請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99249完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卡艾瑋 | zh_TW |
| dc.contributor.advisor | Hervé Capart | en |
| dc.contributor.author | 廖梓鈞 | zh_TW |
| dc.contributor.author | Tzu-Chun Liao | en |
| dc.date.accessioned | 2025-08-21T16:58:48Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Anand, S. K., Bertagni, M. B., Singh, A., and Porporato, A. (2023). Eikonal equation reproduces natural landscapes with threshold hillslopes. Geophysical Research Letters, 50(21):e2023GL105710.
Howard, A. D. and Kerby, G. (1983). Channel changes in badlands. Geological Society of America Bulletin, 94(6):739–752. Ko, T.-Y. (2022). Bedrock-limited constant slope incision: experiment, eikonal model and application to landslide and fan deposits. Master’s thesis, Department of Civil Engineering College of Engineering National Taiwan University. Massong, T. M. and Montgomery, D. R. (2000). Influence of sediment supply, lithology, and wood debris on the distribution of bedrock and alluvial channels. Geological Society of America Bulletin, 112(4):591–599. Montgomery, D. R. and Buffington, J. M. (1997). Channel reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109(5):596–611. Perron, J. T. (2013). An integral approach to bedrock river profile analysis. Earth Surface Dynamics, 1(1):31–51. Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J. (2000). Regional patterns of river slope, lithology, and active tectonics in the san gabriel mountains, california. The Journal of Geology, 108(2):161–190. Turowski, J. M., Hovius, N., Wilson, A., and Horng, M. (2008). Hydraulic geometry, river sediment and the definition of bedrock channels. Geomorphology, 99(1–4):26–38. Venditti, J. G., Li, T., Deal, E., Dingle, E., and Church, M. (2020). Struggles with stream power: Connecting theory across scales. Geomorphology, 366:106817. Wang, Y., Chen, C., and Lin, C. (2017). A systematic approach for channel-hillslope hydrologic and geomorphic coupling in mountainous catchments using slope–area analysis. Earth Surface Processes and Landforms, 42(9):1353–1367. Whipple, K. X. and Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8):17661–17674. Whitbread, K., Jansen, J., Bishop, P., and Attal, M. (2015). Substrate, sediment, and slope controls on bedrock channel geometry in postglacial streams. Journal of Geophysical Research: Earth Surface, 120(5):779–798. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99249 | - |
| dc.description.abstract | 河川能量定律(Stream Power Law)是解釋河流縱剖面與受構造抬升驅動之地貌演化的常用理論框架。山區河流通常呈現三個地貌區段——崩積區、基岩區與沖積區,但這些區段間的轉換界線仍難以明確劃分。本研究提出一套自動化的河道縱剖面分區方法,結合坡度–集水面積分析、閾值式平滑處理及分段式迴歸擬合。過程中將自動判識區段分界之臨界集水面積,並為各區段率定河川能量定律之參數:曲度指數θ與陡度指數β。
藉由主流計算所得的θ值,支流縱剖面可轉換至χ–高程空間,以利一致性的比較。依據β值,支流再進一步透過K-means 分群與主流為基準的預測區間進行分類為基岩侵蝕型或覆蓋沉積型。對於沉積覆蓋型支流,則透過比對實測與模型預測之縱剖面,以估算基岩高程與沉積厚度。 為重建集水區地形,本研究於主流與支流坡面上套用等坡度的Eikonal 模型。在沖積區段中,為修正曲流影響,則引入基於曲流率的中心線調整。由於基岩參數化存在高度不確定性,目前集水區地形重建與沉積量推估尚屬初步結果。儘管如此,本研究所提出之框架,仍為進行形態分析與辨識集水區尺度沉積儲集模式提供了系統性基礎。 | zh_TW |
| dc.description.abstract | The stream power law is a widely used framework for interpreting river profiles and landscape evolution under tectonic uplift. Mountain rivers typically exhibit three geomorphic zones—colluvial, bedrock, and alluvial—but delineating transitions among them remains challenging. This study presents an automated method for river profile zonation using slope–area analysis, threshold-based smoothing, and piecewise regression fitting. Critical drainage areas separating geomorphic domains are automatically identified during this process, and stream power parameters—concavity θ and steepness β—are calibrated for each zone.
Using the trunk-derived θ, tributary profiles are transformed into χ–elevation space to allow consistent comparison. Tributaries are classified as bedrock-incising or sedimentcovered based on β values, using both K-means clustering and a trunk-based prediction interval. For sediment-covered tributaries, bedrock elevations and sediment thickness are estimated by comparing observed and modeled profiles. To reconstruct watershed topography, a constant-slope Eikonal model is applied to hillslopes along both the trunk stream and its tributaries. In alluvial zones, channel centerlines are corrected for meandering using sinuosity-based adjustments. Due to large uncertainties in bedrock parameterization, both full watershed reconstruction and sediment quantification remain preliminary. Nevertheless, the framework provides a systematic basis for morphometric analysis and identifying sediment storage patterns at the catchment scale. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:58:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:58:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xxi Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2 Study Area 3 2.1 Laonong River Valley . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 3 Main Stem Methodology 17 3.1 Stream Power Incision Model . . . . . . . . . . . . . . . . . . . . . 17 3.2 Slope-Area analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Field parameter calibration workflow . . . . . . . . . . . . . . . . . 24 3.3.1 Select trunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Long profile smoothing . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.3 Threshold-based segmentation for slope–area simplification . . . . . 27 3.3.4 Determination of colluvial channel slope . . . . . . . . . . . . . . . 30 3.3.5 Determination of bedrock channel and alluvial channel . . . . . . . 31 3.4 Application in Laonong River Valley . . . . . . . . . . . . . . . . . 33 3.4.1 Yu-Shui catchment . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.2 Putunpunas catchment . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.3 Chin-Shui catchment . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.4 Comparison across catchments . . . . . . . . . . . . . . . . . . . . 60 Chapter 4 Tributary Methodology 63 4.1 Change horizontal coordinate . . . . . . . . . . . . . . . . . . . . . 65 4.2 Calibration of steepness index parameters . . . . . . . . . . . . . . . 68 4.2.1 Separate tributary . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.2 Principle of K-means clustering . . . . . . . . . . . . . . . . . . . . 69 4.2.3 Outlier removal and statistical analysis within each cluster . . . . . 71 4.2.4 Define bedrock incision and sediment-covered channel . . . . . . . 72 4.3 Calculate tributary elevation . . . . . . . . . . . . . . . . . . . . . . 77 Chapter 5 Reconstruct Watershed Topography 95 5.1 Constant slope incision theory . . . . . . . . . . . . . . . . . . . . . 95 5.2 Alluvial Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.1 Centerline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3 Catchment topography . . . . . . . . . . . . . . . . . . . . . . . . . 107 Chapter 6 Conclusion 115 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 References 119 | - |
| dc.language.iso | en | - |
| dc.subject | 基岩渠道 | zh_TW |
| dc.subject | 河川地形 | zh_TW |
| dc.subject | 沉積物分佈 | zh_TW |
| dc.subject | 河川能量定律 | zh_TW |
| dc.subject | Stream Power Law | en |
| dc.subject | Fluvial geomorphology | en |
| dc.subject | sediment distribution | en |
| dc.subject | bedrock channel | en |
| dc.title | 應用河川能量定律於集水區內河道剖面自動分區與支流覆蓋類型分類 | zh_TW |
| dc.title | Automated zonation of river profiles and classification of tributary cover using the Stream Power Law | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳慈愔 | zh_TW |
| dc.contributor.coadvisor | T-Y Kasha Chen | en |
| dc.contributor.oralexamcommittee | 洪啟耀;Leonard Sklar | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Yao Hung;Leonard Sklar | en |
| dc.subject.keyword | 河川能量定律,基岩渠道,沉積物分佈,河川地形, | zh_TW |
| dc.subject.keyword | Stream Power Law,bedrock channel,sediment distribution,Fluvial geomorphology, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202503602 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 87.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
