Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99275
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor中井太郎zh_TW
dc.contributor.advisorTaro Nakaien
dc.contributor.author林仲緯zh_TW
dc.contributor.authorChung-Wei Linen
dc.date.accessioned2025-08-21T17:05:09Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation韦玉贵、 彭琬钰、 邱颖青、 冯文钟、 白天军、 叶清、邓文平。 (2023)。 廬山日本柳杉水分利用效率對氣候變化的回應。 北京林業大學學報, 45(3), 48-57。
王亞男、 周宏祈、 王介鼎、 陳秋萍。 (2010)。 溪頭三叉崙柳杉生長量及碳貯存量效益之研究。 國立臺灣大學生物資源暨農學院實驗林研究報告, 24(3), 157-167。 https://doi.org/10.6542/EFNTU.201009_24(3).0002
李明仁。 (2010)。 育林實務手册。 行政院農業委員會林務局。
李泓儒。 (2020)。 溪頭柳杉及紅檜老齡人工林之林木生長量、枯落物量與生態系統碳儲存量。 國立台灣大學森林環境暨資源學系碩士論文, 台北市。 92頁。https://hdl.handle.net/11296/5haewp
林笙翰、 陳秋萍、 鄭智馨。 (2022)。 臺灣北部現有柳杉人工林林分之生長評估 。 中華林學季刊,55(3), 103-122。 https://www.airitilibrary.com/Article/Detail?DocID=05781345-N202306270001-00003
林裕仁、 劉瓊霦、 林俊成。 (2002)。 台灣地區主要用材比重與碳含量測定。 台灣林業科學, 17(3), 291-299。 https://doi.org/10.7075/tjfs.200209.0291
洪志祐。 (2012)。 溪頭柳杉老齡林生態系統碳貯存量與淨生態系生產力。 國立台灣大學森林環境暨資源學系碩士論文, 台北市。 53頁。https://doi.org/10.6342/NTU.2012.01172
胡中民、 於貴瑞、 王秋鳳、 趙風華。 (2009)。 生態系統水分利用效率研究進展。 生態學報, 3。
國立臺灣大學生物資源暨農學院實驗林管理處。(2025)。線上搜索時間:2025 年 6 月 3 日, 取自: https://reurl.cc/xNMbGz
農業部林務及自然保育署 。(2024)。 第四次全國森林資源調查報告。 線上搜索時間:2024 年 5 月 15 日, 取自: https://www.forest.gov.tw/0002393
楊榮啟 。(1975)。 臺灣大學實驗林產柳杉之生長與收穫的研究。 國立臺灣大學農學院實驗林研究報告, 116, 1-149。
謝正義、 洪志凱、陳明志。 (2013)。 樹液感應器之校正與應用。 農業工程學報, 59(2), 51-64。 https://doi.org/10.29974/JTAE.201306_59(2).0003
羅明慧。 (2016)。 溪頭柳杉林的蒸發散特性之研究。 國立臺灣大學生物資源暨農學院實驗林研究報告, 30(4), 303-312。 https://doi.org/10.6542/EFNTU.2016.30(4).5
Chen, D. X., & Coughenour, M. B. (2004). Photosynthesis, transpiration, and primary productivity: Scaling up from leaves to canopies and regions using process models and remotely sensed data. Global Biogeochemical Cycles, 18(4). https://doi.org/10.1029/2002gb001979
Chen, W. L. (2024). Characteristics of the radial variability in sap flow in Japanese cedar trees in Xitou, Taiwan. Master’s Thesis, School of Forestry and Resources Conservation, College of Bioresources and Agriculture, National Taiwan University, Taipei. 87p. https://doi.org/10.6342/NTU202403780
Cheng, C.-H., Hung, C.-Y., Chen, C.-P., & Pei, C.-W. (2013). Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan. Botanical Studies, 54(1), 60. https://doi.org/10.1186/1999-3110-54-60
Chiu, C.-W., Komatsu, H., Katayama, A., & Otsuki, K. (2016). Scaling-up from tree to stand transpiration for a warm-temperate multi-specific broadleaved forest with a wide variation in stem diameter. Journal of Forest Research, 21(4), 161-169. https://doi.org/10.1007/s10310-016-0532-7
Clearwater, M. J., Meinzer, F. C., Andrade, J. L., Goldstein, G., & Holbrook, N. M. (1999). Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 19(10), 681-687. https://doi.org/10.1093/treephys/19.10.681
Dunn, G. M., & Connor, D. J. (1993). An analysis of sap flow in mountain ash (Eucalyptus regnans) forests of different age. Tree Physiology, 13(4), 321-336. https://doi.org/10.1093/treephys/13.4.321
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., . . . Wofsy, S. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1), 43-69. https://doi.org/10.1016/S0168-1923(00)00225-2
Fernandes, T. J. G., Del Campo, A. D., Herrera, R., & Molina, A. J. (2016). Simultaneous assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not in WUEi. Forest Ecology and Management, 361, 298-308. https://doi.org/https://doi.org/10.1016/j.foreco.2015.11.029
Forrester, D. I. (2015). Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol, 35(3), 289-304. https://doi.org/10.1093/treephys/tpv011
Fujime, N., Kumagai, T. o., Egusa, T., Momiyama, H., & Uchiyama, Y. (2021). Importance of calibration in determining forest stand transpiration using the thermal dissipation method. Agricultural and Forest Meteorology, 301-302. https://doi.org/10.1016/j.agrformet.2021.108356
Granier, A. (1985). Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. In Annales des Sciences forestières (Vol. 42, No. 2, pp. 193-200). EDP Sciences. https://doi.org/10.1051/forest:19850204
Granier, A. (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3(4), 309-320. https://doi.org/10.1093/treephys/3.4.309
Henry, H. A. L., & Aarssen, L. W. (1999). The interpretation of stem diameter–height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions?. Ecology Letters, 2(2), 89-97. https://doi.org/10.1046/j.1461-0248.1999.22054.x
Hu, Y., Zhao, P., Huang, Y., Zhu, L., Ni, G., Zhao, X., & Huang, Z. (2019). Hydrologic balance, net primary productivity and water use efficiency of the introduced exotic Eucalyptus grandis× Eucalyptus urophylla plantation in south-western China. Journal of Plant Ecology, 12(6), 982-992. https://doi.org/10.1093/jpe/rtz033
Komatsu, H., Shinohara, Y., Nogata, M., Tsuruta, K., & Otsuki, K. (2013). Changes in canopy transpiration due to thinning of a Cryptomeria japonica plantation. Hydrological Research Letters, 7(3), 60-65. https://doi.org/10.3178/hrl.7.60
Köstner, B., Falge, E., & Tenhunen, J. (2002). Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Tree Physiology, 22(8), 567-574. https://doi.org/10.1093/treephys/22.8.567
Kumagai, T., Nagasawa, H., Mabuchi, T., Ohsaki, S., Kubota, K., Kogi, K., Utsumi, Y., Koga, S., & Otsuki, K. (2005). Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa. Forest Ecology and Management, 206(1-3), 191-195. https://doi.org/10.1016/j.foreco.2004.10.066
Kumagai, T., Tateishi, M., Shimizu, T., & Otsuki, K. (2008). Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology, 148(10), 1444-1455. https://doi.org/10.1016/j.agrformet.2008.04.010
Kume, T., Tsuruta, K., Komatsu, H., Kumagai, T., Higashi, N., Shinohara, Y., & Otsuki, K. (2009). Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiology, 30(1), 129-138. https://doi.org/10.1093/treephys/tpp074
Iida, S., Takeuchi, S., Shinozaki, K., & Araki, M. (2022). Calibration of sap flow techniques using the root-ball weighing method in Japanese cedar trees. Trees, 36(6), 1747-1759. https://doi.org/10.1007/s00468-022-02325-w
Lin, Y., Grace, J., Zhao, W., Dong, Y., Zhang, X., Zhou, L., Fei, X., Jin, Y., Li, J., Nizami, S. M., Balasubramanian, D., Zhou, W., Liu, Y., Song, Q., Sha, L., & Zhang, Y. (2018). Water-use efficiency and its relationship with environmental and biological factors in a rubber plantation. Journal of Hydrology, 563, 273-282. https://doi.org/10.1016/j.jhydrol.2018.05.026
Meinzer, F., Goldstein, G., & Andrade, J. (2001). Regulation of water flux through tropical forest canopy trees: do universal rules apply? Tree Physiology, 21(1), 19-26. https://doi.org/10.1093/treephys/21.1.19
Moore, G. W., Bond, B. J., Jones, J. A., Phillips, N., & Meinzer, F. C. (2004). Structural and compositional controls on transpiration in 40-and 450-year-old riparian forests in western Oregon, USA. Tree Physiology, 24(5), 481-491. https://doi.org/10.1093/treephys/24.5.481
Roberts, S., Vertessy, R., & Grayson, R. (2001). Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. Forest Ecology and Management, 143(1-3), 153-161. https://doi.org/10.1016/S0378-1127(00)00514-4
Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189-190, 115-117. https://doi.org/10.1016/j.agrformet.2014.01.011
Shinohara, Y., Iida, S., Oda, T., Katayama, A., Tsuruta, K., Sato, T., Tanaka, N., Su, M.-P., Laplace, S., Kijidani, Y., & Kume, T. (2022). Are calibrations of sap flow measurements based on thermal dissipation needed for each sample in Japanese cedar and cypress trees? Trees, 36(4), 1219-1229. https://doi.org/10.1007/s00468-022-02283-3
Shinohara, Y., Tsuruta, K., Ogura, A., Noto, F., Komatsu, H., Otsuki, K., & Maruyama, T. (2013). Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree Physiology, 33(5), 550-558. https://doi.org/10.1093/treephys/tpt029
Su, M.-P. .(2017). Long-term stand transpiration estimates in Japanese cedar forest, central Taiwan: Calibration of thermal dissipation sap flow measurements and its application to field data. Master’s Thesis, School of Forestry and Resources Conservation, College of Bioresources and Agriculture, National Taiwan University, Taipei. 100p. https://doi.org/10.6342/NTU201702787
Sumida, A., Miyaura, T., & Torii, H. (2013). Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiology, 33(1), 106-118. https://doi.org/10.1093/treephys/tps127
Song, L., Zhu, J., Liu, X., Zhang, J., Zheng, X., Sun, Y., Wang, G., & Lü, L. (2024). Transpiration and water use sources of poplar (Populus × xiaozhuanica) plantations with 7-years vs. 20-years old in a semiarid sandy region of Northeast China. Agricultural and Forest Meteorology, 356, 110171. https://doi.org/https://doi.org/10.1016/j.agrformet.2024.110171
Tsuruta, K., Komatsu, H., Kume, T., Otsuki, K., Kosugi, Y., & Kosugi, K. i. (2019). Relationship between stem diameter and transpiration for Japanese cypress trees: Implications for estimating canopy transpiration. Ecohydrology, 12(5). https://doi.org/10.1002/eco.2097
Tsuruta, K., Komatsu, H., Kume, T., Shinohara, Y., & Otsuki, K. (2015). Canopy transpiration in two Japanese cypress forests with contrasting structures. Journal of Forest Research, 20(5), 464-474. https://doi.org/10.1007/s10310-015-0495-0
Vertessy, R., Benyon, R., O'sullivan, S., & Gribben, P. (1995). Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 15(9), 559-567. https://doi.org/10.1093/treephys/15.9.559
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., & Reichstein, M. (2018). Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences, 15(16), 5015-5030. https://doi.org/10.5194/bg-15-5015-2018
Tseng, H. (2011). Transpiration estimates and spatial and temporal variability of sap flow in a Japanese cedar plantation in Sitou, central Taiwan. Master’s Thesis, School of Forestry and Resources Conservation, College of Bioresources and Agriculture, National Taiwan University, Taipei. 74p. https://doi.org/10.6342/NTU.2011.02380
Xitou Nature Education Area .(2023). Retrieved February 06, 2025, from https://www.exfo.ntu.edu.tw/xitou/page.php?id=1
Yen, T. M., Ai, L. M., Li, C. L., Lee, J. S., & Huang, K. L. (2009). Aboveground carbon contents and storage of three major Taiwanese conifer species. Taiwan J For Sci, 24(2), 91-102.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99275-
dc.description.abstract目前國內大部分柳杉 (Cryptomeria japonica (L.f.) D. Don) 人工林已超過了研究建議的輪伐期。根據前人研究,當林齡為21年時,年生長量出現最大值,之後隨著林齡的增加而逐漸減少。代表柳杉在超過一定年齡後,生長速度開始減慢,這會降低樹木的碳儲存效率。本研究利用熱消散方法測量樹液流並透過R語言REddyProc套件進行資料填補,以此估算林分蒸散量,並透過實驗了解:(1)蒸散量與森林生產力之間的關係;(2)林齡超過建議的輪伐期是否會導致蒸散作用和生長量減少。我們將12年的蒸散量和森林碳儲存量資料分為兩個區間來討論,並分析水分利用效率 (WUE) 隨時間的變化。
研究期間,溪頭地區的年蒸散量介於110 mm至149 mm,在兩個區間分別為303.7、291.2 Mg per plot,沒有太大差異。碳儲存變化量 (ΔC) 在兩個區間分別為0.52、 0.27 Mg per plot,WUE分別為1.72 、0.92 (g C / L H2O),兩者都有下降的趨勢。在個體尺度,DBH與WUE則呈低度相關,但有趣的是,蒸散量 (TR)和ΔC呈正相關性(R=0.93),顯示TR提高確實會提高ΔC。結果顯示,林分蒸散量在兩個區間沒有明顯差異,而 ΔC、WUE 有下降的趨勢,這表示相較TR,ΔC、WUE可能受到林齡的影響。相對其他研究,較低的年均ΔC 顯示林分已進入生長緩慢的階段。DBH較大的個體,往往會有較高的TR、ΔC,但不代表會有更高的WUE。
整體而言,兩區間蒸散量變化不大,但ΔC與WUE均下降,儘管研究樣區的柳杉林仍有碳儲存效益,但已步入生長緩慢的階段,反映出林齡對森林功能的影響。另外,本研究結果顯示用水量愈高的個體ΔC會愈大。本研究補充了臺灣老齡柳杉林WUE觀測資料,提供未來相關研究的基礎參考。
zh_TW
dc.description.abstractAt present, most of the Japanese cedar (Cryptomeria japonica (L.f.) D. Don) plantations in Taiwan have already passed the rotation period recommended by research. According to previous studies, it was found that when the forest age is 21 years, there is a maximum annual growth, and then it gradually decreases as the forest age increases. This means that the growth rate of Japanese cedar begins to slow down after reaching a certain age, which in turn reduces the carbon storage efficiency of the tree. This study used the thermal dissipation method (TDM) to measure sap flow and filled data gaps using the REddyProc package in the R language to estimate stand transpiration. The experiment also revealed: (1) to investigate the relationship between transpiration and forest productivity; (2) to examine whether stand age beyond the recommended rotation period results in reduced transpiration and growth. This study divided 12 years of transpiration and forest carbon storage data into two intervals for discussion and analysis of the changes in WUE over time.
During the study period, the annual transpiration in the Xitou area ranged from 110 to 149 mm, which was converted into mass as 303.7 and 291.2 Mg per plot, respectively. The carbon storage change (ΔC) in the two intervals was 0.52 and 0.27 per plot, and the WUE was 1.72 and 0.92 (g C / L H2O), respectively, both of which showed a downward trend. At the individual scale, DBH and WUE were weakly correlated; however, interestingly, transpiration (TR) and ΔC were positively correlated (R=0.93), indicating that an increase in TR would indeed increase ΔC.
The results show no significant difference in stand transpiration between the two intervals, while ΔC and WUE showed a downward trend, indicating that ΔC and WUE may be affected by stand age compared to TR. Compared with other studies, this study’s annual average ΔC was lower, showing that the stand has entered a slow-growth stage. Individuals with larger DBH tend to have higher TR and ΔC, but this does not mean that they will have higher WUE.
Overall, the transpiration in the two intervals showed little change, but both ΔC and WUE decreased. Although the Japanese cedar forest in the study area still has carbon storage benefits, it has entered a phase of reduced growth, reflecting the impact of age on forest function. In addition, the results of this study indicate that greater water consumption is associated with higher individual ΔC. This study contributes to the limited WUE observational data for Japanese cedar forests in Taiwan and provides a foundational reference for future related research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:05:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T17:05:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 I
口委審定書 II
中文摘要 III
Abstract IV
Table of contents VI
List of Figures IX
List of Tables XII
1. Introduction 1
2. Literature review 4
2.1. Sap flow measurement 4
2.2. Estimation of stand transpiration 5
2.3. Water use efficiency (WUE) 7
2.4. Age effect on transpiration and biomass 9
3. Materials and methods 11
3.1. Study site and plot 11
3.2. Data collection 13
3.2.1. Meteorological factors 13
3.2.2. Biometric parameters measurement 15
3.2.3. Sapwood area measurement 20
3.2.4. Sap flux density measurement 23
3.3. Data Processing 24
3.3.1. Preprocessing of sap flow raw data 24
3.3.2. Gap filling of sap flux density data 25
3.3.2.1. Mean diurnal course (MDC) 26
3.3.2.2. Look-up table (LUT) 26
3.3.3. Data filtering 28
3.3.4. Calculation of stand-scale and each tree's transpiration 29
3.3.5. Tree carbon storage calculation 30
3.3.6. WUE calculation 31
4. Results 32
4.1. Stand scale 32
4.2. Individual tree scale 38
5. Discussion 49
5.1. Uncertainties in stand transpiration calculations 49
5.2. Tree size- dependency of individual transpiration 52
5.3. Change in stand carbon storage 54
5.3.1. Age effect on Japanese cedar standΔC 54
5.3.2. Tree size effect on growth 57
5.4. Water use efficiency 58
5.5. Uncertainties in measuring each tree's sap flux density 62
5.6. Uncertainties in the tree height allometric equation 64
6. Conclusion 66
7. Reference 67
8. Appendix 76
-
dc.language.isoen-
dc.subject蒸散量zh_TW
dc.subject水分利用效率zh_TW
dc.subject樹液流監測zh_TW
dc.subject樹木碳儲存量zh_TW
dc.subject熱消散法(TDM)zh_TW
dc.subjectthermal dissipation method (TDM)en
dc.subjectsap flowen
dc.subjectcarbon storageen
dc.subjectwater use efficiencyen
dc.subjecttranspirationen
dc.title以樹液流法評估臺灣溪頭柳杉林水分利用效率zh_TW
dc.titleSap Flow-Based Evaluation of Water Use Efficiency of Japanese Cedar Stand in Xitou, Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴彥任;羅敏輝zh_TW
dc.contributor.oralexamcommitteeYen-Jen Lai;Min-Hui Loen
dc.subject.keyword水分利用效率,蒸散量,熱消散法(TDM),樹木碳儲存量,樹液流監測,zh_TW
dc.subject.keywordcarbon storage,sap flow,thermal dissipation method (TDM),transpiration,water use efficiency,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202502694-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved