Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99266
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇zh_TW
dc.contributor.advisorBing-Yu Chenen
dc.contributor.author李婷穎zh_TW
dc.contributor.authorTing-Ying Leeen
dc.date.accessioned2025-08-21T17:02:50Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation[1] 3dtotal Publishing. The Ultimate Concept Art Career Guide. 3dtotal Publishing, 2018.
[2] M. Academy. Environment designer. https://www.artstation.com/blogs/ m3dsacademy/zXXz6/environment-designer, 2024.
[3] K. Adamkiewicz, P. W. Woźniak, J. Dominiak, A. Romanowski, J. Karolus, and S. Frolov. Promptmap: An alternative interaction style for ai-based image generation. In Proceedings of the 30th International Conference on Intelligent User Interfaces, IUI ’25, page 1162–1176, New York, NY, USA, 2025. Association for Computing Machinery.
[4] R. S. Adams and C. J. Atman. Cognitive processes in iterative design behavior. In FIE’99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering Education. Conference Proceedings (IEEE Cat. No. 99CH37011, volume 1, pages 11A6–13. IEEE, 1999.
[5] N. W. Ahmad and S. Ruslan. Crafting effective prompts: A guideline for successful image generation. In 2024 14th International Conference on System Engineering and Technology (ICSET), pages 84–89. IEEE, 2024.
[6] A.A.AlegaonkarandM.A.Avachat-Shirke.Isartificialintelligencekillingartistic skills in designers? In International Conference on Emerging Trends in Design & Arts, volume 4, pages 109–115, 2023.
[7] S. G. Almeda, J. Zamfirescu-Pereira, K. W. Kim, P. Mani Rathnam, and B. Hartmann. Prompting for discovery: Flexible sense-making for ai art-making with dreamsheets. In Proceedings of the CHI Conference on Human Factors in Computing Systems, pages 1–17, 2024.
[8] L. Aschenbrenner. The concept of coherence in art. Springer Science & Business Media, 2012.
[9] J. Auernhammer. Human-centered ai: The role of human-centered design research in the development of ai. 2020.
[10] G.Bansal,T.Wu,J.Zhou,R.Fok,B.Nushi,E.Kamar,M.T.Ribeiro,andD.Weld. Does the whole exceed its parts? the effect of ai explanations on complementary team performance. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[11] E. V. P. Beyan, A. G. C. Rossy, et al. A review of ai image generator: influences, challenges, and future prospects for architectural field. Journal of Artificial Intelligence in Architecture, 2(1):53–65, 2023.
[12] Z. Bosheah and V. Bilicki. Challenges in generating accurate text in images: A benchmark for text-to-image models on specialized content. Applied Sciences, 15(5):2274, 2025.
[13] F. Bousetouane. Generative ai for vision: A comprehensive study of frameworks and applications. arXiv preprint arXiv:2501.18033, 2025.
[14] S. Brade, B. Wang, M. Sousa, S. Oore, and T. Grossman. Promptify: Text-to-image generation through interactive prompt exploration with large language models. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, pages 1–14, 2023.
[15] S. Brewer. The Pocket Mentor for Video Game UX UI (The Pocket Mentors for Games Careers). 1st edition, 2023.
[16] R. Brisco, L. Hay, and S. Dhami. Exploring the role of text-to-image ai in concept generation. Proceedings of the Design Society, 3:1835–1844, 2023.
[17] T. Brooks, A. Holynski, and A. A. Efros. Instructpix2pix: Learning to follow image editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 18392–18402, 2023.
[18] L.-S. Byun. Peculiarity of interior design materials for accommodation areas of cruise ships: A state-of-the-art review. Ships and Offshore Structures, 1(3):171– 183, 2006.
[19] A. Cai, S. R. Rick, J. L. Heyman, Y. Zhang, A. Filipowicz, M. Hong, M. Klenk, and T. Malone. Designaid: Using generative ai and semantic diversity for design inspiration. In Proceedings of The ACM Collective Intelligence Conference, pages 1–11, 2023.
[20] M. Capanu, G. A. Jones, and R. H. Randles. Testing for preference using a sum of wilcoxon signed rank statistics. Computational statistics & data analysis, 51(2):793–796, 2006.
[21] cgspectrum. Environment designer. https://www.cgspectrum.com/ career-pathways/environment-designer, 2024.
[22] A.Chatterjee,G.B.M.Stan,E.Aflalo,S.Paul,D.Ghosh,T.Gokhale,L.Schmidt, H. Hajishirzi, V. Lal, C. Baral, et al. Getting it right: Improving spatial consistency in text-to-image models. In European Conference on Computer Vision, pages 204– 222. Springer, 2024.
[23] C. Chen, C. Nguyen, T. Groueix, V. G. Kim, and N. Weibel. Memovis: A genai-powered tool for creating companion reference images for 3d design feedback. ACM Trans. Comput.-Hum. Interact., 31(5), Nov. 2024.
[24] L. Chen, Q. Jing, Y. Tsang, Q. Wang, R. Liu, D. Xia, Y. Zhou, and L. Sun. Autospark: Supporting automobile appearance design ideation with kansei engineering and generative ai. In Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology, pages 1–19, 2024.
[25] Q. Chen, L. Qin, J. Liu, D. Peng, J. Guan, P. Wang, M. Hu, Y. Zhou, T. Gao, and W. Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.
[26] X. Chen, J. Burke, R. Du, M. K. Hong, J. Jacobs, P. Laban, D. Li, N. Peng, K. D. Willis, C.-S. Wu, et al. Next steps for human-centered generative ai: A technical perspective. arXiv preprint arXiv:2306.15774, 2023.
[27] Y.-H. CHIU and C.-C. Chen. Elevating and sharpening convergent thinking: The potential of generative ai for creative professionals. Available at SSRN 4911494, 2024.
[28] D. Choi, S. Hong, J. Park, J. J. Y. Chung, and J. Kim. Creativeconnect: Supporting reference recombination for graphic design ideation with generative ai. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI ’24, New York, NY, USA, 2024. Association for Computing Machinery.
[29] L. Chong, I.-P. Lo, J. Rayan, S. Dow, F. Ahmed, and I. Lykourentzou. Prompting for products: investigating design space exploration strategies for text-to-image generative models. Design Science, 11:e2, 2025.
[30] J. J. Y. Chung and E. Adar. Promptpaint: Steering text-to-image generation through paint medium-like interactions. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23, New York, NY, USA, 2023. Association for Computing Machinery.
[31] J.J.Y.Chung,S.He,andE.Adar.Theintersectionofusers,roles,interactions,and technologies in creativity support tools. In Proceedings of the 2021 ACM Designing Interactive Systems Conference, DIS ’21, page 1817–1833, New York, NY, USA, 2021. Association for Computing Machinery.
[32] C. Contributors. Comfyui: A powerful and modular stable diffusion gui and backend. https://github.com/comfyanonymous/ComfyUI, 2023.
[33] S. Coppers, J. Van den Bergh, K. Luyten, K. Coninx, I. van der Lek-Ciudin, T. Vanallemeersch, and V. Vandeghinste. Intellingo: An intelligible translation environment. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–13, New York, NY, USA, 2018. Association for Computing Machinery.
[34] Y.Dong,Z.Liu,H.-L.Sun,J.Yang,W.Hu,Y.Rao,andZ.Liu.Insight-v:Exploring long-chain visual reasoning with multimodal large language models. arXiv preprint arXiv:2411.14432, 2024.
[35] L. du Plessis. What is game environment design and how to get started? https://www.domestika.org/en/blog/ 10804-what-is-game-environment-design-and-how-to-get-started, 2022.
[36] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah, G. Morgan, and R. Ranjan. Explainable ai (xai): Core ideas, techniques, and solutions. ACM Comput. Surv., 55(9), Jan. 2023.
[37] U. Ehsan, P. Wintersberger, Q. V. Liao, E. A. Watkins, C. Manger, H. Daumé III, A. Riener, and M. O. Riedl. Human-centered explainable ai (hcxai): Beyond opening the black-box of ai. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, CHI EA ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[38] T.F.Eisenmann,A.Karjus,M.C.Sola,L.Brinkmann,B.I.Supriyatno,andI.Rahwan. Expertise elevates ai usage: experimental evidence comparing laypeople and professional artists. arXiv preprint arXiv:2501.12374, 2025.
[39] N.EvirgenandX.Chen.Ganravel:User-drivendirectiondisentanglementingenerative adversarial networks. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–15, 2023.
[40] N. Evirgen and X. A. Chen. Ganzilla: User-driven direction discovery in generative adversarial networks. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[41] N. Evirgen, R. Wang, and X. A. Chen. From text to pixels: Enhancing user understanding through text-to-image model explanations. In Proceedings of the 29th International Conference on Intelligent User Interfaces, IUI ’24, page 74–87, New York, NY, USA, 2024. Association for Computing Machinery.
[42] Y. Feng, X. Wang, K. K. Wong, S. Wang, Y. Lu, M. Zhu, B. Wang, and W. Chen. Promptmagician: Interactive prompt engineering for text-to-image creation. IEEE Transactions on Visualization and Computer Graphics, 30(1):295–305, 2023.
[43] J. Frich, M. Nouwens, K. Halskov, and P. Dalsgaard. How digital tools impact convergent and divergent thinking in design ideation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[44] J. Fu, X. Wang, Z. Li, K. Vi, C. Xu, and Y. Sun. ” i like your story!”: A co-creative story-crafting game with a persona-driven character based on generative ai. arXiv preprint arXiv:2503.09102, 2025.
[45] D. Gao, L. Ji, Z. Bai, M. Ouyang, P. Li, D. Mao, Q. Wu, W. Zhang, P. Wang, X. Guo, et al. Assistgui: Task-oriented pc graphical user interface automation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13289–13298, 2024.
[46] Y. Ge, S. Zhao, C. Li, Y. Ge, and Y. Shan. Seed-data-edit technical report: A hybrid dataset for instructional image editing. arXiv preprint arXiv:2405.04007, 2024.
[47] Y. Guo, H. Shao, C. Liu, K. Xu, and X. Yuan. Prompthis: Visualizing the process and influence of prompt editing during text-to-image creation. IEEE Transactions on Visualization and Computer Graphics, 2024.
[48] L. Höllein, A. Božič, N. Müller, D. Novotny, H.-Y. Tseng, C. Richardt, M. Zollhöfer, and M. Nießner. Viewdiff: 3d-consistent image generation with text-to-image models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5043–5052, 2024.
[49] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen. Lora: Low-rank adaptation of large language models. In International Conference on Learning Representations, 2021.
[50] M. Huang, Y. Long, X. Deng, R. Chu, J. Xiong, X. Liang, H. Cheng, Q. Lu, and W. Liu. Dialoggen: Multi-modal interactive dialogue system for multi-turn text-to-image generation. arXiv preprint arXiv:2403.08857, 2024.
[51] R. Huang, H. Lin, C. Chen, K. Zhang, and W. Zeng. Plantography: Incorporating iterative design process into generative artificial intelligence for landscape rendering. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI ’24, New York, NY, USA, 2024. Association for Computing Machinery.
[52] M. Huh, D. Li, K. Pimmel, H. V. Shin, A. Pavel, and M. Dontcheva. Videodiff: Human-ai video co-creation with alternatives. arXiv preprint arXiv:2502.10190, 2025.
[53] S. F. Javaid and J. P. Pandarakalam. The association of creativity with divergent and convergent thinking. Psychiatria danubina, 33(2):133–139, 2021.
[54] Y. Jeon, S. Jin, P. C. Shih, and K. Han. Fashionq: An ai-driven creativity support tool for facilitating ideation in fashion design. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[55] H. H. Jiang, L. Brown, J. Cheng, M. Khan, A. Gupta, D. Workman, A. Hanna, J. Flowers, and T. Gebru. Ai art and its impact on artists. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, pages 363–374, 2023.
[56] E. W. Johnson. Analysis and refinement of iterative design processes. University of Notre Dame, 1997.
[57] R. Kawakami and S. Venkatagiri. The impact of generative ai on artists. In Proceedings of the 16th Conference on Creativity & Cognition, pages 79–82, 2024.
[58] K. H. Kim and R. A. Pierce. Convergent versus divergent thinking. Encyclopedia of creativity, invention, innovation and entrepreneurship, pages 245–250, 2013.
[59] S.S.Y.Kim,E.A.Watkins,O.Russakovsky,R.Fong,andA.Monroy-Hernández. ”help me help the ai”: Understanding how explainability can support human-ai interaction. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, New York, NY, USA, 2023. Association for Computing Machinery.
[60] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF international conference on computer vision, pages 4015–4026, 2023.
[61] H.-K. Ko, G. Park, H. Jeon, J. Jo, J. Kim, and J. Seo. Large-scale text-to-image generation models for visual artists'creative works. In Proceedings of the 28th International Conference on Intelligent User Interfaces, IUI ’23, page 919–933, New York, NY, USA, 2023. Association for Computing Machinery.
[62] S. Li, H. Le, J. Xu, and M. Salzmann. Enhancing compositional text-to-image generation with reliable random seeds. arXiv preprint arXiv:2411.18810, 2024.
[63] X. Li, Y. Han, D. Liu, P. An, and S. Niu. Flowgpt: Exploring domains, output modalities, and goals of community-generated ai chatbots. In Companion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing, pages 355–361, 2024.
[64] Q. V. Liao and K. R. Varshney. Human-centered explainable ai (xai): From algorithms to user experiences. arXiv preprint arXiv:2110.10790, 2021.
[65] E. J. Lilly. Big Bad World of Concept Art for Video Games: An Insider’s Guide for Students. Design Studio Press, 2015.
[66] D. C.-E. Lin, H. B. Kang, N. Martelaro, A. Kittur, Y.-Y. Chen, and M. K. Hong. Inkspire: Supporting design exploration with generative ai through analogical sketching. arXiv preprint arXiv:2501.18588, 2025.
[67] H. Lin, Y. Ye, J. Xia, and W. Zeng. Sketchflex: Facilitating spatial-semantic coherence in text-to-image generation with region-based sketches. arXiv preprint arXiv:2502.07556, 2025.
[68] J. Lindley and R. Whitham. From prompt engineering to prompt craft. In Proceedings of the Nineteenth International Conference on Tangible, Embedded, and Embodied Interaction, pages 1–12, 2025.
[69] V. Liu and L. B. Chilton. Design guidelines for prompt engineering text-to-image generative models. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[70] V. Liu, H. Qiao, and L. Chilton. Opal: Multimodal image generation for news illustration. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[71] V. Liu, J. Vermeulen, G. Fitzmaurice, and J. Matejka. 3dall-e: Integrating text-to-image ai in 3d design workflows. In Proceedings of the 2023 ACM Designing Interactive Systems Conference, DIS ’23, page 1955–1977, New York, NY, USA, 2023. Association for Computing Machinery.
[72] L. Long, C. Xinyi, W. Ruoyu, L. Toby Jia-Jun, and L. Ray. Sketchar: Supporting character design and illustration prototyping using generative ai. Proceedings of the ACM on Human-Computer Interaction, 8(CHI PLAY):337, 2024.
[73] G. Longo, D. Middleton, and S. Albano. Elaborating a framework that is able to structure and evaluate design workflow and composition of generative ai visualizations. In IHIET-AI 2024: 11th International Conference on Human Interaction & Emerging Technologies: Artificial Intelligence & Future Applications. AHFE International Open Access, 2024.
[74] R. Louie, A. Coenen, C. Z. Huang, M. Terry, and C. J. Cai. Novice-ai music co-creation via ai-steering tools for deep generative models. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1– 13, New York, NY, USA, 2020. Association for Computing Machinery.
[75] S.Lubos,T.N.T.Tran,A.Felfernig,S.PolatErdeniz,andV.-M.Le.Llm-generated explanations for recommender systems. In Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, pages 276–285, 2024.
[76] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11461–11471, 2022.
[77] O. Mañas, P. Astolfi, M. Hall, C. Ross, J. Urbanek, A. Williams, A. Agrawal, A. Romero-Soriano, and M. Drozdzal. Improving text-to-image consistency via automatic prompt optimization. arXiv preprint arXiv:2403.17804, 2024.
[78] A.Marc.TheRandomGuidebookofConceptDesigners:TipsandTricks.JOLUA, 1st edition, 2023.
[79] B. Niu, Y. Song, K. Lian, Y. Shen, Y. Yao, K. Zhang, and T. Liu. Flow: A modular approach to automated agentic workflow generation. arXiv preprint arXiv:2501.07834, 2025.
[80] J. Oppenlaender, R. Linder, and J. Silvennoinen. Prompting ai art: An investigation into the creative skill of prompt engineering. International journal of human–computer interaction, pages 1–23, 2024.
[81] S. Palani, D. Ledo, G. Fitzmaurice, and F. Anderson. "i don't want to feel like i' m working in a 1960s factory": The practitioner perspective on creativity support tool adoption. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pages 1–18, 2022.
[82] S. Palani and G. Ramos. Evolving roles and workflows of creative practitioners in the age of generative ai. In Proceedings of the 16th Conference on Creativity & Cognition, C&C ’24, page 170–184, New York, NY, USA, 2024. Association for Computing Machinery.
[83] H. Park, M. Eiband, A. Luckow, and M. Sedlmair. Exploring visual prompts: Refining images with scribbles and annotations in generative ai image tools. arXiv preprint arXiv:2503.03398, 2025.
[84] X. Peng, J. Koch, and W. E. Mackay. Designprompt: Using multimodal interaction for design exploration with generative ai. page 804–818, 2024.
[85] X. Peng, J. Koch, and W. E. Mackay. Fusain: Composing generative ai visual prompts using pen-based interaction. 2025.
[86] M. Pise, N. Yadgiri, P. Gaikwad, Y. Dusawar, and P. Nandanwar. Ai image generator. networks (GANs), 4(4), 2024.
[87] C. Pronin, A. Podberezkin, and A. Borzenkov. Evaluating consistency of image generation models with vector similarity. In 2024 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED), pages 1–4. IEEE, 2024.
[88] X. Qiu, H. Wang, X. Tan, C. Qu, Y. Xiong, Y. Cheng, Y. Xu, W. Chu, and Y. Qi. Towards collaborative intelligence: Propagating intentions and reasoning for multi-agent coordination with large language models. arXiv preprint arXiv:2407.12532, 2024.
[89] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision. In International conference on machine learning, pages 8748–8763. PmLR, 2021.
[90] M. Raees, I. Meijerink, I. Lykourentzou, V.-J. Khan, and K. Papangelis. From explainable to interactive ai: A literature review on current trends in human-ai interaction. International Journal of Human-Computer Studies, page 103301, 2024.
[91] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R. Pausch, T. Selker, and M. Eisenberg. Design principles for tools to support creative thinking. 2005.
[92] P. K. Roberson, S. Shema, D. Mundfrom, and T. Holmes. Analysis of paired likert data: how to evaluate change and preference questions. Family medicine, 27(10):671–675, 1995.
[93] A.Rodrigues,D.Cabral,andP.F.Campos.Creativitysupporttoolsandconvergent thinking: A preliminary review on idea evaluation and selection. In Proceedings of the 15th Conference on Creativity and Cognition, C&C ’23, page 305–311, New York, NY, USA, 2023. Association for Computing Machinery.
[94] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695, 2022.
[95] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 22500–22510, 2023.
[96] M. Sanwal. Layered chain-of-thought prompting for multi-agent llm systems: A comprehensive approach to explainable large language models. arXiv preprint arXiv:2501.18645, 2025.
[97] A.Satyanarayan,B.Lee,D.Ren,J.Heer,J.Stasko,J.Thompson,M.Brehmer,and Z. Liu. Critical reflections on visualization authoring systems. IEEE transactions on visualization and computer graphics, 26(1):461–471, 2019.
[98] O. D. Sawant. Visual Storytelling with Generative AI: A Practical Handbook for modern Filmmakers and Content Creators. Independently published, 2024.
[99] J. Schell. The Art of Game Design: A Book of Lenses. CRC Press, 2008.
[100] P. B. G. Serra, O. Domingo, and P. Baladas. A programmable interface for creative exploration. In Machine Learning for Creativity and Design Workshop at the 36th Conference on Neural Information Processing Systems (NeurIPS 2022)(December 2022). https://neuripscreativityworkshop. github. io/2022/papers/ml4cd2022_paper19. pdf, 2022.
[101] J. Shi, R. Jain, R. Duan, and K. Ramani. Understanding generative ai in art: An interview study with artists on g-ai from an hci perspective. arXiv preprint arXiv:2310.13149, 2023.
[102] X. Shi, Y. Wang, R. Rossi, and J. Zhao. Brickify: Enabling expressive design intent specification through direct manipulation on design tokens. arXiv preprint arXiv:2502.21219, 2025.
[103] B. Shneiderman. Human-centered AI. Oxford University Press, 2022.
[104] K. Son, D. Choi, T. S. Kim, Y.-H. Kim, and J. Kim. Genquery: Supporting expressive visual search with generative models. In Proceedings of the CHI Conference on Human Factors in Computing Systems, pages 1–19, 2024.
[105] I. Stigliani and D. Ravasi. The shaping of form: Exploring designers'use of aesthetic knowledge. Organization Studies, 39(5-6):747–784, 2018.
[106] Y. Sun, E. Jang, F. Ma, and T. Wang. Generative ai in the wild: Prospects, challenges, and strategies. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI ’24, New York, NY, USA, 2024. Association for Computing Machinery.
[107] S. Taheri and G. Hesamian. A generalization of the wilcoxon signed-rank test and its applications. Statistical Papers, 54:457–470, 2013.
[108] L. Tan and M. Luhrs. Using generative ai midjourney to enhance divergent and convergent thinking in an architect's creative design process. The Design Journal, 27(4):677–699, 2024.
[109] Y.Tang,M.Ciancia,Z.Wang,andZ.Gao.What’s next?exploring utilization,challenges, and future directions of ai-generated image tools in graphic design. arXiv preprint arXiv:2406.13436, 2024.
[110] A. Thieme, E. Cutrell, C. Morrison, A. Taylor, and A. Sellen. Interpretability as a dynamic of human-ai interaction. Interactions, 27(5):40–45, Sept. 2020.
[111] T. Tseng, R. Cheng, and J. Nichols. Keyframer: Empowering animation design using large language models. arXiv preprint arXiv:2402.06071, 2024.
[112] U.A.Usmani,A.Happonen,andJ.Watada.Human-centeredartificialintelligence: Designing for user empowerment and ethical considerations. 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pages 01–05, 2023.
[113] Z. Wan, J. Tang, L. Cai, X. Tong, and C. Liu. Breaking the midas spell: Understanding progressive novice-ai collaboration in spatial design. arXiv preprint arXiv:2410.20124, 2024.
[114] C. Wang, W. Luo, Q. Chen, H. Mai, J. Guo, S. Dong, Z. Li, L. Ma, S. Gao, et al. Mllm-tool: A multimodal large language model for tool agent learning. arXiv preprint arXiv:2401.10727, 2024
[115] F. Wang, W. Huang, S. Yang, Q. Fan, and L. Lan. Learning to learn better visual prompts. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 5354–5363, 2024.
[116] J. Y. Wang and E. H. Adelson. Layered representation for motion analysis. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 361–366. IEEE, 1993.
[117] S. Wang, S. Petridis, T. Kwon, X. Ma, and L. B. Chilton. Popblends: Strategies for conceptual blending with large language models. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, New York, NY, USA, 2023. Association for Computing Machinery.
[118] S.-Y. Wang, W.-C. Su, S. Chen, C.-Y. Tsai, M. Misztal, K. M. Cheng, A. Lin, Y. Chen, and M. Y. Chen. Roomdreaming: Generative-ai approach to facilitating iterative, preliminary interior design exploration. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI ’24, New York, NY, USA, 2024. Association for Computing Machinery.
[119] W.-F. Wang, C.-T. Lu, N. P. Campanyà, B.-Y. Chen, and M. Y. Chen. Aideation: Designing a human-ai collaborative ideation system for concept designers. arXiv preprint arXiv:2502.14747, 2025.
[120] X. Wang and M. Yin. Are explanations helpful? a comparative study of the effects of explanations in ai-assisted decision-making. In Proceedings of the 26th International Conference on Intelligent User Interfaces, IUI ’21, page 318–328, New York, NY, USA, 2021. Association for Computing Machinery.
[121] Y. Wang, S. Shen, and B. Y. Lim. Reprompt: Automatic prompt editing to refine ai-generative art towards precise expressions. In Proceedings of the 2023 CHI conference on human factors in computing systems, pages 1–29, 2023.
[122] Y. Wang, P. Venkatesh, and B. Y. Lim. Interpretable directed diversity: Leveraging model explanations for iterative crowd ideation. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[123] Z. Wang, Y. Huang, D. Song, L. Ma, and T. Zhang. Promptcharm: Text-to-image generation through multi-modal prompting and refinement. 2024.
[124] J. Wei, S. Wu, X. Jiang, and Y. Wang. Dialogpaint: A dialog-based image editing model. arXiv preprint arXiv:2303.10073, 2023.
[125] R. F. Woolson. Wilcoxon signed-rank test. Encyclopedia of biostatistics, 8, 2005.
[126] H.-Y. Wu and V. Callaghan. From imagination to innovation: a creative development process. In Intelligent Environments 2016, pages 514–523. IOS Press, 2016.
[127] X. Xie. The cognitive process of creative design: a perspective of divergent thinking. think skills creat. 101266 (2023), 2023.
[128] K. Xu, L. Zhang, and J. Shi. Good seed makes a good crop: Discovering secret seeds in text-to-image diffusion models. arXiv preprint arXiv:2405.14828, 2024.
[129] W.Xu,M.J.Dainoff,L.Ge,andZ.Gao.Transitioningtohumaninteractionwithai systems: New challenges and opportunities for hci professionals to enable human-centered ai. International Journal of Human–Computer Interaction, 39(3):494–518, 2023.
[130] X. Xue, Z. Lu, D. Huang, W. Ouyang, and L. Bai. Genagent: Build collaborative ai systems with automated workflow generation–case studies on comfyui. arXiv preprint arXiv:2409.01392, 2024.
[131] Z.Yan,C.Yang,Q.Liang,andX.Chen.Xcreation:Agraph-basedcrossmodalgenerative creativity support tool. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, pages 1–15, 2023.
[132] J.Yu,Z.Lin,J.Yang,X.Shen,X.Lu,andT.S.Huang.Generativeimageinpainting with contextual attention. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5505–5514, 2018.
[133] T. Yu, R. Feng, R. Feng, J. Liu, X. Jin, W. Zeng, and Z. Chen. Inpaint anything: Segment anything meets image inpainting. arXiv preprint arXiv:2304.06790, 2023.
[134] J. Zamfirescu-Pereira, H. Wei, A. Xiao, K. Gu, G. Jung, M. G. Lee, B. Hartmann, and Q. Yang. Herding ai cats: Lessons from designing a chatbot by prompting gpt-3. In Proceedings of the 2023 ACM Designing Interactive Systems Conference, DIS ’23, page 2206–2220, New York, NY, USA, 2023. Association for Computing Machinery.
[135] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang. Why johnny can' t prompt: How non-ai experts try (and fail) to design llm prompts. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, New York, NY, USA, 2023. Association for Computing Machinery.
[136] C. Zhang, W. Wang, P. Pangaro, N. Martelaro, and D. Byrne. Generative image ai using design sketches as input: Opportunities and challenges. In Proceedings of the 15th Conference on Creativity and Cognition, pages 254–261, 2023.
[137] F.Zhang,Z.Sun,andQ.Chen.Researchoninteriorintelligentdesignsystembased on image generation technology. Procedia Computer Science, 243:690–699, 2024.
[138] H.Zhang,P.Chen,X.Xie,C.Lin,L.Liu,Z.Li,W.You,andL.Sun.Protodreamer: A mixed-prototype tool combining physical model and generative ai to support conceptual design. In Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology, pages 1–18, 2024.
[139] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3836–3847, 2023.
[140] W. Zhu, S. Shang, W. Jiang, M. Pei, and Y. Su. Convergent thinking moderates the relationship between divergent thinking and scientific creativity. Creativity Research Journal, 31(3):320–328, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99266-
dc.description.abstract在娛樂產業中,場景設計師為遊戲、電影與電視製作2D與3D場景,他們不僅需要對細節有精細掌控,也需要維持整體畫面的一致性。隨著科技發展,設計師們越來越需要在工作流程中使用生成式人工智慧(Generative AI),例如,使用大型語言模型(LLMs)來增強文字生成圖像的提示詞(prompts),再反覆迭代修改提示詞與局部修補(inpainting)來精修圖像。然而,我們針對10位設計師進行的初步研究顯示了兩項主要挑戰:(1)LLM生成的提示語非常冗長複雜,導致設計師難以理解並且找出對應特定視覺元素的關鍵詞;(2)雖然局部修補能編輯特定區域,但在維持圖像整體一致性與合理性方面是一大挑戰。

基於這些觀察,我們提出GenTune,一個強調人與AI協作的系統,透過清楚地呈現AI生成提示詞與圖像內容之間的對應關係,來幫助設計師更有效地進行編輯。GenTune系統讓設計師可以選取生成圖像中的任意物件,追溯其對應的提示詞標籤,並透過這些標籤引導圖像進行精準且整體一致的優化。在一項針對20位設計師的總結性研究中,GenTune在提示詞與圖像的理解度、編輯品質與效率、以及整體滿意度方面,均較現行方法有顯著提升(皆達顯著水準,p < .01)。隨後在兩家設計工作室進行的實地研究亦進一步證明其在真實工作場景中的有效性。
zh_TW
dc.description.abstractEnvironment designers in the entertainment industry create imaginative 2D and 3D scenes for games, films, and television, requiring both fine-grained control of specific details and consistent global coherence. Designers have increasingly integrated generative AI into their workflows, often relying on large language models (LLMs) to enhance user prompts for text-to-image generation, then iteratively refining those prompts and applying inpainting. However, our formative study with 10 designers surfaced two key challenges: (1) the lengthy LLM-generated prompts make it difficult to understand and isolate the keywords that must be revised for specific visual elements; and (2) while inpainting supports localized edits, it can struggle with global consistency and correctness. Based on these insights, we present GenTune, an approach that enhances human–AI collaboration by clarifying how AI-generated prompts map to image content. Our GenTune system lets designers select any object in a generated image, trace it back to the corresponding prompt labels, and revise those labels to guide precise yet globally consistent image refinement. In a summative study with 20 designers, GenTune significantly improved prompt-image comprehension, refinement quality and efficiency, and overall satisfaction (all p < .01) compared to current practice. A follow-up field study with two studios further demonstrated its effectiveness in real-world settings.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:02:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T17:02:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
Contents v
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Related Work 7
2.1 Generative AI in Creative Workflow . . . . . . . . . . . . . . . . . . 7
2.2 Addressing Understanding in Human-AI Design Collaboration . . . . 8
2.3 Refinement in Generative Image Workflows . . . . . . . . . . . . . . 10
Chapter 3 Formative Study 13
3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Study Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Roles of GenAI in Environment Design . . . . . . . . . . . . . . . 14
3.3.3 Current GenAI Refinement Workflow and Key Challenges . . . . . 15
3.4 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 4 System Implementation 19
4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.1 Traceable prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Semantic-guided refinement . . . . . . . . . . . . . . . . . . . . . 21
4.1.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Technical Implementation . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Traceable prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Semantic-guided refinement . . . . . . . . . . . . . . . . . . . . . 26
Chapter 5 Summative Study 29
5.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Task overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter 6 Results & Findings 35
6.1 A1: Prompt–Image Interpretability . . . . . . . . . . . . . . . . . . 35
6.2 A2: Refinement effectiveness and output quality . . . . . . . . . . . 38
6.2.1 Refinement efficiency and precision . . . . . . . . . . . . . . . . . 38
6.2.2 Refinement quality . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2.1 Refinement order . . . . . . . . . . . . . . . . . . . . 39
6.2.3 Within-subject case comparison . . . . . . . . . . . . . . . . . . . 40
6.2.4 Recommendation usefulness . . . . . . . . . . . . . . . . . . . . . 40
6.3 A3: Alignment with Expectations and Control . . . . . . . . . . . . 41
Chapter 7 Field Study 45
7.1 Participants, Study Procedure and Evaluation . . . . . . . . . . . . . 45
7.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Chapter 8 Discussion, Limitations, and Future Work 49
8.1 Adapting Generation Approaches to Designers’ Needs . . . . . . . . 49
8.2 Toward Controllability, Trust, Transparency with Traceable Prompt . 53
8.3 Generalizing GenTune . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 55
Chapter 9 Conclusion 57
References 59
-
dc.language.isoen-
dc.subject生成式人工智慧zh_TW
dc.subject以人為本的人工智慧zh_TW
dc.subject場景設計zh_TW
dc.subject創意支援工具zh_TW
dc.subject視覺探索zh_TW
dc.subject可追溯提示詞zh_TW
dc.subjectEnvironment Designen
dc.subjectGenerative AIen
dc.subjectHuman-Centered AIen
dc.subjectTraceable Prompten
dc.subjectVisual Explorationen
dc.subjectCreativity Support Toolen
dc.title透過可追溯的提示詞提升場景設計中圖像編輯的可控性zh_TW
dc.titleGenTune: Toward Traceable Prompts to Improve Controllability of Image Refinement in Environment Designen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹力韋;蔡欣叡;韓秉軒zh_TW
dc.contributor.oralexamcommitteeLi-Wei Chan;Hsin-Ruey Tsai;Ping-Hsuan Hanen
dc.subject.keyword生成式人工智慧,以人為本的人工智慧,場景設計,創意支援工具,視覺探索,可追溯提示詞,zh_TW
dc.subject.keywordGenerative AI,Human-Centered AI,Environment Design,Creativity Support Tool,Visual Exploration,Traceable Prompt,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202502389-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
18.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved