Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99270
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅世強zh_TW
dc.contributor.advisorShyh-Chyang Luoen
dc.contributor.author朱昱翰zh_TW
dc.contributor.authorYu-Han Juen
dc.date.accessioned2025-08-21T17:03:47Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-17-
dc.identifier.citation(1) Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, Medium: X; Size: p. 1031-1041. DOI: https://doi.org/10.1038/s41560-018-0260-7.
(2) Xu, Z.; Li, Z.; Jiang, Y.; Xu, G.; Zhu, M.; Law, W.-C.; Yong, K.-T.; Wang, Y.; Yang, C.; Dong, B.; et al. Recent advances in solar-driven evaporation systems. J. Mater. Chem. A 2020, 8 (48), 25571-25600, 10.1039/D0TA08869B. DOI: https://doi.org/10.1039/D0TA08869B.
(3) Dsilva Winfred Rufuss, D.; Iniyan, S.; Suganthi, L.; Davies, P. A. Solar stills: A comprehensive review of designs, performance and material advances. Renewable Sustainable Energy Rev. 2016, 63, 464-496. DOI: https://doi.org/10.1016/j.rser.2016.05.068.
(4) Zhao, F.; Guo, Y.; Zhou, X.; Shi, W.; Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5 (5), 388-401. DOI: https://doi.org/10.1038/s41578-020-0182-4.
(5) Ye, M. M.; Ye, X. Z.; Zhou, X. H.; Yan, Y. Q.; Zhang, T. Q.; Liu, X. W. Polyurethane foam loaded MoS2 aerogel for efficient solar evaporation with excellent salt-rejection property. J. Environ. Chem. Eng. 2024, 12 (6), 9. DOI: https://doi.org/10.1016/j.jece.2024.114680.
(6) Gao, C.; Wang, Q.; Zhou, B. G.; Saitaer, X.; Guo, J. S. Water vapor assisted fabrication of Janus fabric with asymmetric wettability for salt-free and efficient solar desalination. Surf. Interfaces 2024, 51, 10. DOI: https://doi.org/10.1016/j.surfin.2024.104803.
(7) Liu, K.-K.; Jiang, Q.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Wood–Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination. ACS Appl. Mater. Interfaces 2017, 9 (8), 7675-7681. DOI: https://doi.org/10.1021/acsami.7b01307.
(8) Hussain, S. S.; Omelianovych, O.; Larina, L. L.; Park, E.; Nguyen, V.; Trinh, B. T.; Yoon, I.; Choi, H. S. Black titania coated glass fiber as a photo absorber in interfacial solar steam generation under harsh condition. Sol. Energy Mater. Sol. Cells 2024, 271, 11. DOI: https://doi.org/10.1016/j.solmat.2024.112829.
(9) Hu, A.; Zhao, Y.; Hu, Q.; Chen, C.; Lu, X.; Cui, S.; Liu, B. Highly efficient solar steam evaporation via elastic polymer covalent organic frameworks monolith. Nat. Commun. 2024, 15 (1), 9484. DOI: https://doi.org/10.1038/s41467-024-53902-1.
(10) Peng, Y.; Wei, X.; Wang, Y.; Li, W.; Zhang, S.; Jin, J. Metal–Organic Framework Composite Photothermal Membrane for Removal of High-Concentration Volatile Organic Compounds from Water via Molecular Sieving. ACS Nano 2022, 16 (5), 8329-8337. DOI: https://doi.org/10.1021/acsnano.2c02520.
(11) Zhao, L.; Wang, P.; Tian, J.; Wang, J.; Li, L.; Xu, L.; Wang, Y.; Fei, X.; Li, Y. A novel composite hydrogel for solar evaporation enhancement at air-water interface. Sci. Total Environ. 2019, 668, 153-160. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.407.
(12) Zhu, J.; Huang, L.; Bao, F.; Chen, G.; Song, K.; Wang, Z.; Xia, H.; Gao, J.; Song, Y.; Zhu, C.; et al. Carbon materials for enhanced photothermal conversion: Preparation and applications on steam generation. Mater. Rep.: Energy 2024, 4 (2), 100245. DOI: https://doi.org/10.1016/j.matre.2023.100245.
(13) Liu, G.; Cao, H.; Xu, J. Solar evaporation of a hanging plasmonic droplet. Sol. Energy 2018, 170, 184-191. DOI: https://doi.org/10.1016/j.solener.2018.05.069.
(14) Wang, X.; Li, Z.; Wu, X.; Liu, B.; Tian, T.; Ding, Y.; Zhang, H.; Li, Y.; Liu, Y.; Dai, C. Self-Floating Polydopamine/Polystyrene Composite Porous Structure via a NaCl Template Method for Solar-Driven Interfacial Water Evaporation. In Polymers, 2024; Vol. 16. DOI: https://doi.org/10.3390/polym16152231
(15) Wen, C.; Guo, H.; Yang, J.; Li, Q.; Zhang, X.; Sui, X.; Cao, M.; Zhang, L. Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex conditions. Chem. Eng. J. 2021, 421, 130344. DOI: https://doi.org/10.1016/j.cej.2021.130344.
(16) Iguerb, O.; Poleunis, C.; Mazéas, F.; Compère, C.; Bertrand, P. Antifouling Properties of Poly(methyl methacrylate) Films Grafted with Poly(ethylene glycol) Monoacrylate Immersed in Seawater. Langmuir 2008, 24 (21), 12272-12281. DOI: https://doi.org/10.1021/la801814u.
(17) Cheng, L.; Xu, X.; Jiang, Y.; Zhang, S.; Xu, K.; Wang, H.; Zhang, X.; Zhang, R.; Jiang, Z. Antifouling membranes modified via chitosan derivatives for efficient oil-water separation. J. Membr. Sci. 2025, 727, 124082. DOI: https://doi.org/10.1016/j.memsci.2025.124082.
(18) Furukawa, H.; Gándara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society 2014, 136 (11), 4369-4381. DOI: https://doi.org/10.1021/ja500330a.
(19) Ma, J.; Zhang, M.; Feng, R.; Dong, L.; Sun, W.; Jia, Y. Superhydrophobic fluorinated metal–organic framework (MOF) devices for high-efficiency oil–water separation. Inorg. Chem. Front. 2024, 11 (17), 5636-5647, 10.1039/D4QI01613K. DOI: http://dx.doi.org/10.1039/D4QI01613K.
(20) Cho, K. H.; Borges, D. D.; Lee, U. H.; Lee, J. S.; Yoon, J. W.; Cho, S. J.; Park, J.; Lombardo, W.; Moon, D.; Sapienza, A.; et al. Rational design of a robust aluminum metal-organic framework for multi-purpose water-sorption-driven heat allocations. Nat. Commun. 2020, 11 (1), 5112. DOI: https://doi.org/10.1038/s41467-020-18968-7.
(21) Fröhlich, D.; Pantatosaki, E.; Kolokathis, P. D.; Markey, K.; Reinsch, H.; Baumgartner, M.; van der Veen, M. A.; De Vos, D. E.; Stock, N.; Papadopoulos, G. K.; et al. Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships. J. Mater. Chem. A 2016, 4 (30), 11859-11869, 10.1039/C6TA01757F. DOI: http://doi.org/10.1039/C6TA01757F.
(22) Choi, J.; Vogt, T.; Lee, Y. Structuration of Water in Microporous CAU-10-H under Gigapascal Pressure. J. Phys. Chem. Lett. 2022, 13 (46), 10767-10770. DOI: https://doi.org/10.1021/acs.jpclett.2c02729.
(23) Liu, X.; Wang, X.; Kapteijn, F. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chem. Rev. 2020, 120 (16), 8303-8377. DOI: https://doi.org/10.1021/acs.chemrev.9b00746.
(24) Fröhlich, D.; Henninger, S. K.; Janiak, C. Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H. Dalton Trans. 2014, 43 (41), 15300-15304, 10.1039/C4DT02264E. DOI: http://dx.doi.org/10.1039/C4DT02264E.
(25) Makowski, W.; Gryta, P.; Jajko-Liberka, G.; Cieślik-Górna, M.; Korzeniowska, A. Water Sorption Properties and Hydrothermal Stability of Al-Containing Metal–Organic Frameworks CAU-10 and MIL-96 Studied Using Quasi-Equilibrated Thermodesorption. Molecules 2024, 29 (23), 5625. DOI: https://doi.org/10.3390/molecules29235625.
(26) Kan, M.-Y.; Shin, J. H.; Yang, C.-T.; Chang, C.-K.; Lee, L.-W.; Chen, B.-H.; Lu, K.-L.; Lee, J. S.; Lin, L.-C.; Kang, D.-Y. Activation-Controlled Structure Deformation of Pillared-Bilayer Metal–Organic Framework Membranes for Gas Separations. Chem. Mater. 2019, 31 (18), 7666-7677. DOI: https://doi.org/10.1021/acs.chemmater.9b02539.
(27) Kadhom, M.; Deng, B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 2018, 11, 219-230. DOI: https://doi.org/10.1016/j.apmt.2018.02.008.
(28) Yang, W.; Wang, J.; Yang, Q.; Pei, H.; Hu, N.; Suo, Y.; Li, Z.; Zhang, D.; Wang, J. Facile fabrication of robust MOF membranes on cloth via a CMC macromolecule bridge for highly efficient Pb(II) removal. Chem. Eng. J. 2018, 339, 230-239. DOI: https://doi.org/10.1016/j.cej.2018.01.126.
(29) Hu, T.-N.; Hsu, C.-H.; Chiou, D.-S.; Kang, D.-Y.; Luo, S.-C. CAU-10-H as efficient water sorbent for solar steam generation. J. Taiwan Inst. Chem. Eng. 2022, 141, 104593. DOI: https://doi.org/10.1016/j.jtice.2022.104593.
(30) Chen, L.; Wang, H.; Kuravi, S.; Kota, K.; Park, Y. H.; Xu, P. Low-cost and reusable carbon black based solar evaporator for effective water desalination. Desalination 2020, 483, 114412. DOI: https://doi.org/10.1016/j.desal.2020.114412.
(31) Li, Y.; Shi, Y.; Wang, H.; Liu, T.; Zheng, X.; Gao, S.; Lu, J. Recent advances in carbon-based materials for solar-driven interfacial photothermal conversion water evaporation: Assemblies, structures, applications, and prospective. Carbon Energy 2023, 5 (11), e331. DOI: https://doi.org/10.1002/cey2.331.
(32) Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114 (9), 5057-5115. DOI: https://doi.org/10.1021/cr400407a.
(33) Sun, S.; Sun, B.; Wang, Y.; Antwi-Afari, M.; Mi, H.-Y.; Guo, Z.; Liu, C.; Shen, C. Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification. Sep. Purif. Technol. 2021, 278, 119621. DOI: https://doi.org/10.1016/j.seppur.2021.119621.
(34) Ding, T.; Zhou, Y.; Ong, W. L.; Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178-191. DOI: https://doi.org/10.1016/j.mattod.2020.10.022.
(35) Wei, Z.; Wang, J.; Guo, S.; Tan, S. C. Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management. Nano Res. Energy. 2022, 1, 9120014. DOI: https://doi.org/10.26599/NRE.2022.9120014.
(36) Zhu, L.; Lu, Y.; Wang, Y.; Zhang, L.; Wang, W. Preparation and characterization of dopamine-decorated hydrophilic carbon black. Appl. Surf. Sci. 2012, 258 (14), 5387-5393. DOI: https://doi.org/10.1016/j.apsusc.2012.02.016.
(37) Lynge, M. E.; Philipp, S.; and Städler, B. Recent Developments in Poly(Dopamine)-Based Coatings for Biomedical Applications. Nanomedicine 2015, 10 (17), 2725-2742. DOI: https://doi.org/10.2217/nnm.15.89.
(38) Philibert, M.; Villacorte, L. O.; Ekowati, Y.; Abushaban, A.; Salinas-Rodriguez, S. G. Fouling and scaling in reverse osmosis desalination plants: A critical review of membrane autopsies, feedwater quality guidelines and assessment methods. Desalination 2024, 592, 118188. DOI: https://doi.org/10.1016/j.desal.2024.118188.
(39) Chen, X.; Noy, A. Antifouling strategies for protecting bioelectronic devices. APL Mater. 2021, 9 (2). DOI: https://doi.org/10.1063/5.0029994 (acccessed 4/9/2025).
(40) Nguyen, C. T. V.; Chow, S. K. K.; Nguyen, H. N.; Liu, T.; Walls, A.; Withey, S.; Liebig, P.; Mueller, M.; Thierry, B.; Yang, C.-T.; et al. Formation of Zwitterionic and Self-Healable Hydrogels via Amino-yne Click Chemistry for Development of Cellular Scaffold and Tumor Spheroid Phantom for MRI. ACS Appl. Mater. Interfaces 2024, 16 (28), 36157-36167. DOI: https://doi.org/10.1021/acsami.4c06917.
(41) Yokota, K.; Usuda, S.; Nishimura, T.; Takahashi, R.; Taoka, Y.; Kobayashi, S.; Tanaka, M.; Matsumura, K.; Yusa, S.-I. Self-Assembly and Drug Encapsulation Properties of Biocompatible Amphiphilic Diblock Copolymers. Langmuir 2025, 41 (1), 765-773. DOI: https://doi.org/10.1021/acs.langmuir.4c04048.
(42) Higaki, Y.; Masuda, T.; Shiomoto, S.; Tanaka, Y.; Kiuchi, H.; Harada, Y.; Tanaka, M. Pronounced Cold Crystallization and Hydrogen Bonding Distortion of Water Confined in Microphases of Double Zwitterionic Block Copolymer Aqueous Solutions. Langmuir 2024, 40 (37), 19612-19618. DOI: https://doi.org/10.1021/acs.langmuir.4c02254.
(43) Zhou, R.; Ren, P.-F.; Yang, H.-C.; Xu, Z.-K. Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. J. Membr. Sci. 2014, 466, 18-25. DOI: https://doi.org/10.1016/j.memsci.2014.04.032.
(44) McGaughey, A. L.; Srinivasan, S.; Zhao, T.; Christie, K. S. S.; Ren, Z. J.; Priestley, R. D. Scalable Zwitterionic Polymer Brushes for Antifouling Membranes via Cu0-Mediated Atom Transfer Radical Polymerization. ACS Appl. Polym. Mater. 2023, 5 (7), 4921-4932. DOI: https://doi.org/10.1021/acsapm.3c00407.
(45) Venault, A.; Huang, W.-Y.; Hsiao, S.-W.; Chinnathambi, A.; Alharbi, S. A.; Chen, H.; Zheng, J.; Chang, Y. Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride) Membranes. Langmuir 2016, 32 (16), 4113-4124. DOI: https://doi.org/10.1021/acs.langmuir.6b00981.
(46) Chang, Y.; Chang, W.-J.; Shih, Y.-J.; Wei, T.-C.; Hsiue, G.-H. Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization. ACS Appl. Mater. Interfaces 2011, 3 (4), 1228-1237. DOI: https://doi.org/10.1021/am200055k.
(47) Mi, L.; Jiang, S. Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. Angew. Chem. Int. Ed. 2014, 53 (7), 1746-1754. DOI: https://doi.org/10.1002/anie.201304060.
(48) Nakano, H.; Noguchi, Y.; Kakinoki, S.; Yamakawa, M.; Osaka, I.; Iwasaki, Y. Highly Durable Lubricity of Photo-Cross-Linked Zwitterionic Polymer Brushes Supported by Poly(ether ether ketone) Substrate. ACS Appl. Bio Mater. 2020, 3 (2), 1071-1078. DOI: https://doi.org/10.1021/acsabm.9b01040.
(49) Yang, W. J.; Neoh, K.-G.; Kang, E.-T.; Teo, S. L.-M.; Rittschof, D. Polymer brush coatings for combating marine biofouling. Prog. Polym. Sci. 2014, 39 (5), 1017-1042. DOI: https://doi.org/10.1016/j.progpolymsci.2014.02.002.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99270-
dc.description.abstract本研究成功開發一種具抗汙性之太陽能海水蒸發複合膜,其組成包括玻璃纖維基材、CAU-10-H水傳輸層、碳黑@多巴胺鹽酸鹽(CB@DA)光熱轉換層以及抗汙性PSBMA高分子刷。
本研究以旋塗結合水熱二次生長法於玻璃纖維基材上沉積CAU-10-H,並透過Cu0-SI-ATRP技術在基材背面聚合PSBMA,以提升整體蒸發效率與抗汙壽命。藉由調控基材孔徑與塗佈次數,明確觀察到0.7 μm孔徑基材具備較佳的支撐能力,CAU-10-H晶體沉積穩定、層間結構完整。最佳條件下(C6-PSBMA),CAU-10-H能充分填覆並融合於纖維間,形成連續且具毛細吸水性的傳輸層;而0.22 μm基材雖具更強毛細力,卻因生長點滲入程度過高導致晶體無法於表面穩定生長,塗佈六次以上即產生脫落現象,影響整體穩定性。
實驗結果顯示,以0.7 μm孔徑基材搭配六次塗佈CAU-10-H所得之C6-PSBMA複合膜,具最完整沉積結構與最優異的水分傳導能力,此樣品在去離子水、模擬海水及真實海水中蒸發效率分別達到3.73、2.27與1.75 kg/m2•h的高蒸發性能,均顯著優於對照組;經一個月海水漂浮測試後,其仍能保有84.7 %蒸發效率,顯示其優異的抗汙能力。ICP-MS分析進一步證實蒸發水中Na+、K+、Mg2+與Ca2+等離子含量皆遠低於WHO飲用水標準,具備良好的水純化效果。
整體而言,本研究展示了金屬有機骨架與兩性高分子刷協同設計於太陽能海水淡化裝置之應用潛力,不僅顯著提升瞬時蒸發效率,亦大幅增強其長期耐久性與抗汙壽命,為未來實際應用提供可行方案。
zh_TW
dc.description.abstractThis study successfully developed an anti-fouling solar evaporation composite membrane, composed of a glass fiber (GF) substrate, a CAU-10-H water transport layer, a carbon black@dopamine hydrochloride (CB@DA) photothermal conversion layer, and an antifouling poly(sulfobetaine methacrylate) (PSBMA) polymer brush.
CAU-10-H was deposited onto the substrate via spin-coating combined with a secondary hydrothermal growth method, while PSBMA was grafted onto the backside of Cu⁰-SI-ATRP method to enhance the overall evaporation efficiency and fouling resistance. By tuning the substrate pore size and coating times, it was clearly observed that the 0.7 μm pore-sized substrate provided better mechanical support and allowed for more stable CAU-10-H deposition with a well-defined layered structure. Under the optimal condition (C6-PSBMA), CAU-10-H crystals were densely filled and integrated into the fiber network, forming a continuous, capillary-enhanced water transport layer. In contrast, although the 0.22 μm substrate exhibited stronger capillary action, excessive penetration of growth solution hindered crystal formation on the surface, leading to delamination after more than six coating cycles and thereby compromising structural stability.
Experimental results demonstrated that the C6-PSBMA composite membrane achieved excellent evaporation rates of 3.73, 2.27, and 1.75 kg/m2•h in deionized water, simulated seawater, and real seawater, respectively—significantly outperforming all control groups. After a one-month seawater-floating test, the membrane retained 84.7 % of its initial evaporation performance, confirming its outstanding antifouling capability. ICP-MS analysis further revealed that the concentrations of Na+, K+, Mg2+, and Ca2+ in the condensed water were all well below the WHO drinking water limits, indicating effective desalination performance.
In conclusion, this study demonstrates the promising application of a synergistic design combining metal–organic frameworks and zwitterionic polymer brushes in solar-driven desalination membranes. The approach not only significantly enhances instantaneous evaporation efficiency but also substantially improves long-term durability and fouling resistance, offering a practical strategy for real-world water purification applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:03:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T17:03:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 x
第一章 緒論 1
1-1. 海水蒸發材料 1
1-2. 金屬有機骨架應用於水傳輸層 3
1-3. 碳黑應用於光熱轉換層 5
1-4. 兩性離子高分子應用於防污層 6
1-5. 研究目標 8
第二章 實驗方法與步驟 10
2-1. 實驗藥品及材料 10
2-2. 儀器與設備 12
2-3. 樣品命名與編號 13
2-4. 沉積CAU-10-H水傳輸層 14
2-4-1. CAU-10-H粉末的合成 14
2-4-2. 沉積CAU-10-H 14
2-5. 聚合PSBMA高分子刷 15
2-5-1. 於基材上生成起始點位 15
2-5-2. 原子轉移自由基聚合(Cu0-SI-ATRP) 15
2-6. 光熱轉換層之製備 17
2-7. 太陽能水蒸發膜組裝 17
2-8. 分析儀器介紹 18
2-8-1. 場發射掃描式電子顯微鏡(FE-SEM) 18
2-8-2. 硬X光光電子能譜(HAXPES) 18
2-8-3. 熱重分析儀(TGA) 19
2-8-4. 接觸角測量儀(Contact Angle Goniometer) 19
2-8-5. 感應耦合電漿質譜儀(ICP-MS) 19
2-8-6. X光繞射儀(XRD) 20
第三章 結果與討論 21
3-1. CAU-10-H之性質分析 21
3-1-1. 以0.7 μm孔徑玻璃纖維膜為基材 22
3-1-2. 以0.22 μm孔徑玻璃纖維膜為基材 26
3-2. PSBMA之性質分析 28
3-2-1. XPS 28
3-2-2. TGA 30
3-2-3. 接觸角 32
3-2-4. 抗污測試 34
3-3. 光熱轉換性能測試 36
3-4. 蒸發性能測試 37
3-4-1. 0.7 μm基材 38
3-4-2. 0.22 μm基材 45
3-4-3. 凝結水離子濃度 51
第四章 結論 52
參考文獻 54
-
dc.language.isozh_TW-
dc.subject海水淡化zh_TW
dc.subject太陽能蒸發膜zh_TW
dc.subject抗汙材料zh_TW
dc.subject兩性離子高分子zh_TW
dc.subject金屬有機骨架zh_TW
dc.subjectmetal–organic frameworken
dc.subjectzwitterionic polymeren
dc.subjectanti-fouling materialen
dc.subjectseawater desalinationen
dc.subjectsolar evaporation membraneen
dc.title兩性離子高分子與MOF抗污複合膜於高性能太陽能海水淡化之應用zh_TW
dc.titleZwitterionic Polymer-MOF Hybrid Membranes for High-Performance Antifouling Solar Desalinationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee康敦彥;林興安zh_TW
dc.contributor.oralexamcommitteeDun-Yen Kang;Hsing-An Linen
dc.subject.keyword太陽能蒸發膜,海水淡化,金屬有機骨架,兩性離子高分子,抗汙材料,zh_TW
dc.subject.keywordsolar evaporation membrane,seawater desalination,metal–organic framework,zwitterionic polymer,anti-fouling material,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202501994-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2030-07-17-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved