Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99258
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真zh_TW
dc.contributor.advisorChih-Chen Hsiehen
dc.contributor.author張辰揚zh_TW
dc.contributor.authorChen-Yang Zhangen
dc.date.accessioned2025-08-21T17:01:04Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. US Genomics.
2. 段沅宏, 以雙肽核酸標定染色體DNA於脂雙層上快速建立基因圖譜. 2022, 國立台灣大學化學工程研究所.
3. P.C. Turner, A.G.M., A.D. Bates & M.R.H. White, 分子生物學速成 Instant Notes Molecular Biology. 合記圖書出版社, 2003.
4. Hsieh, C.-C., A. Balducci, and P.S. Doyle, Ionic effects on the equilibrium dynamics of DNA confined in nanoslits. Nano letters, 2008. 8(6): p. 1683-1688.
5. Odijk, T., POLYELECTROLYTES NEAR THE ROD LIMIT. Journal of Polymer Science Part B-Polymer Physics, 1977. 15(3): p. 477-483.
6. Maier, B. and J.O. Rädler, Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions. Physical Review Letters, 1999. 82(9): p. 1911-1914.
7. 童世煌, 高分子物理-固態物理.
8. Iain Johnson, M.T.Z.S., A GUIDE TO FLUORESCENT PROBES AND LABELING TECHNOLOGIES 11th Edition. 2010.
9. Günther, K., M. Mertig, and R. Seidel, Mechanical and structural properties of YOYO-1 complexed DNA. Nucleic Acids Research, 2010. 38(19): p. 6526-6532.
10. Larsson, A., et al., Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy. Journal of the American Chemical Society, 1994. 116(19): p. 8459-8465.
11. Kucharska, K., et al., Two Intercalation Mechanisms of Oxazole Yellow Dimer (YOYO-1) into DNA. Molecules, 2021. 26(12): p. 3748.
12. Kundukad, B., J. Yan, and P.S. Doyle, Effect of YOYO-1 on the mechanical properties of DNA. Soft Matter, 2014. 10(48): p. 9721-9728.
13. Smith, D.E., T.T. Perkins, and S. Chu, Dynamical scaling of DNA diffusion coefficients. Macromolecules, 1996. 29(4): p. 1372-1373.
14. Brochard, F. and P.G. Degennes, Dynamics of Confined Polymer-Chains. Journal of Chemical Physics, 1977. 67(1): p. 52-56.
15. Reisner, W., et al., Statics and dynamics of single DNA molecules confined in nanochannels. Physical Review Letters, 2005. 94(19).
16. Rivetti, C., M. Guthold, and C. Bustamante, Scanning force microscopy of DNA deposited onto mica: EquilibrationversusKinetic trapping studied by statistical polymer chain analysis. Journal of molecular biology, 1996. 264(5): p. 919-932.
17. Hsieh, C.C. and P.S. Doyle, Studying confined polymers using single-molecule DNA experiments. Korea-Australia Rheology Journal, 2008. 20(3): p. 127-142.
18. Israelachvili, J.N., Intermolecular and surface forces. 2011: Academic press.
19. Baroud, M., et al., The evolution of nucleosidic analogues: Self-assembly of prodrugs into nanoparticles for cancer drug delivery. Nanoscale Advances, 2021. 3(8): p. 2157-2179.
20. Hardy, G.J., R. Nayak, and S. Zauscher, Model cell membranes: Techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Current Opinion in Colloid & Interface Science, 2013. 18(5): p. 448-458.
21. Jackman, J.A. and N.-J. Cho, Supported lipid bilayer formation: beyond vesicle fusion. Langmuir, 2020. 36(6): p. 1387-1400.
22. Hamai, C., et al., Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. Biophysical journal, 2006. 90(4): p. 1241-1248.
23. Castellana, E.T. and P.S. Cremer, Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports, 2006. 61(10): p. 429-444.
24. Sonnleitner, A., G. Schütz, and T. Schmidt, Free Brownian motion of individual lipid molecules in biomembranes. Biophysical journal, 1999. 77(5): p. 2638-2642.
25. Groves, J.T., N. Ulman, and S.G. Boxer, Micropatterning fluid lipid bilayers on solid supports. Science, 1997. 275(5300): p. 651-3.
26. Lenz, P., C.M. Ajo-Franklin, and S.G. Boxer, Patterned supported lipid bilayers and monolayers on poly (dimethylsiloxane). Langmuir, 2004. 20(25): p. 11092-11099.
27. Faysal, K.R., et al., Lipid bilayers are long-lived on solvent cleaned plasma-oxidized poly (dimethyl) siloxane (ox-PDMS). PloS one, 2017. 12(1): p. e0169487.
28. Olson, D.J., et al., Electrophoresis of DNA Adsorbed to a Cationic Supported Bilayer. Langmuir, 2001. 17(23): p. 7396-7401.
29. Reddy, P.M., et al., Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram-positive and gram-negative bacteria. Journal of biomedical nanotechnology, 2014. 10(8): p. 1429-1439.
30. Teng, C.-H., et al., Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Analytical chemistry, 2004. 76(15): p. 4337-4342.
31. Fatima, H. and K.-S. Kim, Magnetic nanoparticles for bioseparation. Korean Journal of Chemical Engineering, 2017. 34(3): p. 589-599.
32. Ganapathe, L.S., et al., Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry, 2020. 6(4): p. 68.
33. Young, A.D. and J.P. Gillung, Phylogenomics—principles, opportunities and pitfalls of big‐data phylogenetics. Systematic Entomology, 2020. 45(2): p. 225-247.
34. Golan, D. and P. Medvedev, Using state machines to model the Ion Torrent sequencing process and to improve read error rates. Bioinformatics, 2013. 29(13): p. 344-351.
35. Liang, X.G. and S.Y. Chou, Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Letters, 2008. 8(5): p. 1472-1476.
36. Wang, Y., et al., Nanopore sequencing technology, bioinformatics and applications. Nature biotechnology, 2021. 39(11): p. 1348-1365.
37. Bleidorn, C., Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and biodiversity, 2016. 14(1): p. 1-8.
38. Wenger, A.M., et al., Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature biotechnology, 2019. 37(10): p. 1155-1162.
39. Eid, J., et al., Real-time DNA sequencing from single polymerase molecules. Science, 2009. 323(5910): p. 133-138.
40. Gruszka, D., et al., Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Essays in Biochemistry, 2021. 65(1): p. 51-66.
41. Watson, J.D., DNA:生命的秘密 DNA:The secret of life. 2003: 時報文化.
42. Chan, E.Y., et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res, 2004. 14(6): p. 1137-46.
43. Schrauwen, I., et al., Optical genome mapping unveils hidden structural variants in neurodevelopmental disorders. Scientific Reports, 2024. 14(1): p. 7.
44. Pang, A., Comprehensive detection of germline and somatic structural mutation in cancer genomes by Bionano Genomics optical mapping. Cancer Research, 2019. 79(13): p. 2.
45. Chen, Y.-F., G. Blab, and J.-C. Meiners, Stretching sub-micron DNA fragments with optical tweezers. NanoScience + Engineering. Vol. 6644. 2007: SPIE.
46. Neuman, K.C. and A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature methods, 2008. 5(6): p. 491-505.
47. Bensimon, A., et al., ALIGNMENT AND SENSITIVE DETECTION OF DNA BY A MOVING INTERFACE. Science, 1994. 265(5181): p. 2096-2098.
48. Bensimon, A., et al., Alignment and sensitive detection of DNA by a moving interface. Science, 1994. 265(5181): p. 2096-8.
49. Esmail Nazari, Z. and L. Gurevich, Controlled deposition and combing of DNA across lithographically defined patterns on silicon. Beilstein journal of nanotechnology, 2013. 4: p. 72-76.
50. 厲承翰, 於改良式漸縮微流道拉伸DNA之研究. 2012, 國立臺灣大學化學工程研究所: 碩士論文.
51. Douville, N., D. Huh, and S. Takayama, DNA linearization through confinement in nanofluidic channels. Analytical and Bioanalytical Chemistry, 2008. 391(7): p. 2395-2409.
52. Reisner, W., J.N. Pedersen, and R.H. Austin, DNA confinement in nanochannels: physics and biological applications. Rep Prog Phys, 2012. 75(10): p. 106601.
53. Dorfman, K.D., et al., Hydrodynamics of DNA confined in nanoslits and nanochannels. The European physical journal. Special topics, 2014. 223(14): p. 3179-3200.
54. Lam, E.T., et al., Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol, 2012. 30(8): p. 771-6.
55. Hochrein, M.B., et al., DNA localization and stretching on periodically microstructured lipid membranes. Phys Rev Lett, 2006. 96(3): p. 038103.
56. 郭厚均, DNA 於脂雙層上自發伸展機制及侷限行為之研究. 2016, 國立台灣大學化學工程研究所.
57. 謝明勳, 於脂雙層上拉伸DNA與其基因圖譜應用之研究. 2014, 國立台灣大學化學工程研究所: 碩士論文.
58. 梁祐榮, 於脂雙層上利用表面電泳拉伸 DNA 以加速建立基因圖譜之研究. 2021, 國立臺灣大學化學工程研究所: 碩士論文.
59. 郭朝琛, 以布朗動態法模擬由正向應力驅動DNA電泳分離. 2019, 國立台灣大學化學工程研究所.
60. Zohar, H. and S.J. Muller, Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. Nanoscale, 2011. 3(8): p. 3027-3039.
61. Lukinavicius, G., et al., Targeted labeling of DNA by methyltransferase-directed transfer of activated groups (mTAG). J Am Chem Soc, 2007. 129(10): p. 2758-9.
62. Tomkuvienė, M., et al., Repurposing enzymatic transferase reactions for targeted labeling and analysis of DNA and RNA. Curr Opin Biotechnol, 2019. 55: p. 114-123.
63. Aiba, Y., M. Shibata, and O. Shoji, Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. Applied Sciences, 2022. 12(7): p. 3677.
64. Vilaivan, T., Fluorogenic PNA probes. Beilstein Journal of Organic Chemistry, 2018. 14(1): p. 253-281.
65. Nielsen, P.E., Peptide nucleic acid targeting of double-stranded DNA, in Methods in Enzymology. 2001, Elsevier. p. 329-340.
66. Zohar, H., et al., Peptide Nucleic Acids as Tools for Single-Molecule Sequence Detection and Manipulation. Nano Letters, 2010. 10(11): p. 4697-4701.
67. 李宏恩, 以缺口標記法於脂雙層伸展之DNA上快速建立DNA圖譜. 2015, 國立台灣大學化學工程研究所.
68. Krerowicz, S.J., J.P. Hernandez-Ortiz, and D.C. Schwartz, A simple dialysis device for large DNA molecules. BioTechniques, 2019. 66(2): p. 93-95.
69. https://bionano.com/.
70. Lin, B.J., Future of multiple-e-beam direct-write systems. Journal of Micro-Nanolithography Mems and Moems, 2012. 11(3): p. 13.
71. Dauksher, W.J., et al., Nano-imprint lithography: Templates, imprinting and wafer pattern transfer. Microelectronic Engineering, 2006. 83(4-9): p. 929-932.
72. Reyntjens, S. and R. Puers, A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 2001. 11(4): p. 287-300.
73. Kizilyaprak, C., J. Daraspe, and B.M. Humbel, Focused ion beam scanning electron microscopy in biology. Journal of Microscopy, 2014. 254(3): p. 109-114.
74. Xiang, D., et al., Mechanically Controllable Break Junctions for Molecular Electronics. Advanced Materials, 2013. 25(35): p. 4845-4867.
75. Wang, L., et al., Advance of Mechanically Controllable Break Junction for Molecular Electronics. Topics in Current Chemistry, 2017. 375(3): p. 42.
76. Hu, H., H.J. Kim, and S. Somnath, Tip-Based Nanofabrication for Scalable Manufacturing. Micromachines, 2017. 8(3): p. 31.
77. Jiang, X.H., et al., Nanoscale scratching of platinum thin films using atomic force microscopy with DLC tips. Journal of Vacuum Science & Technology B, 2012. 30(2): p. 8.
78. Chen, Y.J., J.H. Hsu, and H.N. Lin, Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology, 2005. 16(8): p. 1112-1115.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99258-
dc.description.abstract現代醫療技術中,如何準確並快速檢測病原體為治療中重要的一環,而現行的技術耗時長導致治療時程拉長。本研究團隊先前已開發出一脂雙層DNA拉伸平台,能有效且快速地辨識λ-DNA之基因圖譜。此基因圖譜平台除了具有低成本、簡易操作、圖譜準確性高、耗時短等優點,也因使用bisPNA標定法而具有較高的序列選擇彈性。
考量到利用觀察顯微鏡下DNA標記點之位置此光學系統其解析度受限於光波長,且受限於在顯微鏡下操作,難以將其微型化。因此,在本研究中我們引入奈米間隙探測器與先前之脂雙層DNA拉伸平台結合,計畫以收集電訊號之方式建立基因圖譜為本研究之目標。
我們首先透過COMSOL Multiphysics軟體模擬,評估利用奈米間隙探測器偵側DNA電訊號之可行性。而後我們先在玻片上以舉離(lift-off)製程鍍出金電極,再利用原子力顯微鏡(AFM)之探針切割出約50 nm寬之奈米間隙,驗證以探針式製作技術製作奈米間隙之可行性。而在裝置製作上,我們發現若是通道高度小於1.5 μm,會導致通道內出現脂球堆積的現象,因此我們透過聚二甲基矽氧烷(PDMS)封頂之設計提高通道高度解決此問題。之後我們在此圖案玻片上舉離出與通道垂直之電極,卻因為曝光時真空度以及光罩圖案之特殊性導致最後電極之寬度增加。此外,我們也觀察到由於乾蝕刻之DNA通道側壁過於垂直,導致舉離之電極有不連續連接的情況,而且AFM探針難以準確切割到側壁轉角處。最後,我們改利用濕蝕刻製作出DNA通道,並在其上舉離出電極後,成功利用AFM探針於側壁轉角處切割出約50 nm的奈米間隙。我們於裝置中架設脂雙層後,以電泳驅動由bisPNA標定之λ-DNA通過奈米間隙,觀察到明顯的脈衝電流訊號。雖然最後無法直接證實為DNA通過時產生之訊號,但此裝置也為本脂雙層拉伸平台轉變為收集電訊號以建立基因圖譜之可能性奠定下基礎。
zh_TW
dc.description.abstractIn modern medical technology, precise and rapid detection of pathogens plays an important role in effective treatment. However, current techniques are often time-consuming, which delay the treatment process. In our previous studies, we have developed a lipid bilayer based DNA extension platform, which capable of efficiently and quickly identifying the genomic profile of DNA. This platform offers advantages including low cost, ease of operation, high mapping accuracy, and short processing time. Moreover, due to the use of the bisPNA labeling method, it provides greater flexibility in sequence selection.
Considered that the resolution of using optical system to observe labeled DNA is limited by the wavelength of light and the difficulty of miniaturizing due to the reliance on optical microscopy. Therefore, in this study, we introduce a nanogap detector to our previously established lipid bilayer based DNA extension platform. The goal of this research is to construct genome maps via electrical signal detection.
We first used COMSOL Multiphysics software to simulate and confirm the feasibility of detecting DNA electrical signals using a nanogap detector. Subsequently, gold electrodes were patterned on a glass slide using a lift-off process, and 50 nm wide nanogaps were created by cutting with an atomic force microscope (AFM) tip, demonstrating the feasibility of fabricating nanogaps using tip-based nanofabrication.
During device fabrication, we found that when the channel height was less than 1.5 μm, vesicles accumulation occurred inside the channel. This issue was resolved by increasing the channel height through a polydimethylsiloxane (PDMS) capping design. We then attempted to fabricate electrodes perpendicular to the DNA channel on the patterned glass using lift-off process. However, due to vacuum conditions during exposure and the specific design of the photomask, the final electrode width increased. Additionally, the vertical sidewall of the dry etched DNA channel led to discontinuities in the lift-off electrode, and the sharp corners made it difficult for AFM tip to precisely cut at the sidewall intersection. As a result, we decided to switch to wet etching to fabricate the DNA channel. After patterning the electrode, we successfully created 50 nm wide nanogap at the corner of the sidewall cutting with AFM tip.
After forming lipid bilayers in DNA channel, we used electrophoresis to drive bisPNA-labeled λ-DNA through the nanogap and observed distinct pulsed electrical signals. Although we could not confirm that the signals were generated by the translocation of DNA, this study lays the groundwork for transforming the lipid bilayer DNA extension platform into one capable of generating genome maps via electrical signal detection.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:01:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T17:01:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract IV
目次 VI
圖次 IX
表次 XXII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 DNA介紹 3
2.1.1 DNA之結構 3
2.1.2 DNA之高分子性質 7
2.1.3 DNA於侷限空間下之行為 11
2.2 脂質介紹 14
2.2.1 脂質的基本性質 14
2.2.2 脂質之自組裝行為及其型態 15
2.2.3 支托脂雙層(Supported Lipid Bilayer) 18
2.3 DNA吸附於脂雙層上之行為 21
2.3.1 DNA於脂雙層上之平衡態行為 21
2.3.2 DNA於脂雙層上之表面電泳行為 22
2.4 奈米磁珠應用於生物分離 24
2.4.1 奈米磁珠之性質 24
2.4.2 奈米磁珠應用於生物分離之工作原理與成效 25
2.5 現行DNA定序技術 30
2.5.1 桑格定序法 30
2.5.2 次世代定序 31
2.5.3 第三代定序法 34
2.6 現行DNA圖譜技術 40
2.6.1 限制圖譜 40
2.6.2 直接線性分析法(direct linear analysis, DLA) 41
2.6.3 DNA拉伸技術 44
2.6.4 DNA標定技術 56
2.6.5 利用bisPNA標定λ-DNA過程之優化 62
2.6.5.1 兩步反應標記法 63
2.6.5.2 一步反應標記法 64
2.6.5.3 移除未反應bisPNA之方法 67
2.7 本研究團隊先前建立之基因圖譜平台與商業化產品之比較 71
2.8 奈米間隙探測器 72
2.8.1 電子束直寫(Electron-beam direct writing) 73
2.8.2 奈米壓印技術(Nanoimprint lithography) 74
2.8.3 聚焦離子束技術(Focus ion beam) 75
2.8.4 可控機械斷裂技術(Mechanical controllable break junctions) 76
2.8.5 探針式製作技術(Tip-based nanofabrication) 77
2.9 研究目標與實驗概念 78
第三章 實驗設備與步驟 81
3.1 儀器設備 81
3.2 實驗藥品 85
3.3 實驗方法與步驟 88
3.3.1 圖案玻片製作 89
3.3.2 奈米間隙電極製作 92
3.3.3 PDMS模具製作 95
3.3.4 脂質溶液配製 98
3.3.5 支托脂雙層之架設 100
3.3.6 DNA溶液配置 101
3.3.6.1 DNA之稀釋 101
3.3.6.2 DNA之染色 102
3.3.7 以bisPNA標記DNA 103
3.3.8 顯微鏡設備 103
第四章 實驗結果分析與討論 105
4.1 利用奈米間隙探測器偵測電訊號之模擬 105
4.2 探針式製作奈米間隙探測器之可行性分析 109
4.3 在PDMS封頂之微流道中架設脂雙層 111
4.4 舉離後之電極形貌 114
4.5 在乾蝕刻微流道中架設奈米間隙探測器 117
4.6 奈米間隙探測器之製作 119
4.7 利用奈米間隙探測器進行DNA電訊號偵測 121
第五章 結論 124
參考文獻 126
-
dc.language.isozh_TW-
dc.subjectDNAzh_TW
dc.subject奈米間隙探測器zh_TW
dc.subject快速DNA圗譜zh_TW
dc.subject雙肽核酸標記法zh_TW
dc.subject脂雙層DNA拉伸平台zh_TW
dc.subjectlipid bilayer based DNA extension platformen
dc.subjectDNAen
dc.subjectrapid DNA genome mappingen
dc.subjectbisPNA labelingen
dc.subjectnanogap detectoren
dc.title在脂雙層DNA拉伸平台上架設奈米間隙探測器量測DNA之電訊號zh_TW
dc.titleSetup a Nanogap Detector on Lipid Bilayer Based DNA Extension Platform to Measure The Electrical Signal of DNAen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃振煌;趙玲zh_TW
dc.contributor.oralexamcommitteeJen-Huang Huang;Ling Chaoen
dc.subject.keyword奈米間隙探測器,脂雙層DNA拉伸平台,雙肽核酸標記法,快速DNA圗譜,DNA,zh_TW
dc.subject.keywordnanogap detector,lipid bilayer based DNA extension platform,bisPNA labeling,rapid DNA genome mapping,DNA,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202503419-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved