Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99236
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡劭璞zh_TW
dc.contributor.advisorShao-Pu Tsaien
dc.contributor.author曹梓敬zh_TW
dc.contributor.authorTzu-Ching Tsaoen
dc.date.accessioned2025-08-21T16:55:41Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1] H. Mohrbacher, Metallurgical concepts for optimized processing and properties of carburizing steel, Advances in Manufacturing 4(2) (2016) 105-114.
[2] E. Wołowiec-Korecka, Modeling methods for gas quenching, low-pressure carburizing and low-pressure nitriding, Engineering Structures 177 (2018) 489-505.
[3] K. Löser, Innovative heat treating technologies in the automotive industry, (2005).
[4] S. Hock, J. Kleff, I. Kellermann, M. Schulz, Temperature-the key to optimize cost and result in carburizing vehicle driveline parts, (2005).
[5] G. Hiller, Advantages of low pressure carburising and high pressure gas quenching technology in manufacturing, International Heat Treatment and Surface Engineering 8(1) (2014) 35-41.
[6] B. Garbarz, F.B. Pickering, Effect of austenite grain boundary mobility on hardenability of steels containing vanadium, Materials science and technology 4(11) (1988) 967-975.
[7] S.W. Thompson, G. Krauss, Precipitation and fine structure in medium-carbon vanadium and vanadium/niobium microalloyed steels, Metallurgical Transactions A 20(11) (1989) 2279-2288.
[8] H. Adrian, F.B. Pickering, Effect of titanium additions on austenite grain growth kinetics of medium carbon V–Nb steels containing 0· 008–0· 018% N, Materials Science and Technology 7(2) (1991) 176-182.
[9] E.J. Palmiere, C.I. Garcia, A.J.D. Ardo, Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium, Metallurgical and Materials Transactions A 25(2) (1994) 277-286.
[10] S. Zajac, Precipitation and grain refinement in vanadium–containing steels, Proceedings of Vanitec International Symposium, 2001, pp. 1-20.
[11] K.A. Alogab, D.K. Matlock, J.G. Speer, H.J. Kleebe, The Influence of Niobium Microalloying on Austenite Grain Coarsening Behavior of Ti-modified SAE 8620 Steel, ISIJ Int. 47(2) (2007) 307-316.
[12] H.M. Fu, M.X. Zhang, D. Qiu, P.M. Kelly, J.A. Taylor, Grain refinement by AlN particles in Mg–Al based alloys, Journal of Alloys and Compounds 478(1-2) (2009) 809-812.
[13] Y. Han, J. Shi, L. Xu, W.Q. Cao, H. Dong, Effects of Ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel, Materials & Design 34 (2012) 427-434.
[14] D.Y. Wu, F.R. Xiao, B. Wang, J.L. Liu, Investigation on grain refinement and precipitation strengthening applied in high speed wire rod containing vanadium, Materials Science and Engineering: A 592 (2014) 102-110.
[15] C.M. Enloe, K.O. Findley, J.G. Speer, Austenite Grain Growth and Precipitate Evolution in a Carburizing Steel with Combined Niobium and Molybdenum Additions, Metallurgical and Materials Transactions A 46(11) (2015) 5308-5328.
[16] B. AlMangour, M.S. Baek, D. Grzesiak, K.A. Lee, Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting, Materials Science and Engineering: A 712 (2018) 812-818.
[17] S.A. Tian, Z.B. Liu, R.L. Fu, X.H. Wang, Effect of niobium alloying on the austenite grain growth and mechanical properties of ultrahigh-strength stainless steel, Materials Research Express 9(2) (2022) 026511.
[18] X.X. An, Y. Tian, H.J. Wang, Y.F. Shen, Z.D. Wang, Suppression of austenite grain coarsening by using Nb–Ti microalloying in high temperature carburizing of a gear steel, Advanced Engineering Materials 21(8) (2019) 1900132.
[19] J.M. Kim, J.K. Park, On the AlN precipitation and grain refinement in the Al (N)-added medium C–Mn steels, Philosophical Magazine Letters 97(8) (2017) 320-327.
[20] T. Gladman, On the theory of the effect of precipitate particles on grain growth in metals, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 294(1438) (1966) 298-309.
[21] M. Hillert, Inhibition of grain growth by second-phase particles, Acta Metallurgica 36(12) (1988) 3177-3181.
[22] I. Andersen, Ø. Grong, Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates—I. Normal grain growth, Acta Metallurgica et Materialia 43(7) (1995) 2673-2688.
[23] I. Andersen, Ø. Grong, N. Ryum, Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates—II. Abnormal grain growth, Acta metallurgica et materialia 43(7) (1995) 2689-2700.
[24] N.A. Haroun, D.W. Budworth, Modifications to the Zener formula for limitation of grain size, Journal of Materials Science 3 (1968) 326-328.
[25] M. Ashby, The interaction of crystal boundaries with second-phase particles, Trans Met Soc AIME 245(2) (1969) 413.
[26] P.A. Manohar, D.P. Dunne, T. Chandra, C.R. Killmore, Grain growth predictions in microalloyed steels, ISIJ Int. 36(2) (1996) 194-200.
[27] C. Zener, C. Smith, Grains, phase, and interfaces: an interpretation of microstructure, Trans. Am. Inst. Min. Metall. Soc. 175 (1948) 15-15.
[28] P.A. Manohar, M. Ferry, T. Chandra, Five Decades of the Zener Equation, ISIJ Int. 38(9) (1998) 913-924.
[29] R.E. Reed-Hill, R. Abbaschian, L. Abbaschian, Physical metallurgy principles, Van Nostrand New York1973.
[30] G. Saito, T.L. Zhang, N. Sakaguchi, M. Ohno, K. Matsuura, M. Takeuchi, T. Sano, K. Minoguchi, T. Yamaoka, In-situ observation of abnormal grain growth in a low-alloyed carbon steel using SEM-EBSD, Materialia 15 (2021) 100985.
[31] C.J. Tweed, N. Hansen, B. Ralph, Grain growth in samples of aluminum containing alumina particles, Metallurgical Transactions A 14 (1983) 2235-2243.
[32] F.G. Wilson, T. Gladman, Aluminium nitride in steel, International Materials Reviews 33(1) (1988) 221-286.
[33] P.R. Rios, Abnormal growth in the presence of coarsening particles, Acta metallurgica et materialia 40(4) (1992) 649-651.
[34] P.R. Rios, Abnormal grain growth in pure materials, Acta metallurgica et materialia 40(10) (1992) 2765-2768.
[35] P.R. Rios, Abnormal grain growth in materials containing particles, Acta metallurgica et materialia 42(3) (1994) 839-843.
[36] P.R. Rios, Abnormal grain growth development from uniform grain size distributions, Acta materialia 45(4) (1997) 1785-1789.
[37] P.R. Rios, Abnormal grain growth development from uniform grain size distributions in the presence of stable particles, Scripta materialia 39(12) (1998) 1725-1730.
[38] J.M. Cabrera, A.A. Omar, J.M. Prado, Abnormal grain growth in a medium-carbon microalloyed steel, Journal of Materials Science 31(5) (1996) 1303-1309.
[39] C.V. Thompson, H.J. Frost, F. Spaepen, The relative rates of secondary and normal grain growth, Acta Metallurgica 35(4) (1987) 887-890.
[40] A.D. Rollett, D.J. Srolovitz, M.P. Anderson, Simulation and theory of abnormal grain growth—anisotropic grain boundary energies and mobilities, Acta metallurgica 37(4) (1989) 1227-1240.
[41] C.H. Wörner, S. Romero, P.M. Hazzledine, Extension of Gladman’s model for abnormal grain growth, Journal of materials research 6 (1991) 1773-1778.
[42] F.L. Alcântara, R. Barbosa, M.A. Cunha, Study of aluminum nitride precipitation in Fe- 3%Si steel, Materials Research 16(5) (2013) 1039-1044.
[43] M. Shirdel, H. Mirzadeh, M.H. Parsa, Abnormal grain growth in AISI 304L stainless steel, Materials Characterization 97 (2014) 11-17.
[44] M.A. Razzak, M. Perez, T. Sourmail, S. Cazottes, M. Frotey, Preventing Abnormal Grain Growth of Austenite in Low Alloy Steels, ISIJ Int. 54(8) (2014) 1927-1934.
[45] S. Lee, K.J. Ko, S.J. Kim, J.T. Park, Statistical analysis of EBSD data to predict potential abnormal grain growth in 3.0 wt% Si grain-oriented electrical steel, Materials Characterization 167 (2020) 110450.
[46] M.B. Bever, Encyclopedia of materials science and engineering, (1985).
[47] M. Charleux, W.J. Poole, M. Militzer, A. Deschamps, Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel, Metallurgical and Materials Transactions A 32(7) (2001) 1635-1647.
[48] S.G. Hong, K.B. Kang, C.G. Park, Strain-induced precipitation of NbC in Nb and Nb–Ti microalloyed HSLA steels, Scripta Materialia 46(2) (2002) 163-168.
[49] B.K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah, Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel, Materials Science and Engineering: A 527(6) (2010) 1595-1604.
[50] S. Vervynckt, K. Verbeken, P. Thibaux, Y. Houbaert, Recrystallization–precipitation interaction during austenite hot deformation of a Nb microalloyed steel, Materials Science and Engineering: A 528(16-17) (2011) 5519-5528.
[51] P. Gong, E.J. Palmiere, W.M. Rainforth, Dissolution and precipitation behaviour in steels microalloyed with niobium during thermomechanical processing, Acta Materialia 97 (2015) 392-403.
[52] M. Sennour, C. Esnouf, Contribution of advanced microscopy techniques to nano-precipitates characterization: case of AlN precipitation in low-carbon steel, Acta Materialia 51(4) (2003) 943-957.
[53] G. Jeanmaire, M. Dehmas, A. Redjaïmia, S. Puech, G. Fribourg, Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content, Materials Characterization 98 (2014) 193-201.
[54] D. Hall, G.H.J. Bennett, Inhibition of Austenitic Grain Growth by Aluminium Nitride, IRON STEEL INST J 205(3) (1967).
[55] C. Dasarathy, R.C. Hudd, An example of secondary recrystallization induced by aluminium nitride precipitation, Acta Metallurgica 15(10) (1967) 1665-1671.
[56] D.H. Jack, K.H. Jack, Invited review: Carbides and nitrides in steel, Materials Science and Engineering 11(1) (1973) 1-27.
[57] G.A. Jeffrey, G.S. Parry, R.L. Mozzi, Study of the Wurtzite‐Type Binary Compounds. I. Structures of Aluminum Nitride and Beryllium Oxide, The Journal of Chemical Physics 25(5) (1956) 1024-1031.
[58] A. Taylor, B.J. Kagle, Crystallographic data on metal and alloy structures, (No Title) (1963).
[59] V. Massardier, V. Guétaz, J. Merlin, M. Soler, Kinetic and microstructural study of aluminium nitride precipitation in a low carbon aluminium-killed steel, Materials Science and Engineering: A 355(1-2) (2003) 299-310.
[60] R. Ogawa, T. Fukutsuka, Y. Yagi, Precipitation Behavior of AlN in Cold-Worked High Purity Fe-Al-N Alloy, Transactions of the Iron and Steel Institute of Japan 12(4) (1972) 291-297.
[61] S. Hanai, N. Takemoto, Y. Mizuyama, Precipitates of Cubic Structure Detected in Low-Carbon Aluminum-Killed Steels, Transactions of the Iron and Steel Institute of Japan 11(1) (1971) 24-31.
[62] H.S. Choi, C.M. Lee, J. Choi, Precipitation and Coarsening Behavior of Aluminum Nitride in an Fe--Al--N Alloy, J. Korean Inst. Met. 16(6) (1978) 485-494.
[63] M.J. Leap, E.L. Brown, Crystallography of duplex AlN–Nb(C,N) precipitates in 0.2% C steel, Scripta Materialia 47(12) (2002) 793-797.
[64] K. Xu, B.G. Thomas, R. O’Malley, Equilibrium Model of Precipitation in Microalloyed Steels, Metallurgical and Materials Transactions A 42(2) (2011) 524-539.
[65] E. Courtois, T. Epicier, C. Scott, EELS study of niobium carbo-nitride nano-precipitates in ferrite, Micron 37(5) (2006) 492-502.
[66] Y. Ohmori, Precipitation of Fine Niobium Carbide Particles in Low Carbon Steels, Transactions of the Iron and Steel Institute of Japan 15(4) (1975) 194-203.
[67] D. Poddar, P. Cizek, H. Beladi, P.D. Hodgson, Evolution of strain-induced precipitates in a model austenitic Fe–30Ni–Nb steel and their effect on the flow behaviour, Acta materialia 80 (2014) 1-15.
[68] P. Gong, E.J. Palmiere, W.M. Rainforth, Characterisation of strain-induced precipitation behaviour in microalloyed steels during thermomechanical controlled processing, Materials Characterization 124 (2017) 83-89.
[69] W.X. Zhao, D.Q. Zhou, S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, X.Z. Wang, Z.P. Lu, Ultrahigh stability and strong precipitation strengthening of nanosized NbC in alumina-forming austenitic stainless steels subjecting to long-term high-temperature exposure, Materials Science and Engineering: A 738 (2018) 295-307.
[70] Z.G. Yang, M. Enomoto, Calculation of the interfacial energy of B1-type carbides and nitrides with austenite, Metallurgical and Materials Transactions A 32 (2001) 267-274.
[71] Z.G. Yang, M. Enomoto, Discrete lattice plane analysis of Baker–Nutting related B1 compound/ferrite interfacial energy, Materials Science and Engineering: A 332(1-2) (2002) 184-192.
[72] W.G. Liao, V. Mazánova, M. Heczko, W.K. Hou, J. Procario, M.J. Mills, X. Liu, Underlying mechanisms for the effect of Nb micro-alloying on the elemental distribution and precipitation behavior in the X70 weld metal, Materialia 38 (2024) 102264.
[73] T.N. Baker, Microalloyed steels, Ironmaking & Steelmaking 43(4) (2016) 264-307.
[74] J.H. Jang, S.D. Kim, Evolution from clusters to precipitates in niobium-micro-alloyed ferritic steel: A combined in situ scanning transmission electron microscopy and atomistic study, Scripta Materialia 243 (2024) 115967.
[75] Y.M. Cai, R. Wei, D.D. Jin, H.H. Wang, X.L. Wan, C.Y. Hu, K.M. Wu, Influence of Solute Drag Effect and Interphase Precipitation of Nb on Ferrite Transformation, Materials 17(10) (2024) 2440.
[76] M.A. Altuna, A. Iza-Mendia, I. Gutiérrez, Precipitation of Nb in Ferrite After Austenite Conditioning. Part II: Strengthening Contribution in High-Strength Low-Alloy (HSLA) Steels, Metallurgical and Materials Transactions A 43(12) (2012) 4571-4586.
[77] T.C. Tsao, P.H. Chiu, C.Y. Tseng, C.L. Tai, H.R. Chen, T.F. Chung, C.Y. Chen, S.H. Wang, Y.T. Tsai, J.R. Yang, Investigation of Strain-Induced Precipitation of Niobium Carbide in Niobium Micro-Alloyed Steels at Elevated Temperatures, Metals 12(10) (2022) 1619.
[78] B. Dutta, E. Valdes, C.M. Sellars, Mechanism and kinetics of strain induced precipitation of Nb(C,N) in austenite, Acta Metallurgica et Materialia 40(4) (1992) 653-662.
[79] D.B. Williams, C.B. Carter, Transmission electron microscopy: A textbook for materials science, Springer New York, NY2009.
[80] S.J. Pennycook, Z-contrast stem for materials science, Ultramicroscopy 30(1-2) (1989) 58-69.
[81] E.J. Kirkland, R.F. Loane, J. Silcox, Simulation of annular dark field stem images using a modified multislice method, Ultramicroscopy 23(1) (1987) 77-96.
[82] S. Hillyard, J. Silcox, Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging, Ultramicroscopy 58(1) (1995) 6-17.
[83] Z.H. Yu, D.A. Muller, J. Silcox, Study of strain fields at a-Si/c-Si interface, Journal of Applied Physics 95(7) (2004) 3362-3371.
[84] V. Grillo, F. Rossi, A new insight on crystalline strain and defect features by STEM–ADF imaging, Journal of Crystal Growth 318(1) (2011) 1151-1156.
[85] J.M. Cowley, Y. Huang, De-channelling contrast in annular dark-field STEM, Ultramicroscopy 40(2) (1992) 171-180.
[86] J.L. Lee, J. Silcox, Annular dark-field image simulation of the YBa2Cu3O7− δ/BaF2 interface, Ultramicroscopy 84(1-2) (2000) 65-74.
[87] J. Liu, J.M. Cowley, Imaging dislocations with an annular dark-field detector, PROCEEDINGS OF THE ANNUAL MEETING-ELECTRON MICROSCOPY SOCIETY OF AMERICA, San Francisco Press, 1992, pp. 1224-1224.
[88] D.A. Basha, J.M. Rosalie, H. Somekawa, T. Miyawaki, A. Singh, K. Tsuchiya, Microstructure study of a severely plastically deformed Mg-Zn-Y alloy by application of low angle annular dark field diffraction contrast imaging, Science and Technology of Advanced Materials 17(1) (2016) 115-127.
[89] E. Oveisi, M.C. Spadaro, E. Rotunno, V. Grillo, C. Hébert, Insights into image contrast from dislocations in ADF-STEM, Ultramicroscopy 200 (2019) 139-148.
[90] W.Q. Guo, J. Su, W.J. Lu, C.H. Liebscher, C. Kirchlechner, Y. Ikeda, F. Körmann, X. Liu, Y.F. Xue, G. Dehm, Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy, Acta Materialia 185 (2020) 45-54.
[91] H.X. Li, S. Gao, Y. Tomota, S. Ii, N. Tsuji, T. Ohmura, Mechanical response of dislocation interaction with grain boundary in ultrafine-grained interstitial-free steel, Acta Materialia 206 (2021) 116621.
[92] Q.R. Yang, C.J. Marvel, Y.D. Shen, M.R. He, J. Du, C.W. Hwang, E.D. Gronske, K.Y. Xie, S.R. Mercurio, Q. An, Activating dislocation mediated plasticity in boron carbide through Al-doping, Acta Materialia 241 (2022) 118412.
[93] P.J. Phillips, M.D. Graef, L. Kovarik, A. Agrawal, W. Windl, M.J. Mills, Atomic-resolution defect contrast in low angle annular dark-field STEM, Ultramicroscopy 116 (2012) 47-55.
[94] L.J. Cuddy, J.C. Raley, Austenite grain coarsening in microalloyed steels, Metallurgical Transactions A 14(10) (1983) 1989-1995.
[95] H.S. Liu, Y.N. Dong, H.G. Zheng, X.C. Liu, P. Lan, H.Y. Tang, J.Q. Zhang, Precipitation Criterion for Inhibiting Austenite Grain Coarsening during Carburization of Al-Containing 20Cr Gear Steels, Metals 11(3) (2021) 504.
[96] G. Saito, N. Sakaguchi, M. Ohno, K. Matsuura, M. Takeuchi, T. Sano, K. Minoguchi, T. Yamaoka, Effects of fine precipitates on austenite grain refinement of micro-alloyed steel during cyclic heat treatment, ISIJ Int. 59(11) (2019) 2098-2104.
[97] K. Dybowski, L. Klimek, Identification of Intermetallic Phases Limiting the Growth of Austenite Grains in the Low-Pressure Carburizing Process, Crystals 13(12) (2023) 1683.
[98] T. Jia, J. Huang, H.J. Wang, Z.D. Wang, Effect of annealing process on the abnormal grain growth behavior during carburizing of 20CrMnTi steel, Materials Research Express 7(4) (2020) 046504.
[99] J.W. Zhang, W. Li, H.Q. Wang, Q.P. Song, L.T. Lu, W.J. Wang, Z.W. Liu, A comparison of the effects of traditional shot peening and micro-shot peening on the scuffing resistance of carburized and quenched gear steel, Wear 368-369 (2016) 253-257.
[100] Y. Imanami, T. Yamashita, K. Tomita, K. Hase, Effect of Annealing Before Cold Forging on the Behavior of Abnormal Grain Growth during Carburizing, ISIJ Int. 57(12) (2017) 2220-2228.
[101] S.M. Na, K.M. Atwater, A.B. Flatau, Particle pinning force thresholds for promoting abnormal grain growth in magnetostrictive Fe–Ga alloy sheets, Scripta Materialia 100 (2015) 1-4.
[102] X.Y. Zhang, H.S. Liu, B.J. Lu, Y. Zhang, Q.S. Zhao, Z.R. Yan, S. Gong, X.D. Guo, D. Pan, P. Xu, Y. Wang, K.M. Wang, Nb Microalloying Enhances the Grain Stability of SAE8620H Gear Steel During High-Temperature Carburizing, Coatings 15(4) (2025) 423.
[103] X.L. An, W.Q. Cao, X.D. Zhang, J.K. Yu, Suppress Austenite Grain Coarsening by Nb Alloying in High–Temperature–Pseudo–Carburized Bearing Steel, Materials 17(12) (2024) 2962.
[104] Y.Q. Zhu, S.T. Fan, X.Z. Lian, N. Min, Effect of Precipitated Particles on Austenite Grain Growth of Al- and Nb-Microalloyed 20MnCr Gear Steel, Metals 14(4) (2024) 469.
[105] P. Springer, U. Prahl, Pinning effect of strain induced Nb(C,N) on case hardening steel under warm forging conditions, Journal of Materials Processing Technology 253 (2018) 121-133.
[106] Z. Nishiyama, K.I. Simizu, Direct observation of lattice defects in cold-worked high manganese steels by means of electron microscopy, Journal of the Physical Society of Japan 15(11) (1960) 1963-1969.
[107] Y.R. Wang, Y.H. Rong, X.K. Chen, G.X. Hu, Characterization of γ′-Fe4N precipitates in a compound layer formed by austenitic nitrocarburizing treatment, Materials characterization 34(3) (1995) 213-216.
[108] M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Materialia 59(2) (2011) 658-670.
[109] R. Ueji, Y. Takagi, N. Tsuchida, K. Shinagawa, Y. Tanaka, T. Mizuguchi, Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30% Mn austenitic steel, Materials Science and Engineering: A 576 (2013) 14-20.
[110] Y. Onuki, S. Sato, In situ observation for deformation-induced martensite transformation during tensile deformation of SUS 304 stainless steel by using neutron diffraction PART II: transformation and texture formation mechanisms, Quantum Beam Science 5(1) (2021) 6.
[111] M. Golrang, M. Mohri, E. Ghafoori, H. Khodaverdi, M. Nili-Ahmadabadi, Tailoring functional properties of a FeMnSi shape memory alloy through thermo-mechanical processing, Journal of Materials Research and Technology 29 (2024) 1887-1900.
[112] S. Gong, F.M. Wang, K.T. Chen, AlN and Nb (C, N) Composite Precipitation Behaviors and Their Effects on Austenite Grain Growth in SCr420H High‐Temperature Carburized Gear Steel, steel research international 95(7) (2024) 2400080.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99236-
dc.description.abstract滲碳處理是強化齒輪與螺栓等部件疲勞性質與耐磨耗特性的重要處理,使用微合金元素析出物能夠在高溫滲碳時細化沃斯田鐵晶粒。鋼材純化時會利用鋁進行脫氧作業,使得鋼材中通常會包含微量的鋁,若可利用鋼材中本就存在的鋁,使其於齒輪鋼常用製程中析出,並於最後滲碳時達到抗粗晶效果,則可省去添加其他微合金元素以及額外熱處理製程的成本。本研究使用1020碳鋼,於第四章至第六章中設計一高、一低鋁氮含量的兩個材料進行實驗,透過膨脹儀進行”熱軋後等溫析出實驗”,以及模擬實際部件製造階段的”熱軋後等速冷卻+再回溫析出實驗”,以了解AlN在沃斯田鐵為主或肥粒鐵為主基地中的析出行為,並再透過”偽滲碳沃斯田鐵晶粒度實驗”了解先前實驗所析出之AlN如何影響後續沃斯田鐵晶粒成長情況。於第七章中則額外添加鈮,並設計一等鋁氮比、一過鋁氮比的兩個材料進行實驗,並同樣透過”熱軋後等速冷卻+再回溫析出實驗”了解Nb(C, N)與AlN的析出行為,並再透過”偽滲碳沃斯田鐵晶粒度實驗”了解所析出之Nb(C, N)與AlN如何影響後續沃斯田鐵晶粒成長情況。
研究結果顯示AlN於沃斯田鐵基地中析出困難,主要藉由依附其他已存在基地中的Ti或MnS顆粒異質成核析出,僅能在高溫較長時間持溫下才能有機會生成獨立之AlN析出物,且析出尺寸較大(數百奈米至微米等級)、析出密度低(TEM中投影距離約數個微米)。相比之下,AlN於肥粒鐵基地中析出容易且機制多元,除了同樣可依附於已存在顆粒析出之外,亦可直接同質成核析出於肥粒鐵中,或是析出於肥粒鐵晶界、晶粒中差排、沃斯田鐵與肥粒鐵晶界等位置,其中最主要的析出方式是直接同質成核析出於肥粒鐵中,且析出尺寸較小(約30~60奈米)、析出密度較高。此析出結果亦反應於後續沃斯田鐵化組織上,由於沃斯田鐵基地析出困難,需要較多析出時間達到較好的細化晶粒效果,但析出情況較差,使後續回溫時較容易出現高比例的異常晶粒成長區域,而細化區域的晶粒尺寸約5~6微米。對比沃斯田鐵基地析出,肥粒鐵基地析出容易,使得較長析出時間反而可能使析出物粗化,降低細化晶粒效果,但較佳的析出情況使其有機會完全抑制異常晶粒成長,使晶粒尺寸細化至約2~3微米,顯示不增加額外齒輪鋼製程且僅使用AlN析出物仍可於後續高溫維持細小晶粒的可能性。
添加鈮之後由於Nb(C, N)具有較佳熱穩定性,因此無論鋁氮比、冷速快慢與回溫處理與否,900度沃斯田鐵化時均可達到完全細化晶粒效果,相比於無添加鈮材料仍可能於900度發生異常晶粒成長,其抗粗晶效果具有顯著的提升。而當沃斯田鐵化溫度提升至1000度,等鋁氮比鋼種雖然皆發生異常晶粒成長,但仍具一定晶粒細化效果,但細化效果受到750度回溫時析出物粗化影響而有所下降;過鋁氮比鋼種則已完全無細化晶粒效果,顯示過鋁氮比除了影響AlN熱穩定性,亦會影響Nb(C, N)於高溫的熱穩定性。後續晶體結構分析中亦發現Nb(C, N)與AlN至少具有兩種方位關係可相互生長,顯示二者間的強烈連結性,亦可呼應二者析出行為可能互相影響。
zh_TW
dc.description.abstractCarburizing is an important treatment for enhancing the fatigue resistance and wear properties of components such as gears and bolts. The use of microalloying precipitates can effectively refine austenite grains during high-temperature carburization. During steel refining, aluminum is commonly used as a deoxidizer, resulting in trace amounts of Al remaining in the steel. If this residual Al can be utilized to form AlN precipitates during conventional gear steel processing and effectively suppress grain coarsening during final carburization, it may eliminate the need for additional microalloying elements and extra heat treatment steps, thereby reducing processing costs. This study used 1020 carbon steel as base to design several materials. In Chapter 4 to 6, two material compositions were designed: one with high Al and N content and the other with low Al and N content. By using a dilatometer, a "Hot rolling – Isothermal heat treatment experiment" and a "Hot rolling – Constant rate cooling and reheating heat treatment experiment", simulating practical manufacturing conditions, were conducted to understand the behavior of AlN precipitation in both austenite-dominated and ferrite-dominated matrices. Additionally, a "pseudo-carburizing experiment" was performed to examine how AlN formed in previous treatments influences subsequent austenite grain growth. In Chapter 7, extra niobium was added, and two material compositions were designed: one with nearly equal atomic ratio of Al and N and the other with an over Al/N ratio. a "Constant rate cooling and reheating heat treatment experiment" were also conducted to understand the precipitation behavior of Nb(C, N) and AlN. Additionally, a "pseudo-carburizing experiment" was performed to examine how Nb(C, N) and AlN influences subsequent austenite grain growth.
The results revealed that AlN precipitation in the austenite matrix is challenging, resulting in preferential heterogeneous nucleation on pre-existing Ti or MnS particles in the matrix. Independent AlN precipitates were only observed after prolonged holding at high temperature, exhibiting large sizes (hundreds of nanometers to the micron scale) and low densities (interparticle distances of several micrometers in TEM). In contrast, AlN precipitated more easily and with diverse mechanisms in the ferrite matrix. Precipitation behaviors included homogeneous nucleation within ferrite grains, heterogeneous nucleation on existing particles, at ferrite grain boundaries, dislocations, and austenite-ferrite boundaries. The primary mechanism was homogeneous nucleation within ferrite grains, producing smaller particles (30~60 nm) with higher densities. These precipitation behaviors directly influenced subsequent austenite microstructures. Due to the difficulty of AlN precipitation in the austenite matrix, longer holding times were required to achieve better grain refinement. However, the poor precipitation conditions resulted in a higher proportion of AGG regions during reheating, with refined grain sizes of approximately 5~6 μm in non-AGG areas. In comparison, precipitation in the ferrite matrix was more effective, though extended holding times could lead to precipitate coarsening and reduced grain refinement efficiency. Nonetheless, the superior precipitation behavior in ferrite enabled complete suppression of AGG under certain conditions, yielding fully refined grains with sizes as small as 2~3 μm.
Upon Nb addition (~0.02 wt %), the high thermal stability of Nb(C, N) enables complete grain refinement during austenitization at 900 °C, regardless of Al/N ratio, cooling rate, or prior reheating treatment. This represents a marked improvement over Nb-free steels, which readily exhibit AGG under the same conditions. When the austenitization temperature is increased to 1000 °C, alloys with an approximately stoichiometric Al/N ratio still display a measurable refinement effect, although AGG occurs and the effectiveness is diminished by precipitate coarsening that develops during the preceding 750 °C reheating step. By contrast, alloys with an excess Al/N ratio show no grain-refinement capability at 1000 °C, indicating that an over-stoichiometric Al/N ratio not only reduces the thermal stability of AlN but also lowers that of Nb(C, N). Crystallographic analyses further reveal that Nb(C, N) and AlN can grow with at least two distinct orientation relationships, underscoring a strong mutual affinity that likely interacts their precipitation behaviors at elevated temperatures.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:55:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:55:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract v
Contents viii
List of Figures xi
List of Tables xxv
Chapter 1 Introduction 1
Chapter 2 General Literature Review 5
2.1 Carburization 5
2.2 Pinning force of precipitates 7
2.3 Abnormal grain growth 10
2.4 Precipitation of AlN and NbC 16
2.4.1 AlN 16
2.4.2 NbC 37
2.5 STEM-HAADF and LAADF technology 40
Chapter 3 General Experimental Procedures 45
3.1 Experimental alloy 45
3.2 Specimen 47
3.2.1 Specimen size 47
3.2.2 Specimen preparations for Optical Microscopy 47
3.2.3 Specimen preparations for SEM 47
3.2.4 Specimen preparations for TEM 48
Chapter 4 Hot rolling – Isothermal heat treatment for AlN precipitation 49
4.1 Introduction 49
4.2 Experimental Procedure 50
4.3 Results 51
4.4 Discussion on precipitation behavior of AlN in austenite phase 76
4.5 Summary 79
Chapter 5 Hot rolling – Constant rate cooling and reheating heat treatment for AlN precipitation 81
5.1 Introduction 81
5.2 Experimental Procedure 83
5.3 Results 84
5.4 Discussion on precipitation behavior of AlN in ferrite phase 109
5.5 Summary 111
Chapter 6 Pseudo-carburization (Austenitization) 113
6.1 Introduction 113
6.2 Experimental Procedure 115
6.3 Results and discussion 116
6.3.1 Effects of AlN precipitating in austenite matrix on austenite grain refinement 117
6.3.2 Effects of AlN precipitating in ferrite matrix on austenite grain refinement 127
6.4 Discussion on austenite grain refinement 140
6.5 Summary 143
Chapter 7 Effects of Nb on NbC–AlN precipitation and austenite grain refinement 147
7.1 Introduction 147
7.2 Experimental Procedure 151
7.3 Results and discussion 154
7.3.1 Precipitation behavior of Nb(C, N) and AlN 154
7.3.2 Effects of Nb(C, N) and AlN on austenite grain refinement 177
7.3.3 Crystallographic Analysis of NbC–AlN and AlN precipitates 186
7.4 Summary 192
Chapter 8 General Conclusions 197
Reference 200
-
dc.language.isoen-
dc.subject1020碳鋼zh_TW
dc.subject氮化鋁zh_TW
dc.subject碳化鈮zh_TW
dc.subject異常晶粒成長zh_TW
dc.subject高角度環形暗場-掃描穿透式電子顯微鏡zh_TW
dc.subjectabnormal grain growthen
dc.subject1020 carbon steelsen
dc.subjectaluminum nitrideen
dc.subjectniobium carbideen
dc.subjectHigh-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)en
dc.title1020碳鋼氮化鋁與碳化鈮–氮化鋁複合析出物析出行為與高溫抗沃斯田鐵晶粒粗化之研究zh_TW
dc.titleInvestigation of AlN and NbC–AlN Complex Precipitation Behavior in 1020 Carbon Steel and The Effects on High-Temperature Austenite Grain Coarsening Resistanceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor楊哲人zh_TW
dc.contributor.coadvisorJer-Ren Yangen
dc.contributor.oralexamcommittee林新智;李驊登;王星豪;王樂民;何長慶;黃慶淵;陳志遠zh_TW
dc.contributor.oralexamcommitteeHsin-Chih Lin;Hwa-Teng Lee;Shing-Hoa Wang;Le-Min Wang;Chang-Ching Ho;Ching-Yuan Huang;Chih-Yuan Chenen
dc.subject.keyword1020碳鋼,氮化鋁,碳化鈮,異常晶粒成長,高角度環形暗場-掃描穿透式電子顯微鏡,zh_TW
dc.subject.keyword1020 carbon steels,aluminum nitride,niobium carbide,abnormal grain growth,High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM),en
dc.relation.page207-
dc.identifier.doi10.6342/NTU202502875-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2026-01-01
36.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved