請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99273完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張恆華 | zh_TW |
| dc.contributor.advisor | Herng-Hua Chang | en |
| dc.contributor.author | 王郁翔 | zh_TW |
| dc.contributor.author | Yu-Hsiang Wang | en |
| dc.date.accessioned | 2025-08-21T17:04:31Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] Gwyn Griffiths, Technology and Applications of Autonomous Underwater Vehicles, volume2, CRC Press, 2002.
[2] Mingjie Wang, Fengquan Lan, Zezhao Su, and Weiling Chen, "Underwater Image Enhancement and Restoration Techniques: A Comprehensive Review, Challenges, and Future Trends," Image and Graphics Technologies and Applications 2023, Communications in Computer and Information Science, volume 1910, pp. 3–18, 2023. [3] N. Carlevaris-Bianco, A. Mohan and R. M. Eustice, "Initial results in underwater single image dehazing," OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 2010, pp. 1-8. [4] B. L. McGlamery, "A Computer Model For Underwater Camera Systems", Proc.SPIE 0208, Ocean Optics VI, 1980. [5] J. S. Jaffe, "Computer modeling and the design of optimal underwater imaging systems," in IEEE Journal of Oceanic Engineering, vol. 15, no. 2, pp. 101-111, April 1990. [6] J. Y. Chiang and Y. -C. Chen, "Underwater Image Enhancement by Wavelength Compensation and Dehazing," in IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 1756-1769, April 2012. [7] Sánchez-Ferreira, C., Mori, J.Y., Farias, M.C.Q, "A real-time stereo vision system for distance measurement and underwater image restoration," J Braz. Soc. Mech. Sci. Eng, vol. 38, pp. 2039–2049, 2016. [8] Kaiming He, Jian Sun and Xiaoou Tang, "Single image haze removal using dark channel prior," 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 1956-1963. [9] E. H. Land, "The retinex theory of color vision," Scientific american, vol. 237, no. 6, pp. 108-129, 1977 [10] G. Buchsbaum, "A spatial processor model for object colour perception," Journal of the Franklin institute, vol. 310, no. 1, pp. 1-26, 1980. [11] P. Drews Jr, E. do Nascimento, F. Moraes, S. Botelho and M. Campos, "Transmission Estimation in Underwater Single Images," 2013 IEEE International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 2013, pp.825-830. [12] Y. -T. Peng and P. C. Cosman, "Underwater Image Restoration Based on Image Blurriness and Light Absorption," in IEEE Transactions on Image Processing, vol. 26, no. 4, pp. 1579-1594, April 2017. [13] W. Zhang, P. Zhuang, H. -H. Sun, G. Li, S. Kwong and C. Li, "Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement, " in IEEE Transactions on Image Processing, vol. 31, pp. 3997-4010, 2022. [14] S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas and K. E. Muller, "Contrast-limited adaptive histogram equalization: speed and effectiveness, "Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, USA, 1990, pp. 337-345. [15] W. Zhang, S. Jin, P. Zhuang, Z. Liang and C. Li, "Underwater Image Enhancement via Piecewise Color Correction and Dual Prior Optimized Contrast Enhancement," in IEEE Signal Processing Letters, vol. 30, pp. 229-233, 2023. [16] Shunmin An, Lihong Xu, Zhichao Deng, and Huapeng Zhang, "HFM: A hybrid fusion method for underwater image enhancement," in Engineering Applications of Artificial Intelligence,vol. 127, Issue PA, 2024. [17] Jiening Zhang, Qing Yu, and Guojia Hou, "Underwater image restoration via adaptive color correction and dehazing," Appl. Opt. 63, 2728-2736, 2024. [18] S. Lin, Z. Li, F. Zheng, Q. Zhao and S. Li, "Underwater Image Enhancement Based on Adaptive Color Correction and Improved Retinex Algorithm," in IEEE Access, vol. 11, pp. 27620-27630, 2023. [19] Yudong Wang, Jichang Guo, Huan Gao, and Huihui Yue, "UIEC^2-Net: CNN-based Underwater Image Enhancement Using Two Color Space," in Signal Processing: Image Communication, 2021. [20] Runmin Cong, Wenyu Yang, Wei Zhang, Chongyi Li, Chun-Le Guo, Qingming Huang, and Sam Kwong. "PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN With Dual-Discriminators," Trans. Img. Proc, vol 32, pp. 4472–4485, 2023. [21] Y. Lei, J. Yu, Y. Dong, C. Gong, Z. Zhou and C. -M. Pun, "UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement," 2024 IEEE 11th International Conference on Data Science and Advanced Analytics (DSAA), San Diego, CA, USA, 2024, pp. 1-10. [22] F. Gasparini and R. Schettini, “Color correction for digital photographs,” in Proc.12th Int. Conf. Image Anal. Process., 2003, pp. 646–651. [23] H. Hu et al., "Enhancing Underwater Image via Color-Cast Correction and Luminance Fusion," in IEEE Journal of Oceanic Engineering, vol. 49, no. 1, pp. 15-29, Jan. 2024. [24] Finkel, R.A., Bentley, J.L. "Quad trees a data structure for retrieval on composite keys,".Acta Informatica vol. 4, pp. 1–9, 1974. [25] Zhang, Weihong, Xiaobo Li, Shuping Xu, Xujin Li, Yiguang Yang, Degang Xu, Tiegen Liu, and Haofeng Hu. "Underwater Image Restoration via Adaptive Color Correction and Contrast Enhancement Fusion," Remote Sensing. 2023. [26] N. Kanopoulos, N. Vasanthavada and R. L. Baker, "Design of an image edge detection filter using the Sobel operator," in IEEE Journal of Solid-State Circuits, vol. 23, no. 2, pp. 358-367, April 1988. [27] K. He, J. Sun and X. Tang, "Guided Image Filtering," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, June 2013. [28] M. Yang and A. Sowmya, "An Underwater Color Image Quality Evaluation Metric," in IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 6062-6071, Dec. 2015. [29] K. Panetta, C. Gao and S. Agaian, "Human-Visual-System-Inspired Underwater Image Quality Measures," in IEEE Journal of Oceanic Engineering, vol. 41, no. 3, pp. 541-551, July 2016. [30] C. Li et al., "An Underwater Image Enhancement Benchmark Dataset and Beyond," in IEEE Transactions on Image Processing, vol. 29, pp. 4376-4389, 2020. [31] M. J. Islam, Y. Xia and J. Sattar, "Fast Underwater Image Enhancement for Improved Visual Perception," in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3227-3234, April 2020. [32] R. Liu, X. Fan, M. Zhu, M. Hou and Z. Luo, "Real-World Underwater Enhancement: Challenges, Benchmarks, and Solutions Under Natural Light," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 12, pp. 4861-4875, Dec. 2020. [33] Md Jahidul Islam, Peigen Luo and Junaed Sattar, "Simultaneous Enhancement and Super-Resolution of Underwater Imagery for Improved Visual Perception," in Robotics: Science and Systems, July 2020. [34] A. Gomez Chavez, A. Ranieri, D. Chiarella, E. Zereik, A. Babić, and A. Birk, "CADDY underwater stereo-vision dataset for human–robot interaction (HRI) in the context of diver activities," Journal of Marine Science and Engineering, vol. 7, no. 1, p. 16, 2019. [35] D. Chiarella et al., "A novel gesture-based language for underwater human–robot interaction," Journal of Marine Science and Engineering, vol. 6, no. 3, p. 91, 2018. [36] Deep-sea Debris Database. Accessed: Dec. 2019. [Online]. Available: http://www.godac.jamstec.go.jp/catalog/dsdebris/e/index.html [37] J. Li, K. A. Skinner, R. M. Eustice, and M. Johnson-Roberson, "WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images," IEEE Robotics and Automation letters, vol. 3, no. 1, pp. 387-394, 2017. [38] K. A. Skinner, J. Zhang, E. A. Olson, and M. Johnson-Roberson, "Uwstereonet: Unsupervised learning for depth estimation and color correction of underwater stereo imagery," in 2019 International Conference on Robotics and Automation (ICRA), 2019: IEEE, pp. 7947-7954. [39] Ocean View Diving. Accessed: Mar. 2018. [Online].Available: http://www.oceanviewdive.com/gallery/ [40] Fisher, R.A, "Statistical Methods for Research Workers," In: Kotz, S., Johnson, N.L. (eds) Breakthroughs in Statistics. [41] Tukey, John W. “Comparing Individual Means in the Analysis of Variance.” Biometrics, vol. 5, no. 2, 1949, pp. 99–114. [42] Color board. Availdable: http://www.candelaprinting.com/services/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99273 | - |
| dc.description.abstract | 水下影像修復在海洋探勘、生態監測、水下考古與無人載具等應用領域中扮演關鍵角色,其影像品質將直接影響後續分析與決策的準確性。惟由於水下環境的複雜性,造成影像常出現色彩偏差及清晰度不足等問題。目前,多數水下影像修復技術往往聚焦於單一處理面向,如色彩校正或去霧處理,然而在面對不同水體條件與光照變化時,常出現修復效果不穩定、泛化能力不足等問題,顯示現有方法仍有進一步改良的空間。本研究提出一套創新的水下影像修復技術,整合色偏校正與影像去霧方法。首先,透過色偏因子(Color Cast Factor)分析影像之色偏類型並進行補償處理。接著,採用四元樹搜尋(Quad Tree Search)策略,搭配加權背景光評估函數以精確估計背景光,並以此計算初始透射圖。透射圖進一步結合梯度約束與引導濾波器(Guided Filter)進行改良,以提升邊緣保留能力與抑制雜訊干擾。最終,應用水下成像模型進行影像重建,並透過對比度伸展(Contrast Stretching)強化視覺對比效果。本論文收集超過兩萬張涵蓋不同場景及色偏類型的水下影像,並與七種現有方法進行修復效果比較,以評估所提出的方法。實驗結果顯示,於多種水下場景中,本研究於色偏校正與去霧處理方面皆展現出較高的視覺穩定性。量化評估方面,UCIQE與UIQM兩項指標於多數資料集中皆達到最佳或次佳表現。綜合定量與定性結果,顯示本研究所提出之方法具備良好的應用潛力。 | zh_TW |
| dc.description.abstract | Underwater image restoration plays a crucial role in various applications such as marine exploration, ecological monitoring, underwater archaeology, and autonomous underwater vehicles. The quality of restored images directly affects the accuracy of subsequent analysis and decision-making processes.However, due to the complexity of the underwater environment, images often suffer from color distortion and reduced clarity. Most existing restoration techniques tend to focus on a single aspect, such as color correction or dehazing. Nevertheless, when dealing with varying water conditions and lighting environments, these methods frequently exhibit unstable performance and limited generalization capability, indicating that there is still considerable room for improvement in current approaches. This thesis proposes an innovative underwater image restoration algorithm that integrates color cast correction and image dehazing techniques. First, a Color Cast Factor is used to analyze and compensate for different types of color casts. Then, a quad-tree search strategy combined with a weighted background light evaluation function is employed to accurately estimate the background light, which is subsequently used to compute an initial transmission map. This map is further refined through gradient constraint and guided filtering techniques to enhance edge preservation and suppress noise. Finally, the restored image is reconstructed using an underwater imaging model, followed by contrast stretching to improve visual contrast. This thesis collected over 20,000 underwater images covering diverse scenes and color cast types, and compared the proposed algorithm with seven existing methods to evaluate its performance. Experimental results show that the proposed method demonstrated more stable visual performance in both color correction and dehazing across various underwater environments. In terms of quantitative evaluation, it consistently achieves the best or second-best results in UCIQE and UIQM scores across most datasets. These quantitative and qualitative findings suggest that the proposed method holds strong potential for practical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:04:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T17:04:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 xii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 論文架構 3 第二章 文獻探討 4 2.1 基於物理模型的方法 4 2.1.1 UDCP 4 2.1.2 IBLA 5 2.2 基於影像增強的方法 6 2.2.1 MLLE 7 2.2.2 PCDE 8 2.2.3 HFM 8 2.3 混合方法 10 2.3.1 ACCD 10 2.3.2 ACIR 11 2.4 基於深度學習的方法 12 2.4.1 UIEC^2-Net 12 2.4.2 PUGAN 13 2.4.3 UIE-UnFold 14 第三章 研究設計與方法 16 3.1 演算法架構 16 3.2 色偏檢測與校正 17 3.2.1 色偏檢測 17 3.2.2 色偏校正 19 3.3 估計背景光 22 3.3.1 四元樹搜尋 22 3.3.2 加權背景光評估函數 23 3.4 透射圖計算 24 3.5 影像修復 25 第四章 實驗結果與討論 26 4.1 實驗環境 26 4.2 實驗評估指標 26 4.2.1 水下彩色影像品質分析 26 4.2.2 水下影像品質測量 27 4.3 水下影像資料集 28 4.4 參數設定及分析 30 4.4.1 調節參數 30 4.4.2 飽和下界參數 35 4.4.3 飽和上界參數 38 4.5 影像修復結果比較 41 4.6 定量評估 62 4.6.1 UCIQE之雙因子變異數分析 65 4.6.2 UIQM之雙因子變異數分析 67 4.7 模擬影像實驗 69 第五章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 74 參考文獻 76 附錄A 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 影像去霧 | zh_TW |
| dc.subject | 色偏校正 | zh_TW |
| dc.subject | 影像修復 | zh_TW |
| dc.subject | 水下影像 | zh_TW |
| dc.subject | 四元樹搜尋 | zh_TW |
| dc.subject | quad-tree search | en |
| dc.subject | underwater image | en |
| dc.subject | image restoration | en |
| dc.subject | image dehazing | en |
| dc.subject | color cast correction | en |
| dc.title | 基於色偏補償與自適應背景光估計之水下影像修復研究 | zh_TW |
| dc.title | Underwater Image Restoration Based on Color Cast Compensation and Adaptive Background Light Estimation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃乾綱;張瑞益;江明彰 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Kang Huang;Ray-I Chang;Ming-Chang Chiang | en |
| dc.subject.keyword | 色偏校正,影像去霧,四元樹搜尋,水下影像,影像修復, | zh_TW |
| dc.subject.keyword | color cast correction,image dehazing,quad-tree search,underwater image,image restoration, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202502965 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
