Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 奈米工程與科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99220
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍俊宏zh_TW
dc.contributor.advisorJakey Blueen
dc.contributor.author支昱丹zh_TW
dc.contributor.authorYu-Tan Chihen
dc.date.accessioned2025-08-21T16:51:45Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationAbramson, B., Brown, J., Edwards, W., Murphy, A., & Winkler, R. L. (1996). Hailfinder: A Bayesian System for Forecasting Severe Weather. International Journal of Forecasting, 12(1), 57–71.
Cooper, G. F., & Herskovits, E. (1992). A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309–347.
Cheng, J., Bell, D. A., & Liu, W. (1997). An Algorithm for Bayesian Network Construction from Data. Proceedings of the Sixth International Workshop on Artificial Intelligence and Statistics, PMLR, R1, 83–90.
Chickering, D. M. (2002). Optimal Structure Identification With Greedy Search. Journal of Machine Learning Research, 3, 507–554.
Gamella, J.L., Peters, J. & Bühlmann, P. (2025). Causal chambers as a real-world physical testbed for AI methodology. Nature Machine Intelligence, 7, 107–118.
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning, 20, 197–243.
Heckerman, D., & Breese, J. S. (1996). Causal Independence for Probability Assessment and Inference Using Bayesian Networks. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 26(6), 826–831.
Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models Principles and Techniques. The MIT Press.
Matzka, S. (2020). Explainable Artificial Intelligence for Predictive Maintenance Applications. 2020 Third International Conference on Artificial Intelligence for Industries (AI4I).
Niles, H. E. (1922). Correlation, Causation and Wright’s Theory of “Path Coefficients.” Genetics, 7(3), 258–273.
Pearson, K. (1896). VII. Mathematical Contributions to the Theory of Evolution.—III. Regression, Heredity, and Panmixia. Philosophical Transactions of the Royal Society A, 187, 253–318.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (1st ed.). Morgan Kaufmann.
Rubin, D. B. (1974). Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. Journal of Educational Psychology, 66(5), 688–701.
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464.
S. L. Lauritzen, & D. J. Spiegelhalter. (1988). Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems. Journal of the Royal Statistical Society. Series B, 50(2), 157–224.
Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, Prediction, and Search (2nd ed.). The MIT Press.
Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science, 308(5721), 523–529.
Tsamardinos, I., Brown, Laura E., & Aliferis, C. F. (2006). The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Machine Learning, 65, 31–78.
Wright, S. (1921). Correlation and Causation. Journal of Agricultural Research, 20(7), 557–585.
Wagner, S. (2010). A Bayesian Network Approach to Assess and Predict Software Quality Using Activity-Based Quality Models. Information and Software Technology, 52(11), 1230–1241.
Scutari, M., Graafland, C. E., & Gutiérrez, J. M. (2019). Who learns better Bayesian network structures: Accuracy and speed of structure learning algorithms. International Journal of Approximate Reasoning, 115, 235–253.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99220-
dc.description.abstract本論文旨在解決貝氏網路結構學習中準確性不足、重現性差及高維度資料下學習效率低落等挑戰。貝氏網路因具備直觀的可視化能力與強大的機率推理特性,廣泛應用於機器故障診斷、生物資訊、可解釋性人工智慧等領域。然而,其結構學習屬於NP-hard問題,面對高維資料與有限樣本時,常產生錯誤連結或遺漏關係,加上傳統爬山演算法的非確定性特質,導致結果難以重現且解釋性不足。
為提升學習結果之穩定性與準確性,本文提出一套兩階段之確定性結構學習演算法。第一階段以資訊理論與統計關聯性為基礎,建構核心模型,藉由相互資訊、卡方p值檢定與K2分數評估,搭配d-分離原則判定因果方向,確保變數間連結具統計顯著性與推論合理性;第二階段則採用偏相關係數與BIC準則,對核心網路進行擴增與修剪,剔除冗餘連結並補足可能遺漏的因果邊,強化網路之精度與可解釋性。
本研究另設計四種演算法,分別結合不同排序策略(如p值搭配相互資訊、Spearman相關係數)與網路修正方法(如爬山演算法與偏相關係數法),並使用多組模擬資料與實際資料集(ALARM、HailFinder、Win95pts與ai4i2020)進行比較實驗。透過結構評估指標(T/R/M/F)與執行時間分析,證實本論文所提出的兩階段演算法不僅具備較高的準確率與F1分數,且在結構重現性上顯著優於傳統爬山法,展現其穩定與可靠的學習性能。
總結而言,本研究提出之方法在兼顧可解釋性與效能之下,有效改善傳統架構學習面臨的問題,對未來因果推論模型的設計與實務應用具高度潛力與貢獻。
zh_TW
dc.description.abstractThis thesis aims to address several critical challenges in Bayesian network structure learning, including limited accuracy, poor reproducibility, and low computational efficiency in high-dimensional settings. Bayesian networks, known for their intuitive visual representation and powerful probabilistic reasoning capabilities, have been widely applied in domains such as fault diagnosis, bioinformatics, and explainable artificial intelligence. However, structure learning in Bayesian networks is an NP-hard problem; as the dimensionality increases and data samples remain limited, learning algorithms often produce spurious or missing connections. Moreover, traditional hill-climbing algorithms suffer from non-determinism, leading to inconsistent results and diminished interpretability.
To enhance the stability and accuracy of structure learning, this study proposes a novel two-phase deterministic algorithm. The first phase constructs a core network model by integrating information-theoretic and statistical relevance criteria, including mutual information, chi-squared p-value tests, and K2 scores, combined with d-separation rules to determine causal directions. This ensures that identified connections are both statistically significant and theoretically interpretable. The second phase augments and prunes the core network using partial correlation coefficients and the Bayesian Information Criterion (BIC), thereby removing redundant edges and recovering potentially missing causal links to improve structural fidelity and interpretability.
Furthermore, four algorithmic variants were developed by combining different edge selection strategies (e.g., p-value with mutual information, Spearman correlation) and network refinement methods (e.g., hill-climbing, partial correlation analysis). A series of benchmark experiments were conducted on both synthetic and real-world datasets (ALARM, HailFinder, Win95pts, and ai4i2020). Evaluation using structural accuracy metrics (T/R/M/F scores) and runtime analysis demonstrates that the proposed two-phase algorithm consistently outperforms conventional hill-climbing approaches in terms of accuracy, F1 score, and reproducibility.
In summary, the proposed framework effectively addresses longstanding limitations in Bayesian network structure learning by balancing interpretability and performance. It offers promising potential for future development and application of causal inference models in practical and data-constrained scenarios.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:51:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:51:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
目次 iv
圖次 vi
表次 viii
第一章 緒論 1
1.1 研究背景與問題 1
1.2 研究動機與目的 3
1.3 研究架構 4
第二章 文獻探討 5
2.1 因果效應模型 5
2.2 貝氏網路 7
2.2.1 貝氏網路參數學習 7
2.2.2 貝氏網路架構學習 8
2.2.3 因果效應模型應用 11
2.3 文獻綜合解析與本研究定位 15
第三章 貝氏網路結構學習演算法 16
3.1 資料預處理及例外處理 18
3.2 貝氏網路核心模型 20
3.3 基於核心模型之擴增刪減網路 26
3.4 二階段架構學習演算法 28
3.5 網路結構評估 32
第四章 案例分析與討論 34
4.1 資料集與規格介紹 34
4.2 資料前處理 36
4.3 貝氏網路模型建構與評估 41
第五章 結論與建議 66
5.1 研究貢獻 66
5.2 未來研究方向與建議 68
參考文獻 70
-
dc.language.isozh_TW-
dc.subject因果推論zh_TW
dc.subject貝氏網路結構學習zh_TW
dc.subject相互資訊zh_TW
dc.subject偏相關係數zh_TW
dc.subjectBIC 準則zh_TW
dc.subjectMutual Informationen
dc.subjectCausal-Effect Inferenceen
dc.subjectBayesian Information Criterion (BIC)en
dc.subjectPartial Correlation Coefficienten
dc.subjectBayesian Network Structure Learningen
dc.title基於資訊理論與相關性準則之兩階段確定性演算法以 用於貝氏網路結構學習zh_TW
dc.titleA Two-Phase Deterministic Algorithm for Bayesian Network Structure Learning Using Information-Theoretic and Correlation-Based Criteriaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊惟婷;許嘉裕zh_TW
dc.contributor.oralexamcommitteeWei-Ting Yang;Chia-Yu Hsuen
dc.subject.keyword因果推論,貝氏網路結構學習,相互資訊,偏相關係數,BIC 準則,zh_TW
dc.subject.keywordCausal-Effect Inference,Bayesian Network Structure Learning,Mutual Information,Partial Correlation Coefficient,Bayesian Information Criterion (BIC),en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202503379-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-09-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept奈米工程與科學學位學程-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:奈米工程與科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved