請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99228完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童慶斌 | zh_TW |
| dc.contributor.advisor | Ching-Pin Tung | en |
| dc.contributor.author | 楊洪中祐 | zh_TW |
| dc.contributor.author | Chung-Yu Yang Hung | en |
| dc.date.accessioned | 2025-08-21T16:53:42Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. Acharya, S., George, B., Aye, L., Nair, S., Nawarathna, B., & Malano, H. (2015). Life Cycle Energy and Greenhouse Gas Emission Analysis of Groundwater-Based Irrigation Systems. Irrigation and drainage, 64(3), 408-418. https://doi.org/10.1002/ird.1896
2. Antonio Guiso, G. G., Paolo Spugnoli. (2016, 2016/11/06). Carbon Footprint Assessment of Different Irrigation Systems 2nd World Irrigation Forum, Chiang Mai, Thailand. 3. Architecture2030. (2023). Why the Built Environment? https://www.architecture2030.org/why-the-built-environment/ 4. Bionova Ltd, O. C. L. (2018). The Embodied Carbon Review: Embodied Carbon Reduction in 100+ Regulations & Rating Systems Globally. https://www.embodiedcarbonreview.com 5. Brouwer, C., Goffeau, A., & Heibloem, M. (1985). Irrigation Water Management: Training Manual No. 1 - Introduction to Irrigation. Food and Agriculture Organization of the United Nations. https://www.fao.org/4/r4082e/r4082e00.htm#Contents 6. BSI. (2016). PAS 2080:2016 Carbon management in infrastructure. In: British Standards Institution. 7. BSI. (2023). PAS 2080:2023 Carbon management in buildings and infrastructure. In: British Standards Institution. 8. CEN. (2011). EN 15978:2011 Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method. In. Brussels, Belgium: CEN. 9. COP28, U. (2023). Declaration on sustainable agriculture, resilient food systems, and climate action. In: COP28 UAE. 10. Crawford, R. H., Bontinck, P.-A., Stephan, A., Wiedmann, T., & Yu, M. (2018). Hybrid life cycle inventory methods – A review. Journal of Cleaner Production, 172, 1273-1288. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.10.176 11. Du, F., Woods, G. J., Kang, D., Lansey, K. E., & Arnold, R. G. (2013). Life Cycle Analysis for Water and Wastewater Pipe Materials. Journal of environmental engineering (New York, N.Y.), 139(5), 703-711. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000638 12. EC-JRC-IES. (2010a). International Reference Life Cycle Data System (ILCD) Handbook - Framework and Requirements for Life Cycle Impact Assessment Models and Indicators (EUR 24586 EN). 13. EC-JRC-IES. (2010b). International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. 14. Ellen MacArthur Foundation. (2021). Completing the picture - How the circular economy tackles climate change. https://ellenmacarthurfoundation.org/completing-the-picture 15. EPD International AB. (2024). Construction Products PCR 2019:14. T. I. E. System. https://www.environdec.com 16. FAO. (2023). Agrifood systems and land-related emissions. Global, regional and country trends, 2001–2021. https://doi.org/10.4060/cc8543en 17. Ferreira, C. S. S., Kašanin-Grubin, M., Solomun, M. K., Sushkova, S., Minkina, T., Zhao, W., & Kalantari, Z. (2023). Wetlands as nature-based solutions for water management in different environments. Current Opinion in Environmental Science & Health, 33, 100476. https://doi.org/https://doi.org/10.1016/j.coesh.2023.100476 18. Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91(1), 1-21. https://doi.org/https://doi.org/10.1016/j.jenvman.2009.06.018 19. Ghere, D., Pagan, J., Krolak, J., Beucler, B., Jones, S., & Thompson, P. L. (2005). Channel Linings for Roadsides: Design and Applications (3rd Edition). F. H. A. (FHWA). https://www.fhwa.dot.gov/publications/research/infrastructure/structures/05114/05114.pdf 20. Giesekam, J., Norman, J., & Lovelace, R. (2022). Integrating embodied carbon into transport infrastructure scenarios. University of Leeds. https://doi.org/10.48785/100/132 21. Grasselly, D., Hamm, F., Quaranta, G., & Vitrou, J. (2009). Carbon footprint of coconut fibre (coir) substrates [Empreinte carbone des substrats à base de fibres de coco: le cas des produits Monagri de la société Dumona.]. Infos-Ctifl(No.249), 55–59. 22. Hajibabaei, M., Nazif, S., & Tavanaei Sereshgi, F. (2018). Life cycle assessment of pipes and piping process in drinking water distribution networks to reduce environmental impact. Sustainable Cities and Society, 43, 538-549. https://doi.org/https://doi.org/10.1016/j.scs.2018.09.014 23. IPCC. (2018). Global Warming of 1.5°C: An IPCC Special Report. https://www.ipcc.ch/sr15/ 24. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Summary for Policymakers. https://www.ipcc.ch/report/ar6/wg1/ 25. ISO. (2006). ISO 14040:2006. In Environmental management — Life cycle assessment — Principles and framework: International Organization for Standardization (ISO). 26. ISO. (2018). ISO 14067:2018 Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification. In: International Organization for Standardization (ISO). 27. ISO. (2023). ISO 14068-1:2023 Climate change management — Transition to net zero Part 1: Carbon neutrality. In: International Organization for Standardization (ISO). 28. IUCN. (2020). Guidance for using the IUCN Global Standard for Nature-based Solutions. A user-friendly framework for the verification, design and scaling up of Nature-based Solutions. Gland Switzerland: IUCN. 29. Justino, S., Calheiros, C. S. C., Castro, P. M. L., & Gonçalves, D. (2023). Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in the Hospitality Industry: A Review. Hydrology, 10(7), 153. https://www.mdpi.com/2306-5338/10/7/153 30. Kadefors, A., Sofia, L., Stefan, U., Johanna, A.-O., & and Balian, D. (2021). Designing and implementing procurement requirements for carbon reduction in infrastructure construction – international overview and experiences. Journal of Environmental Planning and Management, 64(4), 611-634. https://doi.org/10.1080/09640568.2020.1778453 31. Leontief, W. (1970). Environmental Repercussions and the Economic Structure: An Input-Output Approach. The Review of Economics and Statistics, 52(3), 262-271. https://doi.org/10.2307/1926294 32. Majeau-Bettez, G., Strømman, A. H., & Hertwich, E. G. (2011). Evaluation of Process- and Input–Output-based Life Cycle Inventory Data with Regard to Truncation and Aggregation Issues. Environmental Science & Technology, 45(23), 10170-10177. https://doi.org/10.1021/es201308x 33. Marcegaglia Buildtech. (2024). Environmental Product Declaration: Tubular structures for scaffolding. https://www.environdec.com 34. Mayville, T., Sanchez de Lozada, C., & Shennum, K. (2021). Ecosystem-Based Adaptation and Water Resources in Nepal and Perú. Y. S. o. t. Environment. 35. McKinsey & Company. (2022). Reducing Embodied Carbon in New Construction. M. Company. https://www.mckinsey.com/industries/infrastructure/our-insights/reducing-embodied-carbon-in-new-construction 36. Mitsch, W. J. (1996). Ecological engineering: a new paradigm for engineers and ecologists. Engineering within Ecological Constraints. National Academy Press, Washington, DC, 111. 37. Mitsch, W. J., & Jørgensen, S. E. (1989). Ecological engineering: an introduction to ecotechnology. 38. Moayedi, F., Amila Wan Abdullah Zawawi, N., & Shahir Liew, M. (2019). A Systematic Approach to Embodied Carbon Reduction in Buildings. IOP Conference Series: Earth and Environmental Science, 220(1), 012055. https://doi.org/10.1088/1755-1315/220/1/012055 39. Nesshöver, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Külvik, M., Rey, F., van Dijk, J., Vistad, O. I., Wilkinson, M. E., & Wittmer, H. (2017). The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of The Total Environment, 579, 1215-1227. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.11.106 40. Netti, A. M., Abdelwahab, O. M. M., Datola, G., Ricci, G. F., Damiani, P., Oppio, A., & Gentile, F. (2024). Assessment of nature-based solutions for water resource management in agricultural environments: a stakeholders’ perspective in Southern Italy. Scientific Reports, 14(1), 24668. https://doi.org/10.1038/s41598-024-76346-5 41. Nieuwkamer, R., Kox, M. A. R., Fiselier, J., van Wieringen, D. R. G., Tonneijck, F. H., Cronin, K., & ten Bosch, W. (2022). Reducing the ecosystem-based carbon footprint of coastal engineering. https://www.wetlands.org/publications/reducing-the-ecosystem-based-carbon-footprint-of-coastal-engineering/ 42. Odum, H. T., & Odum, B. (2003). Concepts and methods of ecological engineering. Ecological Engineering, 20(5), 339-361. 43. Qin, J., Duan, W., Zou, S., Chen, Y., Huang, W., & Rosa, L. (2024). Global energy use and carbon emissions from irrigated agriculture. Nature Communications, 15(1), 3084. https://doi.org/10.1038/s41467-024-47383-5 44. RICS. (2023). Whole life carbon assessment for the built environment. https://www.rics.org/ 45. Rietbergen, M. G., & Blok, K. (2013). Assessing the potential impact of the CO2 Performance Ladder on the reduction of carbon dioxide emissions in the Netherlands. Journal of Cleaner Production, 52, 33-45. https://doi.org/https://doi.org/10.1016/j.jclepro.2013.03.027 46. Säynäjoki, A., Jukka, H., Juha-Matti, J., & and Junnila, S. (2017). Input–output and process LCAs in the building sector: are the results compatible with each other? Carbon Management, 8(2), 155-166. https://doi.org/10.1080/17583004.2017.1309200 47. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse Gas Mitigation in Agriculture. Philosophical Transactions: Biological Sciences, 363(1492), 789-813. http://www.jstor.org/stable/20208468 48. Sonneveld, B. G. J. S., Merbis, M. D., Alfarra, A., Ünver, O., & Arnal, M. A. (2018). Nature-Based Solutions for agricultural water management and food security (FAO Land and Water Discussion Paper, Issue. FAO. https://www.fao.org/publications/card/en/c/CA2525EN/ 49. Teerawattanasuk, C., Maneecharoen, J., Bergado, D. T., Voottipruex, P., & Le, G. L. (2014). Root strength measurements of Vetiver and Ruzi grasses. Lowland Technology International, 16(2), 71-80. https://doi.org/10.14247/lti.16.2_71 50. Tubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Obli-Laryea, G., Conchedda, G., Pan, X., Qi, S. Y., Halldórudóttir Heiðarsdóttir, H., Wanner, N., Quadrelli, R., Rocha Souza, L., Benoit, P., Hayek, M., Sandalow, D., Mencos Contreras, E., Rosenzweig, C., Rosero Moncayo, J., Conforti, P., & Torero, M. (2022). Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data, 14(4), 1795-1809. https://doi.org/10.5194/essd-14-1795-2022 51. UK BEIS. (2021). Scrap metal waste disposal – landfill (Version 2021 (AR5)). 52. UNFCCC. (2015). Paris Agreement. In. Paris, France: UNFCCC. 53. UNFCCC. (2021). Glasgow Climate Pact. In. Glasgow, United Kingdom: UNFCCC. 54. US EPA. (2022). Emission Factor: Asphalt Concrete – Landfilled (UUID 11e5a25a-efc0-4f3e-aab6-cd0aab752fbe; Version 2022) Climatiq Data Explorer. 55. Van Roijen, E., Sethares, K., Kendall, A., & Miller, S. A. (2024). The climate benefits from cement carbonation are being overestimated. Nature Communications, 15(1), 4848. https://doi.org/10.1038/s41467-024-48965-z 56. von der Thannen, M., Hoerbinger, S., Muellebner, C., Biber, H., & Rauch, H. P. (2021). Case study of a water bioengineering construction site in Austria. Ecological aspects and application of an environmental life cycle assessment model. International Journal of Energy and Environmental Engineering, 12(4), 599-609. https://doi.org/10.1007/s40095-021-00419-8 57. WEF. (2021). Net-Zero Challenge: The supply chain opportunity. https://www.weforum.org/reports/net-zero-challenge-the-supply-chain-opportunity 58. World Steel Association. (2024). World Steel in Figures 2024. https://worldsteel.org/publications/bookshop/ 59. WRI. (2023). Historical GHG emissions. World Resources Institute. https://www.climatewatchdata.org 60. Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang, K.-H., Lagerblad, B., Galan, I., Andrade, C., Zhang, Y., & Liu, Z. (2016). Substantial global carbon uptake by cement carbonation. Nature Geoscience, 9(12), 880-883. https://doi.org/10.1038/ngeo2840 61. Xu, J., Wu, X., Qiao, W., Wang, S., Shu, S., Zhao, D., & Chen, X. (2025). Life cycle carbon emission assessment for ecological protection slopes: Focus on construction and maintenance phases. Journal of Cleaner Production, 497, 145174. https://doi.org/https://doi.org/10.1016/j.jclepro.2025.145174 62. Yang, Y., Heijungs, R., & Brandão, M. (2017). Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. Journal of Cleaner Production, 150, 237-242. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.03.006 63. Yazdani, F., AliPanahi, P., & Sadeghi, H. (2024). A comparative study of environmental and economic assessment of vegetation-based slope stabilization with conventional methods. Journal of Environmental Management, 359, 121002. https://doi.org/https://doi.org/10.1016/j.jenvman.2024.121002 64. Zhang, Y., Sattar, S., Cook, D., Johnson, K., & Fung, J. (2024). Systematic Review of Embodied Carbon Assessment and Reduction in Building Life Cycles. NIST Special Publication. 65. 內政部建築研究所. (2023). 低碳(低蘊含碳)建築評估手冊. 內政部建築研究所 66. 水利署. (2023). 經濟部水利署施工規範第02386章砌排石工. In. 臺北. 67. 交通部. (2017). 公路排水設計規範. 68. 交通部公路總局. (2014). 公路工程碳管理制度及實務研討會成果報告書 公路工程碳管理制度及實務研討會, https://ws.thb.gov.tw/001/Upload/OldFile/resource/upload/FlipBook/7ce2a24a-2396-4dd9-9745-ccb6be27f585.pdf 69. 行政院農業委員會. (2020a). 灌溉工程學 (初版 ed.). 陳吉仲. 70. 行政院農業委員會. (2020b). 灌溉管理學 (初版 ed.). 陳吉仲. 71. 吳振發, 林裕彬, 朱宏杰, 黃韜, & 蕭戎雯. (2012). 農田水利生態工程減碳效益評估方法之建立. 農業工程學報, 58(1). https://doi.org/10.29974/JTAE.201203.0003 72. 林國華. (2010). 農田水利會灌排水路維護計畫執行成果. Retrieved from https://www.moa.gov.tw/ws.php?id=21548 73. 經濟部水利署. (2022). 水利工程減碳作業參考指引-規劃設計篇 (初版 ed.). 經濟部水利署. 74. 農田水利會. (2002). 第五篇-灌溉排水設施操作與維護. In: 農田水利會. 75. 農村水保署. (2024). 減碳總量管制目標. 農業部農村發展及水土保持署. https://www.ardswc.gov.tw/Home/Topic/show_detail?id=ee796d80e69849af8cefb056e40cc070 76. 農業部農村發展及水土保持署. (2025). 農村水保工程減碳作業指引. 農業部農村發展及水土保持署. 77. 鄒思宇. (2024). 混凝土淨零排放的國際發展趨勢及技術. 營建知訊, 494. 78. 廖珮羚. (2014). 農田水圳永續生態工程應用與減碳效益分析 碩士論文--國立臺灣大學生物環境系統工程學研究所]. 79. 賴建信. (2024). 經濟部水利署PAS2080碳管理手冊. 經濟部水利署. 80. 環境部. (2025). 2025年中華民國國家溫室氣體排放清冊報告. https://www.cca.gov.tw/information-service/publications/national-ghg-inventory-report/13123.html 81. 環境部氣候變遷署. (2021). 氣候公民對話平台: 農業部門. https://www.climatetalks.tw/%E8%BE%B2%E6%A5%AD%E9%83%A8%E9%96%80 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99228 | - |
| dc.description.abstract | 為回應《氣候變遷因應法》所揭櫫 2050 淨零排放目標,農田水利基礎工程亟須從傳統「營運碳」視角,轉向涵蓋材料、生產、施工、營運、拆除暨循環再利用的全生命週期碳治理。然現行《水利工程減碳作業參考指引》與《農村水保工程減碳作業指引》僅盤點建材投入與部分施工、拆除工序,缺漏建材/機具運輸、長期營運管理、部分拆除與再利用等模組,易低估實際溫室氣體排放且恐觸發綠色漂洗風險。
本研究採用生命週期評估LCA為核心方法,整合ISO 14067產品碳足跡原則、EN 15978 A1~D模組流程與ILCD資料品質矩陣,並依PCR 2019:14 Construction Product延伸「Cradle‑to‑Grave + D」系統邊界;同時導入PAS 2080以「碳預算」管理之思維,發展一套Excel‑based碳盤查工具。方法學探討工程相關係數庫、蒙地卡羅不確定性分析與植栽碳匯及其他減碳效益獨立報告以避免重複計算,可即時輸出專案絕對排放量、功能單位排放強度與年度碳額度對齊報表,協助主管機關與承攬廠商在標案評分、採購門檻與營運績效評估中落實科學量化。 實證部分以鋼筋混凝土矩形渠道(傳統工法)與導入Nature‑based Solutions(NbS)的漿砌石-植生坡面生態工法為對照。結果顯示,傳統工法四十年全生命週期排放量約為一千噸二氧化碳當量;生態工法透過工法與材料替換,且排除植栽長期碳匯與D模組之減量效益,於全生命週期累計減排可達三成。熱點分析指出,混凝土、鋼筋用量與結構翻新仍為主要排放來源。 研究進一步將盤查結果映射至Avoid–Switch–Improve階層:避免(低碳設計)、替換(生態工法)、改善(再生材料),並示範如何以碳預算制度管控「規劃—設計—竣工—營運」四階段排放。方法學亦探討植栽碳匯防重複計帳機制,確保同一生態單元之效益不被多專案重複宣稱。 綜合而言,本研究首創涵蓋A~D模組之農田水利基礎工程碳盤查框架與工具,驗證NbS之生態工法於排水渠道之替代效益,並將量化結果直接嵌入PAS 2080管理,衍生「碳預算」之「碳決算」之閉環治理架構,為臺灣農業基礎設施邁向2050淨零目標提供科學化、可追溯且可操作之決策依據。 | zh_TW |
| dc.description.abstract | To align with the 2050 net‑zero target stipulated in Taiwan’s Climate Change Response Act, carbon governance for agricultural hydraulic infrastructure must expand beyond the traditional “operational‑phase” perspective to a full life‑cycle approach that encompasses material production, transportation, construction, operation, decommissioning, and circular reuse. Current national guidelines—Reference Guide for Carbon Reduction in Hydraulic Engineering and Reference Guide for Carbon Reduction in Rural & Soil‑and‑Water Conservation Engineering—inventory only building‑material inputs and selected construction or demolition processes, omitting modules such as material/ machinery transport, long‑term maintenance, and end‑of‑life reuse. These omissions can lead to systematic under‑estimation of greenhouse‑gas (GHG) emissions and heighten the risk of greenwashing.
This study employs life‑cycle assessment (LCA) as its central methodology, integrating the ISO 14067 product–carbon‑footprint principles, the EN 15978 module sequence (A1–D), and the ILCD data‑quality matrix, while extending the system boundary to a “cradle‑to‑grave + D” scope in line with PCR 2019:14 Construction Products. Concurrently, a PAS 2080‑oriented carbon‑budgeting and management approach underpins the development of an Excel‑based carbon‑accounting tool. The methodological framework encompasses the construction of engineering‑specific emission‑factor libraries, Monte Carlo uncertainty analysis, and separate reporting of vegetation carbon sinks and other mitigation benefits to avert double counting. The tool instantly generates absolute project emissions, functional‑unit emission intensities, and annual carbon‑budget alignment tables, thereby enabling regulators and contractors to apply rigorous quantitative metrics in bid evaluation, procurement thresholds, and operational‑performance assessment. The empirical analysis juxtaposes a conventional reinforced‑concrete rectangular channel with an ecological alternative that combines masonry lining and vegetated slopes in accordance with Nature‑based Solutions (NbS) principles. Over a 40‑year life cycle, the conventional method emits 1,003,556.43 kg CO2e. By substituting construction techniques and materials—and excluding long‑term vegetation sinks and module D benefits—the NbS alternative achieves a 31% emission reduction within entire life cycle. Hot‑spot analysis indicates that concrete production, reinforcing‑steel consumption, and structural refurbishment remain the dominant sources of greenhouse‑gas emissions. Results are further mapped onto the Avoid–Switch–Improve hierarchy: Avoid (low‑carbon design), Switch (ecological methods), and Improve (recycled materials). A demonstration shows how a carbon‑budget regime can govern emissions across the planning, design, completion, and operational phases. The study also proposes safeguards against double counting of vegetation carbon sinks, ensuring that the mitigation benefits of a single ecological unit cannot be claimed by multiple projects and thereby mitigating greenwashing risks. In sum, this research pioneers the first carbon‑accounting framework and tool that fully cover Modules A~D for agricultural irrigation infrastructure, empirically validates the substitution benefits of NbS‑based ecological methods for drainage channels, and embeds the quantified outcomes directly within the PAS 2080 management process. The resulting closed‑loop governance cycle—from carbon budgeting to carbon accounting—provides science‑based, traceable, and actionable evidence to guide Taiwan’s agricultural infrastructure toward the 2050 net‑zero goal. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:53:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:53:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 viii 表次 ix 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 4 1.3 研究架構 5 第二章 文獻回顧 10 2.1 農業糧食系統與農田水利設施之溫室氣體排放背景 10 2.1.1 農業部門溫室氣體排放 11 2.1.2 基礎設施溫室氣體排放 15 2.2 基礎設施碳盤查方法學發展與應用 17 2.2.1 國際建築與基礎設施碳盤查方法學概述 18 2.2.2 國際灌溉/水利基礎工程LCA研究脈絡 22 2.2.3 我國公共工程減碳作業參考指引 25 2.3 NbS在農田水利領域之應用 31 2.4 傳統工法與生態工法之比較 33 2.5 現有研究缺口 36 第三章 研究方法 41 3.1 國際標準/指導文件摘錄原則 41 3.1.1 國際生命週期數據系統ILCD 42 3.1.2 產品碳足跡標準ISO 14067 43 3.1.3 建築物環境績效評估EN 15978 45 3.1.4 建築產品類別規則PCR 2019:14 Construction Products 47 3.1.5 建築與基礎建設碳管理標準PAS 2080 50 3.2 標準整合與方法採納原則 53 3.2.1 標準整合邏輯與方法學架構設計 54 3.2.2 系統邊界與模組劃分原則 57 3.2.3 農田水利工程分類與功能單位設定 61 3.2.4 數據品質控管與碳排係數選取策略 68 3.2.5 碳匯與替代效益納入原則 70 3.3 Excel評估工具開發流程 72 3.4 案例設計與分析策略 79 3.4.1 案例工程基本資訊 79 3.4.2 傳統工法與生態工法對照設計 81 第四章 案例分析與結果討論 87 4.1 案例工程概況與系統邊界設定 87 4.2 盤查輸入資料與模型假設 91 4.3 全生命週期碳排結果 117 4.3.1 模組別排放分布(A1~D) 117 4.3.2 各估算路徑之排放量對照 119 4.3.3 傳統工法與生態工法比較 121 4.4 熱點分析與減碳潛力評估 122 第五章 結論與建議 124 5.1 研究發現與政策建議 124 5.2 研究之限制與未來應用展望 127 參考文獻 133 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 農田水利基礎工程 | zh_TW |
| dc.subject | 全生命週期評估 | zh_TW |
| dc.subject | 以自然為本之解決方案 | zh_TW |
| dc.subject | 生態工程 | zh_TW |
| dc.subject | Nature-based Solution | en |
| dc.subject | Agricultural Hydraulic Engineering | en |
| dc.subject | Life Cycle Assessment | en |
| dc.subject | Ecological Engineering | en |
| dc.title | 農田水利基礎工程全生命週期碳盤查方法之建構 ──以案例驗證比較傳統與生態工程減碳效益 | zh_TW |
| dc.title | Development of a Whole-Life-Cycle Carbon Accounting Method for Agricultural Hydraulic Infrastructure—A Case-Based Comparison of Carbon-Reduction Benefits between Conventional and Ecological Engineering | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許少瑜;林心恬 | zh_TW |
| dc.contributor.oralexamcommittee | Shao-Yiu Hsu;Hsin-Tien Lin | en |
| dc.subject.keyword | 農田水利基礎工程,全生命週期評估,以自然為本之解決方案,生態工程, | zh_TW |
| dc.subject.keyword | Agricultural Hydraulic Engineering,Life Cycle Assessment,Nature-based Solution,Ecological Engineering, | en |
| dc.relation.page | 139 | - |
| dc.identifier.doi | 10.6342/NTU202502693 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | 2028-08-01 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
