Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾zh_TW
dc.contributor.advisorChia-Lin Chungen
dc.contributor.author蔡裕承zh_TW
dc.contributor.authorYu-Cheng Tsaien
dc.date.accessioned2025-08-21T17:00:11Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation林木疫情鑑定與資訊中心。2025。危害統計表。林業試驗所。網址:https://health.tfri.gov.tw/fhsnc/statis/statisdiseasename。瀏覽日期:2025/6/13。
臺北市行道樹路燈資訊網。2025。臺北市政府工務局公園路燈工程管理處。網址:https://geopkl.gov.taipei/。瀏覽日期:2025/5/1。
蔡金池,曾德賜。2008a。金線連根圈分離木黴菌菌株之生物特性。植物病理學會刊 17(2):127-142。
蔡金池,曾德賜。2008b。木黴菌Trichoderma asperellum TA菌秣在台灣金線連莖腐病防治上之應用。植物病理學會刊 17(3):243-254。
觀測網月資料。2025。中華民國交通部中央氣象署。網址:https://www.cwa.gov.tw/V8/C/L/Agri/Agri_month.html。瀏覽日期:2025/5/28。
Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., and Simeon, V. T. 2019. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Scientia Horticulturae 243:457-463.
Adekiya, A. O., Agbede, T. M., Olayanju, A., Ejue, W. S., Adekanye, T. A., Adenusi, T. T., and Ayeni, J. F. 2020. Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam Alfisol. The Scientific World Journal 2020:1-9.
Alvey, A. A. 2006. Promoting and preserving biodiversity in the urban forest. Urban Forestry and Urban Greening 5(4):195-201.
Amini, S., Ghadiri, H., Chen, C., and Marschner, P. 2016. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. Journal of Soils and Sediments 16:939-953.
Askew, D. J., and Laing, M. D. 1993. An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathology 42(5):686-690.
Beaudet, L. V., Galopin, G., and Grosbellet, C. 2018. Effect of organic amendment for the construction of favourable urban soils for tree growth. European Journal of Horticultural Science 83:173-186.
Berbegal, M., Ramón‐Albalat, A., León, M., and Armengol, J. 2020. Evaluation of long‐term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Management Science 76(3):967-977.
Blanco-Canqui, H. 2017. Biochar and soil physical properties. Soil Science Society of America Journal 81(4):687-711.
Bonanomi, G., Lorito, M., Vinale, F., and Woo, S. L. 2018. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopathology 56:1-20.
Bretzel, F., Vannucchi, F., Pini, R., Scatena, M., Marradi, A., and Cinelli, F. 2020. Use of coarse substrate to increase the rate of water infiltration and the bearing capacity in tree plantings. Ecological Engineering 148:105798.
Carrero-Carrón, I., Trapero-Casas, J. L., Olivares-García, C., Monte, E., Hermosa, R., and Jiménez-Díaz, R. M. 2016. Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Protection 88:45-52.
Carrus, G., Scopelliti, M., Lafortezza, R., Colangelo, G., Ferrini, F., Salbitano, F., Agrimi, M., Portoghesi, L., Semenzato, P., and Sanesi, G. 2015. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landscape and Urban Planning 134:221-228.
Cekstere, G., and Osvalde, A. 2013. A study of chemical characteristics of soil in relation to street trees status in Riga (Latvia). Urban Forestry and Urban Greening 12:69-78.
Chen, L. H., Zhang, J., Shao, X. H., Wang, S. S., Miao, Q. S., Mao, X. Y., Zha, Y. M., She, D. L. 2015a. Development and evaluation of Trichoderma asperellum preparation for control of sheath blight of rice (Oryza sativa L.). Biocontrol Science and Technology 25(3):316-328.
Chen, J., Kim, H., and Yoo, G. 2015b. Effects of biochar addition on CO2 and N2O emissions following fertilizer application to a cultivated grassland soil. PLoS One 10:e0126841.
Chou, H., Xiao, Y.T., Tsai, J.N., Li, T.T., Wu, H.Y., Liu, L.y. D., Tzeng, D.S., and Chung, C.L. 2019. In vitro and in planta evaluation of Trichoderma asperellum TA as a biocontrol agent against Phellinus noxius, the cause of brown root rot disease of trees. Plant Disease 103:2733-2741.
Corns, I. G. 1988. Compaction by forestry equipment and effects on coniferous seedling growth on four soils in the Alberta foothills. Canadian Journal of Forest Research 18(1):75-84.
Corwin, D. L., and Lesch, S. M. 2005. Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture 46(1-3):11-43.
Curtin, D., Campbell, C. A., and Jalil, A. 1998. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology and Biochemistry 30(1):57-64.
Czaja, M., Kołton, A., and Muras, P. 2020. The complex issue of urban trees—Stress factor accumulation and ecological service possibilities. Foresrests 11:932.
Dai, H., Chen, Y., Liu, K., Li, Z., Qian, X., Zang, H., Yang, X., Zhao, Y., Shen, Y., Li, Z., and Sui, P. 2019. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three-year field study. Journal of Cleaner Production 212:393-400.
Dai, Z., Wang, Y., Muhammad, N., Yu, X., Xiao, K., Meng, J., Liu, X., Xu, J., and Brookes, P. C. 2014. The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH. Soil Science Society of America Journal 78(5):1606-1614.
Deenik, J. L., McClellan, T., Uehara, G., Antal, M. J., and Campbell, S. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal 74(4):1259-1270.
Dharmakeerthi, R. S., Chandrasiri, J. A. S., and Edirimanne, V. U. 2012. Effect of rubber wood biochar on nutrition and growth of nursery plants of Hevea brasiliensis established in an Ultisol. SpringerPlus 1:1-12.
Emerson, W. W., Foster, R. C., Tisdall, J. M., and Weissmann, D. 1994. Carbon content and bulk-density of an irrigated natrixeralf in relation to tree root growth and orchard management. Soil Research 32(5):939-951.
Entio, L. J., Taggart, C. B., Muir, J. P., Kan, E., Brady, J. A., and Obayomi, O. 2024. Biochar and dairy manure amendment effects on Cynodon dactylon performance and soil properties. Plants 13(2):242.
Fontenelle, A., Guzzo, S., Lucon, C., and Harakava, R. 2011. Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Protection 30:1492-1500.
Franzluebbers, A. J., Haney, R. L., Hons, F. M., and Zuberer, D. A. 1996. Active fractions of organic matter in soils with different texture. Soil Biology and Biochemistry 28(10-11):1367-1372.
Fu, J., Xiao, Y., Liu, Z., Zhang, Y., Wang, Y., and Yang, K. 2020. Trichoderma asperellum improves soil microenvironment in different growth stages and yield of maize in saline-alkaline soil of the Songnen Plain. Plant, Soil and Environment 66(12).
Ge, N., Wei, X., Wang, X., Liu, X., Shao, M., Jia, X., Li, X., and Zhang, Q. 2019. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena 172:148-157.
Gilani, S., Askari, N., Meighani, H., Soleimani, A., and Ghahremani, R. 2023. Interaction of light quality and EC of nutrition solution on seedling quality, growth, and physiology of cucumber seedlings. International Journal of Horticultural Science and Technology 10:97-112.
Gomez, A., Powers, R. F., Singer, M. J., and Horwath, W. R. 2002. Soil compaction effects on growth of young ponderosa pine following litter removal in California's Sierra Nevada. Soil Science Society of America Journal 66(4):1334-1343.
Gonzaga, M. I. S., da Silva, P. S. O., de Jesus Santos, J. C., and de Oliveira Junior, L. F. G. 2019. Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicology and Environmental Safety 183:109557.
Gravel, V., Antoun, H., and Tweddell, R. J. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology and Biochemistry 39(8):1968-1977.
Gregory, A. S., Watts, C. W., Whalley, W. R., Kuan, H. L., Griffiths, B. S., Hallett, P. D., and Whitmore, A. P. 2007. Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. European Journal of Soil Science 58:1221-1232.
de Gryze, S., Six, J., and Merckx, R. 2006. Quantifying water‐stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study. European Journal of Soil Science 57(5):693-707.
Guo, Y., Samson, V. M., Zhi, Y., Chen, Y., Yang, X., Jia, G., and Mao, Y. 2025. Biochar-fertilizer interaction increases nitrogen retention, uptake and use efficiency of Cinnamomum camphora: A 15N tracer study. Geoderma Regional 40:e00936.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M. 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2(1):43-56.
Harman, G. E. 2006. Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 96(2):190-194.
Haug, R. 2018. The practical handbook of compost engineering. Routledge.
He, J., Jin, Y. I., Turner, N. C., Chen, Z., Liu, H. Y., Wang, X. L., Siddique, K. H. M., and Li, F. M. 2019. Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage. Environmental and Experimental Botany 166:103816.
Hermosa, R., Rubio, M. B., Cardoza, R. E., Nicolás, C., Monte, E., and Gutiérrez, S. 2013. The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology 16(2):69-80.
Hohmann, P., Jones, E. E., Hill, R. A., and Stewart, A. 2011. Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal Biology 115:759-767.
Huang, Y., Jing, Y., Bei, M., Yang, H., Cha, Z., Lin, Q., and Luo, W. 2020. Short-term effects of organic amendments on soil fertility and root growth of rubber trees on Hainan Island, China. Journal of Forestry Research 31(6):2137-2144.
Huang, Z., Zhao, F., Wang, M., Qi, K., Wu, J., and Zhang, S. 2019. Soil chemical properties and geographical distance exerted effects on arbuscular mycorrhizal fungal community composition in pear orchards in Jiangsu Province, China. Applied Soil Ecology 142:18-24.
Hüblová, L., and Frouz, J. 2021. Contrasting effect of coniferous and broadleaf trees on soil carbon storage during reforestation of forest soils and afforestation of agricultural and post-mining soils. Journal of Environmental Management 290:112567.
Islam, M. U., Jiang, F., Guo, Z., and Peng, X. 2021. Does biochar application improve soil aggregation? A meta-analysis. Soil and Tillage Research 209:104926.
Jien, S. H., and Wang, C. S. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110:225-233.
Jones, R. J., Spoor, G., and Thomasson, A. J. 2003. Vulnerability of subsoils in Europe to compaction: a preliminary analysis. Soil and Tillage Research 73(1-2):131-143.
Kim, Y. J., and Yoo, G. 2021. Suggested key variables for assessment of soil quality in urban roadside tree systems. Journal of Soils and Sediments 21:2130-2140.
Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G., and Heitman, J. L. 2020. The effects of compost incorporation on soil physical properties in urban soils–a concise review. Journal of Environmental Management 261:110209.
Kuzyakov, Y., Friedel, J. K., and Stahr, K. 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry 32(11-12):1485-1498.
Kyveryga, P. M., Blackmer, A. M., Ellsworth, J. W., and Isla, R. 2004. Soil pH effects on nitrification of fall‐applied anhydrous ammonia. Soil Science Society of America Journal 68(2):545-551.
Lareen, A., Burton, F., and Schäfer, P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology 90:575-587.
Larney, F. J., and Angers, D. A. 2012. The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science 92(1):19-38.
Lee, A., Jeong, S., Joo, J., Park, C.-R., Kim, J., and Kim, S. 2021. Potential role of urban forest in removing PM2. 5: A case study in Seoul by deep learning with satellite data. Urban Climate 36:100795.
Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., and Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249:343-357.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D. 2011. Biochar effects on soil biota–a review. Soil Biology and Biochemistry 43:1812-1836.
Lepš, J., and Šmilauer, P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge university press.
Li, J., Xu, Z., Yang, T., Zhang, J., Zuo, Y., and Cheng, L. 2025. Rhizosphere ecological restoration: interactions between nutrient mobilization, core microbial assembly, and phenylalanine metabolism circulation. Biochar 7(1):1-20.
Li, Z. G., Zhang, G. S., Liu, Y., Wan, K. Y., Zhang, R. H., and Chen, F. 2013. Soil nutrient assessment for urban ecosystems in Hubei, China. PloS One 8:e75856.
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B. Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J., and Neves, E. G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70(5):1719-1730.
Liang, B., Ma, C., Fan, L., Wang, Y., and Yuan, Y. 2018. Soil amendment alters soil physicochemical properties and bacterial community structure of a replanted apple orchard. Microbiological Research 216:1-11.
Liu, S., Cen, B., Yu, Z., Qiu, R., Gao, T., and Long, X. 2025. The key role of biochar in amending acidic soil: reducing soil acidity and improving soil acid buffering capacity. Biochar 7(1):52.
Lo Piccolo, E., Becagli, M., Lauria, G., Cantini, V., Ceccanti, C., Cardelli, R., Massai, R., Remorini, D., Guidi, L., and Landi, M. 2022. Biochar as a soil amendment in the tree establishment phase: What are the consequences for tree physiology, soil quality and carbon sequestration? Science of The Total Environment 844:157175.
Longa, C. M. O., Savazzini, F., Tosi, S., Elad, Y., and Pertot, I. 2009. Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. Journal of Applied Microbiology 106(5):1549-1557.
López-Bucio, J., Cruz-Ramırez, A., and Herrera-Estrella, L. 2003. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6(3):280-287.
de Lucia, B., Cristiano, G., Vecchietti, L., and Bruno, L. 2013. Effect of different rates of composted organic amendment on urban soil properties, growth and nutrient status of three Mediterranean native hedge species. Urban Forestry and Urban Greening 12:537-545.
Mao, X., Zhang, G., Liu, Z., Huang, F., and Yu, F. 2024. Combined application of nitrogen and phosphorus promotes the growth and nutrient accumulations of Cinnamomum camphora container seedlings. Agriculture 14(2):280.
Mayo-Prieto, S., Porteous-Álvarez, A. J., Mezquita-García, S., Rodríguez-González, Á., Carro-Huerga, G., del Ser-Herrero, S., Gutiérrez, S., Casquero, P. A. 2021. Influence of physicochemical characteristics of bean crop soil in Trichoderma spp. development. Agronomy 11(2):274.
Mazibuko, D. M., Maskey, S., Kurashina, K., Okazawa, H., Oshima, H., Kato, T., and Kikuno, H. 2025. Effects of biochar on growth, response to water stress, and post-stress recovery in underutilized vegetable Hibiscus sabdariffa from Malawi. Crops 5(2):13.
Mbarki, S., Cerdà, A., Brestic, M., Mahendra, R., Abdelly, C., and Pascual, J. A. 2017. Vineyard compost supplemented with Trichoderma harzianum T78 improve saline soil quality. Land Degradation and Development 28(3):1028-1037.
McGrath, D., Henry, J., Munroe, R., and Williams, C. 2020. Compost improves soil properties and tree establishment along highway roadsides. Urban Forestry and Urban Greening 55:126851.
Moore, G. M., Fitzgerald, A., and May, P. B. 2019. Soil compaction affects the growth and establishment of street trees in urban Australia. Arboriculture and Urban Forestry 45(6):239-253.
Moreira, F. M., Cairo, P. A. R., Borges, A. L., da Silva, L. D., and Haddad, F. 2021. Investigating the ideal mixture of soil and organic compound with Bacillus sp. and Trichoderma asperellum inoculations for optimal growth and nutrient content of banana seedlings. South African Journal of Botany 137:249-256.
Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., and Ocampo-Velazquez, R. V. 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13:10823-10843.
Naeimi, S., Khosravi, V., Varga, A., Vágvölgyi, C., and Kredics, L. 2020. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease. Agronomy 10:1258.
Neher, D. A., Asmussen, D., and Lovell, S. T. 2013. Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area. Science of the Total Environment 449:320-327.
Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil science 2019(1):5794869.
Nugent, A., and Allison, S. D. 2022. A framework for soil microbial ecology in urban ecosystems. Ecosphere 13:e3968.
Oshunsanya, S. (Ed.). 2019. Soil pH for nutrient availability and crop performance. BoD–Books on Demand.
Papa, S., Bartoli, G., Pellegrino, A., and Fioretto, A. 2010. Microbial activities and trace element contents in an urban soil. Environmental Monitoring and Assessment 165:193-203.
Prescott, C. E., and Vesterdal, L. 2021. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management 498:119522.
Ribera, J., Gandía, M., Marcos, J. F., Bas, M. d. C., Fink, S., and Schwarze, F. W. 2017. Effect of Trichoderma enriched organic charcoal in the integrated wood protection strategy. PLoS One 12:e0183004.
Rillig, M. C., and Mummey, D. L. 2006. Mycorrhizas and soil structure. New Phytologist 171(1):41-53.
Roberts, J., Jackson, N., and Smith, M. 2006. Tree roots in the built environment. TSO. Londom.
Ruan, R., and Wang, Y. 2024. Effects of biochar amendment on root growth and plant water status depend on maize genotypes. Agricultural Water Management 293:108688.
de Santiago, A., García-López, A. M., Quintero, J. M., Avilés, M., and Delgado, A. 2013. Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biology and Biochemistry 57:598-605.
de los Santos-Villalobos, S., Guzmán-Ortiz, D. A., Gómez-Lim, M. A., Délano-Frier, J. P., de-Folter, S., Sánchez-García, P., and Peña-Cabriales, J. J. 2013. Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biological Control 64(1):37-44.
Safaryan, A., Sargsyan, T., Kalantaryan, M., and Melyan, H. 2019. Ultralight large grain porous material - expanded obsidian. E3S Web of Conferences 97:02038.
Safaryan, A., Sarkisyan, T., Paytyan, T., Kalantaryan, M., and Baghdagyulyan, A. 2020. Expanded obsidian as a soil aerator, its porosity, physical and mechanical characteristics. E3S Web of Conferences 175:09019.
Scharenbroch, B. C., and Watson, G. W. 2014. Wood chips and compost improve soil quality and increase growth of Acer rubrum and Betula nigra in compacted urban soil. Arboriculture and Urban Forestry 40:319-331.
Shrivastava, P., and Kumar, R. 2014. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22(2):123.
Siegel-Issem, C. M., Burger, J. A., Powers, R. F., Ponder, F., and Patterson, S. C. 2005. Seedling root growth as a function of soil density and water content. Soil Science Society of America Journal 69(1):215-226.
Six, J., Bossuyt, H., Degryze, S., and Denef, K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79(1):7-31.
Six, J., and Paustian, K. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry 68:A4-A9.
Somerville, P. D., Farrell, C., May, P. B., and Livesley, S. J. 2020. Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Science of the Total Environment 706:135736.
Sparks, D. L., Page, A. L., Helmke, P. A., and Loeppert, R. H. 2020. Methods of soil analysis, part 3: Chemical methods. John Wiley and Sons.
Sung, C. Y. 2013. Mitigating surface urban heat island by a tree protection policy: A case study of The Woodland, Texas, USA. Urban Forestry and Urban Greening 12:474-480.
Tan, S., Narayanan, M., Huong, D. T. T., Ito, N., Unpaprom, Y., Pugazhendhi, A., Chi, N. T. L., and Liu, J. 2022. A perspective on the interaction between biochar and soil microbes: A way to regain soil eminence. Environmental Research 214:113832.
Tandon, A., Anshu, A., Kumar, S., Yadav, U., Mishra, S. K., Srivastava, S., Chauhan, P. S., Srivastava, P. K., Bahadur, L.,Shirke, P. A., Srivastava, M., Tewari, S. K., and Singh, P. C. 2022. Trichoderma‐primed rice straw alters structural and functional properties of sodic soil. Land Degradation and Development 33(5):698-709.
Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., and Nishihara, E. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management 27(2):205-212.
Tisdall, J. M., and Oades, J. M. 1982. Organic matter and water‐stable aggregates in soils. Journal of Soil Science 33(2):141-163.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., and Cowie, A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327:235-246.
Viger, M., Hancock, R. D., Miglietta, F., and Taylor, G. 2015. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. Global Change Biology Bioenergy 7(4):658-672.
Wang, H., Zhang, R., Mao, Y., Jiang, W., Chen, X., Shen, X., Yin, C., and Mao, Z. 2022. Effects of Trichoderma asperellum 6S-2 on apple tree growth and replanted soil microbial environment. Journal of Fungi 8(1):63.
Wang, N., Fu, Q., Zhou, Z., Shao, Y., Wang, J., Li, W., Ye, Y., Chen, Y., and Yuan, Z. 2021. Humus microhabitat affects distributions of soil fungi and bacteria in a temperate mountain forest. Ecology and Evolution 11:9148-9158.
Wang, Y., Tang, C., Wu, J., Liu, X., and Xu, J. 2013. Impact of organic matter addition on pH change of paddy soils. Journal of Soils and Sediments 13(1):12-23.
Weber, K., and Quicker, P. 2018. Properties of biochar. Fuel 217:240-261.
Wen, H., Sullivan, P. L., Macpherson, G. L., Billings, S. A., and Li, L. 2020. Deepening roots can enhance carbonate weathering. Biogeosciences Discussions 2020:1-24.
Wu, Z. C., Chang, Y. Y., Lai, Q. J., Lin, H. A., Tzean, S. S., Liou, R. F., Tsai, I. J., and Chung, C. L. 2020. Soil is not a reservoir for Phellinus noxius. Phytopathology 110:362-369.
Xian, H. Q., Liu, L., Li, Y. H., Yang, Y. N., and Yang, S. 2020. Molecular tagging of biocontrol fungus Trichoderma asperellum and its colonization in soil. Journal of Applied Microbiology 128(1):255-264.
Xiang, Y., Deng, Q., Duan, H., and Guo, Y. 2017. Effects of biochar application on root traits: a meta‐analysis. Global Change Biology Bioenergy 9(10):1563-1572.
Xu, J. M., Tang, C., and Chen, Z. L. 2006a. Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biology and Biochemistry 38(3):544-552.
Xu, J. M., Tang, C., and Chen, Z. L. 2006b. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry 38(4):709-719.
Yang, T., Samarakoon, U., Altland, J., and Ling, P. 2024. Influence of electrical conductivity on plant growth, nutritional quality, and phytochemical properties of Kale (Brassica napus) and Collard (Brassica oleracea) grown using hydroponics. Agronomy 14(11):2704.
Zanetti, C., Vennetier, M., Mériaux, P., and Provansal, M. 2015. Plasticity of tree root system structure in contrasting soil materials and environmental conditions. Plant and Soil 387(1):21-35.
Zhang, Y., Tian, C., Xiao, J., Wei, L., Tian, Y., and Liang, Z. 2020. Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Express 10:1-13.
Zhang, Y., Wang, J., and Feng, Y. 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena 202:105284.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99254-
dc.description.abstract都市樹木為人類社會帶來許多效益,然而其生長環境是否適宜卻經常被忽視。樹木生長環境不佳會導致生長勢下降,營養吸收不良,亦降低對病原菌的抵抗力。臺灣都市樹木病害以褐根病 (brown root rot disease) 為大宗,造成樹木腐朽死亡或倒塌,連帶造成生命財產損失。樟樹 (Camphora officinarum) 為國內都市林常見樹種及褐根病感病樹種,本研究以樟樹苗為實驗材料,以稻殼炭、禽畜糞堆肥、泥炭土與晶曜石等資材與壤土和黏壤土混合,開發樹穴土壤改良配方,提供樹木根系良好的生長環境以提升樹勢。另以具拮抗褐根病菌 (Phellinus noxius) 能力之棘孢木黴菌TA (Trichoderma asperellum TA) 進行澆灌,探討其促進樟樹苗生長之潛力。為期84天的2次溫室盆栽獨立試驗結果顯示,經過改良的壤土與黏壤土其總體密度顯著降低、酸鹼值和電導度增加,且在壤土處理中顯著提升樟樹苗之根系投影面積、樹基徑、葉綠素SPAD值;澆灌T. asperellum TA則對樟樹苗的生長無顯著差異。T. asperellum TA施用後,在各處理組均能維持穩定的族群至少42天,且在壤土的族群量高於黏壤土,顯示對所測試之不同土壤條件均具有良好的適應力。從短期試驗篩選具潛力配方,加入晶曜石為測試資材,進行234天以壤土為基土的長期溫室盆栽試驗。結果顯示「10%稻殼炭 + 5%堆肥 + 10%泥炭土」(體積比) 為最佳配方,與對照組相比顯著提升樹基徑37%、根系投影面積99%、葉綠素SPAD值25%、地上部乾重59%及地下部乾重27%。以晶曜石取代稻殼炭、配合堆肥及泥炭土一起施用,可以與最佳配方達到類似效果,但在根系投影面積增加率顯著較低。每42天澆灌一次T. asperellum TA並未顯著促進樹苗生長。本研究從市售常見資材中評估適合壤土的土壤改良配方,確認能有效促進樟樹苗生長,期望提供更精準且具經濟效益的方式改善樹木棲地,促進都市林之健康管理。zh_TW
dc.description.abstractUrban trees provide numerous benefits to human society, yet their growth environment is often overlooked. Poor soil conditions can weaken tree vigor, impair nutrient uptake, and reduce resistance to pathogens. In Taiwan, brown root rot disease caused by Phellinus noxius is the most predominant disease affecting urban trees, leading to tree decay, collapse, and associated risks to human life and properties. Camphor trees (Camphora officinarum), a common urban tree species in Taiwan, are particularly susceptible to brown root rot disease. Aiming to improve tree growth conditions and enhance tree vigor, this study used camphor tree seedlings as experimental material to develop soil amendment formulations by incorporating rice husk biochar, poultry manure compost, peat, and expanded obsidian into loam and clay loam soils. In addition, Trichoderma asperellum TA, which has the ability to antagonize P. noxius, was used to evaluate its potential in promoting the growth of camphor seedlings. Results from two 84-day greenhouse pot trials showed that both amended loam and clay loam soils had significantly reduced bulk density and increased pH and electrical conductivity (EC). In loam soil, the amendments significantly improved root area, basal diameter, and SPAD chlorophyll values of the camphor seedlings. Drenching with T. asperellum TA did not significantly enhance seedling growth. The applied T. asperellum TA maintained a stable population in all treatments for at least 42 days, with higher abundance observed in loam soil compared to clay loam, indicating good adaptability across different soil conditions. Based on the 84-day results, a promising formulation was selected and further tested with expanded obsidian in a 234-day long-term greenhouse trial using loam soil. The optimal formulation—10% rice husk biochar, 5% compost, and 10% peat (v/v)—significantly increased basal diameter by 37%, root projected area by 99%, SPAD values by 25%, aboveground dry weight by 59%, and underground dry weight by 27%, compared to the control. Replacing biochar with expanded obsidian achieved similar effects on most plant growth parameters, but resulted in a significantly lower increase in root projected area. Soil drenching with T. asperellum TA every 42 days did not significantly improve seedling growth in the long-term trial. Overall, this study identified an effective and practical soil amendment formulation using readily available materials for loam soil, confirming its potential to enhance camphor seedling growth. The findings provide a precise and economically feasible approach to improving urban tree habitats and supporting healthy urban forest management.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:00:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T17:00:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
學位論文學術倫理暨原創性聲明書 ii
誌謝 iii
中文摘要 v
ABSTRACT vi
目次 viii
表次 xii
圖次 xiii
第一章、前言 1
1.1 都市樹木的健康威脅 1
1.2 土壤改良及常用資材 2
1.3 木黴菌之特性及應用 4
1.4 研究動機 6
第二章、材料與方法 8
2.1 土壤來源 8
2.2 植物材料 8
2.3 土壤改良資材 8
2.4 木黴菌種類及定量 9
2.5 短期溫室盆栽試驗 10
2.6 長期溫室盆栽試驗 10
2.7 土壤性質檢測 11
2.7.1 製備氣乾土壤 11
2.7.2 氣乾土壤含水率 12
2.7.3 土壤質地 12
2.7.4 總體密度 13
2.7.5 土壤硬度 13
2.7.6 土壤體積含水率 14
2.7.7 土壤酸鹼值 14
2.7.8 土壤電導度 14
2.7.9 土壤有機碳、土壤有機氮與有機碳氮比 14
2.8 樹苗生長勢及健康狀態評估 14
2.9 統計分析 15
第三章、結果 17
3.1 土壤性質及資材特性 17
3.2 溫室試驗場域之環境條件 17
3.3 短期溫室盆栽試驗 17
3.3.1 壤土及黏壤土對於土壤性質、木黴菌量及植物生長之影響 17
3.3.2 T. asperellum TA在不同土壤處理中的時間變化 18
3.3.3 不同土壤處理對於土壤性質、木黴菌量及植物生長之影響 18
3.3.4 各項指標之間的相關性 20
3.3.5 比較各資材添加與否對各項指標的影響 21
3.3.5.1 壤土 21
3.3.5.2 黏壤土 22
3.4 長期溫室盆栽試驗 23
3.4.1 T. asperellum TA在長期試驗壤土處理中的時間變化 23
3.4.2 不同土壤處理對於土壤性質、木黴菌量及植物生長之影響 23
3.4.3 各項指標之間的相關性 25
3.4.4 比較各資材添加與否對各指標的影響 26
第四章、討論 27
4.1 壤土及黏壤土之性質 27
4.2 土壤改良處理對土壤性質的影響 28
4.2.1 土壤改良降低總體密度 28
4.2.2 土壤改良提升電導度 28
4.2.3 土壤改良提升pH 29
4.2.4 土壤改良提升有機碳、有機氮含量 30
4.3 土壤改良處理對樟樹苗的影響 31
4.3.1 總體密度降低促進樹苗生長 31
4.3.2 提升電導度和有機碳促進樹苗生長 31
4.3.3 pH對樟樹苗的影響 32
4.3.4 生物炭影響樹苗乾重、鮮重、與根系生長 32
4.4 土壤改良資材的交互作用 33
4.5 澆灌T. asperellum TA對樟樹苗的影響 35
4.6 T. asperellum TA在土壤中的殘存能力 36
4.7 結語 37
第五章、參考文獻 39
表 55
圖 78
-
dc.language.isozh_TW-
dc.subject棘孢木黴菌zh_TW
dc.subject稻殼炭zh_TW
dc.subject土壤改良資材zh_TW
dc.subject樟樹zh_TW
dc.subject晶曜石zh_TW
dc.subject泥炭土zh_TW
dc.subject堆肥zh_TW
dc.subjectTrichoderma asperellumen
dc.subjectCamphora officinarumen
dc.subjectpeaten
dc.subjectsoil amendmenten
dc.subjectrice husk biocharen
dc.subjectcomposten
dc.subjectexpanded obsidianen
dc.title生物炭、有機質與棘孢木黴菌TA對土壤改良及樟樹苗生長之影響zh_TW
dc.titleEffects of Biochar, Organic Materials, and Trichoderma asperellum TA on Soil Improvement and Seedling Growth of Camphora officinarumen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許正一;沈原民;劉則言zh_TW
dc.contributor.oralexamcommitteeZeng-Yei Hseu;Yuan-Min Shen;Tse-Yen Liuen
dc.subject.keyword稻殼炭,堆肥,泥炭土,晶曜石,樟樹,土壤改良資材,棘孢木黴菌,zh_TW
dc.subject.keywordrice husk biochar,compost,peat,expanded obsidian,Camphora officinarum,soil amendment,Trichoderma asperellum,en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202503500-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物醫學碩士學位學程-
dc.date.embargo-lift2030-08-06-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-06
4.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved