, 47(4):610–617, 2009. H.H. Huang and C.T. Sun. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics, 11, 2019. H. Jung, G. Kim, and C. Park. Impact factors of bridges based on natural frequency for various superstructure types. KSCE Journal of Civil Engineering, 17:458–464, 2013. M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani. Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B, 49:2313–2322, Jan 1994. Jan Achenbach. Wave propagation in elastic solids. Elsevier, 1973. B. Manzanares-Martínez and F. Ramos-Mendieta. Sagittal acoustic waves in phononic crystals: k-dependent polarization. Phys. Rev. B, 76:134303, Oct 2007. Timothy D. Ancheta, Robert B. Darragh, Jonathan P. Stewart, Emel Seyhan, Walter J. Silva, Brian S.-J. Chiou, Katie E. Wooddell, Robert W. Graves, Albert R. Kottke, David M. Boore, Tadahiro Kishida, and Jennifer L. Donahue. Nga-west2 database. Earthquake Spectra, 30(3):989–1005, 2014. C.S. Oliveros, J.F. Correal, F.A. Galvis, and J.C. Reyes. Characterizing the free-vibration response of a two-span rocking bridge with free-standing columns. Engineering Structures, 321:118830, 2024. Marco Gatti. Structural health monitoring of an operational bridge: A case study. Engineering Structures, 195:200–209, 2019. Zhao-Dong Xu and Zhishen Wu. Energy damage detection strategy based on acceleration responses for long-span bridge structures. Engineering Structures, 29(4):609–617, 2007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99282 | - |
| dc.description.abstract | 隨著對結構耐震性能要求的提升,地震超材料近年來逐漸被視為一項具發展潛力的創新抗震解決方案,能夠削弱地震波傳遞時所攜帶的震動能量,進而保護結構物不受地震災害所破壞。然而,現有的地震超材料設計方法多仰賴耗時的反覆試誤程序,使得帶隙特性的精確控制以及單元晶格數量之最佳配置難以達成,進而限制其後續之應用發展。本研究提出一套以局部共振機制為基礎的理論導向設計框架,基於理論公式所揭示的關鍵見解,協助工程師依據不同應用場景調整單元晶格之材料性質與幾何參數,進而設計出具備目標帶隙的地震超材料。同時,透過無因次位移包絡線的推導,可以有效率地估算達成使用者所設定衰減效能所需的單元晶格數量。為有效衰減低頻地震波,本研究開發出一種三維地震超材料單元晶格,具備1.6至2.7Hz的帶隙頻率範圍,並推導其對應之無因次位移包絡線,作為設計框架的應用範例之一。另一方面,為驗證其工程應用之可行性,進一步將該單元晶格嵌入於傳統橋梁結構中的淺基礎與沉箱基礎系統,構建地震超材料嵌入式橋梁模型(seismic metamaterial-embedded bridge models),作為新型耐震橋梁設計之應用實例,並透過頻率掃描分析與時間歷時分析評估其波動衰減效能。頻率掃描分析結果顯示,兩種橋梁模型皆在帶隙範圍內展現顯著的波動衰減能力,在特定激振方向下,最大衰減率超過98%,且所有方向之衰減效能皆維持在86%以上。此外,歷時分析亦顯示,在多組地震加速度紀錄下,橋面板、橋墩帽與橋柱等構件的加速度反應皆明顯降低。其中,淺基礎模型之最大衰減率分別為49%、87%與80%;沉箱基礎模型則為39%、90%與79%。整體而言,本研究所提出之設計框架及其橋梁應用案例,不僅促進地震超材料的發展與工程實務之應用,也展現其在基礎設施中的抗震韌性提升效果,以及作為未來耐震設計方案之潛力。 | zh_TW |
| dc.description.abstract | With increasing emphasis on improving structural resilience, seismic metamaterials have emerged as a promising and innovative solution for earthquake protection. By attenuating vibrational energy during wave propagation, they help safeguard structures against earthquake-induced damage. Despite their potential, designing such materials remains challenging due to reliance on time-intensive trial-and-error methods, which hinder precise control over bandgap characteristics and the optimal configuration of unit cells for effective wave attenuation. In this study, a theory-driven design framework for seismic metamaterials is proposed, grounded in the local resonance mechanism. The proposed framework allows engineers to customize material properties and geometric parameters to achieve a desired bandgap, while also utilizing dimensionless displacement envelopes to efficiently estimate the required number of unit cells to meet user-defined attenuation targets. A three-dimensional seismic metamaterial unit cell is developed, exhibiting a bandgap between 1.6 and 2.7 Hz. To demonstrate their feasibility for engineering implementation, the unit cells are embedded into conventional shallow and caisson foundation systems to construct seismic metamaterial-integrated (SM-embedded) bridge models. Frequency sweep analysis reveals that both SM-embedded models achieve significant wave attenuation within the bandgap, with peak attenuation rates surpassing 98% in certain excitation directions and maintaining over 86% across all directions. Time history analyses under various ground motion records further confirm notable reductions in structural accelerations at the deck, pier cap, and column. Maximum attenuation rates reach 49%, 87%, and 80% for the shallow foundation model, and 39%, 90%, and 79% for the caisson foundation model. Overall, these findings underscore the effectiveness of the proposed design framework in advancing the development and real-world integration of seismic metamaterials for earthquake-resilient infrastructure. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:06:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T17:06:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xv Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Research Objective and Contribution . . . . . . . . . . . . . . . . . 7 1.4 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 2 Methodology 11 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Local Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Two-Stage Design Framework . . . . . . . . . . . . . . . . . . . . . 14 2.4 Seismic Metamaterial Design . . . . . . . . . . . . . . . . . . . . . 17 2.5 Derivation of Dimensionless Displacement Envelopes . . . . . . . . 19 2.6 Validation of Dimensionless Displacement Envelopes . . . . . . . . . 22 2.7 Seismic Metamaterial-Embedded Bridge Models . . . . . . . . . . . 27 2.8 Frequency Sweep Analysis . . . . . . . . . . . . . . . . . . . . . . . 30 2.9 Time History Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter 3 Results and Discussions 35 3.1 Frequency Sweep Analysis . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Time History Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Frequency Spectrum vs. Attenuation Zone Alignment . . . . . . . . 59 3.3.2 Acceleration Response Spectrum Analysis . . . . . . . . . . . . . . 62 Chapter 4 Conclusion 65 4.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Limitation and Future Works . . . . . . . . . . . . . . . . . . . . . . 67 References 71 | - |
| dc.language.iso | en | - |
| dc.subject | 地震超材料 | zh_TW |
| dc.subject | 超材料設計 | zh_TW |
| dc.subject | 局部共振 | zh_TW |
| dc.subject | 波衰減 | zh_TW |
| dc.subject | 超材料嵌入式基礎 | zh_TW |
| dc.subject | 耐震橋梁設計 | zh_TW |
| dc.subject | local resonance | en |
| dc.subject | seismic metamaterials | en |
| dc.subject | earthquake-resilient bridge design | en |
| dc.subject | metamaterial-embedded foundation | en |
| dc.subject | wave attenuation | en |
| dc.subject | metamaterial design | en |
| dc.title | 地震超材料於橋墩基礎之設計架構研發與應用 | zh_TW |
| dc.title | Development and Application of a Design Framework for Seismic Metamaterials in Bridge Pier Foundations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張國鎮;陳東陽;黃心豪;劉庭瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Chun Chang;Tung-Yang Chen;Hsin-Haou Huang;Ting-Wei Liu | en |
| dc.subject.keyword | 地震超材料,超材料設計,局部共振,波衰減,超材料嵌入式基礎,耐震橋梁設計, | zh_TW |
| dc.subject.keyword | seismic metamaterials,metamaterial design,local resonance,wave attenuation,metamaterial-embedded foundation,earthquake-resilient bridge design, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202501415 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2027-01-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-01-01 | 15.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
