請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99218完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇偉儁 | zh_TW |
| dc.contributor.advisor | Wei-Jiun Su | en |
| dc.contributor.author | 翁上崴 | zh_TW |
| dc.contributor.author | Shang-Wei Wong | en |
| dc.date.accessioned | 2025-08-21T16:51:16Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | A. Erturk and D. J. Inman, "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters," Journal of Vibration and Acoustics, vol. 130, no. 4, p. 041002, 2008, doi: 10.1115/1.2890402.
C. G. Gregg, P. Pillatsch, and P. K. Wright, "Passively self-tuning piezoelectric energy harvesting system," in Journal of Physics: Conference Series, 2014, vol. 557: IOP Publishing, p. 012123. J.-C. Hsu, C.-T. Tseng, and Y.-S. Chen, "Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion," Smart Materials and Structures, vol. 23, no. 7, p. 075013, 2014. V. R. Challa, M. G. Prasad, and F. T. Fisher, "Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications," Smart Materials and Structures, vol. 20, no. 2, p. 025004, 2011. H. Zhao, X. Wei, Y. Zhong, and P. Wang, "A direction self-tuning two-dimensional piezoelectric vibration energy harvester," Sensors, vol. 20, no. 1, p. 77, 2019. H. Wu, L. Tang, Y. Yang, and C. K. Soh, "A novel two-degrees-of-freedom piezoelectric energy harvester," Journal of Intelligent Material Systems and Structures, vol. 24, no. 3, pp. 357-368, 2013. F. Qian, M. R. Hajj, and L. Zuo, "Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting," Energy Conversion and Management, vol. 222, p. 113174, 2020. Y. Yan et al., "Design and investigation of a quad-stable piezoelectric vibration energy harvester by using geometric nonlinearity of springs," Journal of Sound and Vibration, vol. 547, p. 117484, 2023. D. Zou, G. Liu, Z. Rao, T. Tan, W. Zhang, and W.-H. Liao, "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, vol. 302, p. 117585, 2021. S. C. Stanton, C. C. McGehee, and B. P. Mann, "Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator," Physica D: Nonlinear Phenomena, vol. 239, no. 10, pp. 640-653, 2010. H. Du, Z. Yang, and S. Zhou, "A piezoelectric buckling beam-type bistable energy harvester under rotational excitations," Journal of Physics D: Applied Physics, vol. 56, no. 44, p. 444002, 2023. A. Abdelkefi, Z. Yan, and M. R. Hajj, "Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping," Smart materials and Structures, vol. 22, no. 2, p. 025016, 2013. H. W. Kim, S. Priya, K. Uchino, and R. E. Newnham, "Piezoelectric energy harvesting under high pre-stressed cyclic vibrations," Journal of Electroceramics, vol. 15, pp. 27-34, 2005. Z. Yang and J. Zu, "High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism," Energy conversion and management, vol. 88, pp. 829-833, 2014. J. Zhao and Z. You, "A shoe-embedded piezoelectric energy harvester for wearable sensors," Sensors, vol. 14, no. 7, pp. 12497-12510, 2014. H.-L. Chang and W.-J. Su, "Design and development of a high-performance tensile-mode piezoelectric energy harvester based on a three-hinged force-amplification mechanism," Smart Materials and Structures, vol. 31, no. 7, p. 075018, 2022. 游士寬, "基於懸臂梁之拉伸式非線性壓電能量採集器之設計與分析," 國立臺灣大學機械工程學系學位論文, pp. 1-91, 2022. H.-H. Chen, S.-K. You, and W.-J. Su, "The design, fabrication and analysis of a cantilever-based tensile-mode nonlinear piezoelectric energy harvester," Mechanical Systems and Signal Processing, vol. 212, p. 111317, 2024. 曾亮維, "基於滑塊自調頻之拉伸式非線性壓電能量採集器," 國立臺灣大學機械工程學系學位論文, pp. 1-68, 2024. 留崇恆, "結合轉軸之分段非線性拉伸式壓電能量採集器之設計與分析," 國立臺灣大學機械工程學系學位論文, pp. 1-81, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99218 | - |
| dc.description.abstract | 壓電能量採集器可以將環境中多餘的振動機械能轉換成電能,而傳統的懸臂樑壓電能量採集器由於頻寬過窄且變形分布不均等問題使發電效率低落,本研究提出一種結合弧形曲面之拉伸式非線性壓電能量採集器以改善上述問題,透過弧形曲面影響振動時的拉伸效率和軸向預拉力增加非線性因素使系統產生硬化現象,增加系統頻寬,採取拉伸行為模式可使壓電材料整體變形分布平均,並且統一變形方向使系統壽命增加。
本研究將結合弧形曲面的特殊剛體組件作為主體,一端透過旋轉轉軸與基座連接,另一端透過夾持固定與彈性桿件連接,最後彈性桿件另一端透過夾持固定與基座連接,由於彈性桿件材料PVDF與剛體組件重量和剛性相差甚大,故忽略不計。本研究透過改變軸向預拉力、激振加速度、弧形曲面半徑以及質量塊重量等參數觀察並分析其對於系統性能的影響,並將實驗結果與模擬數據比較驗證其準確性。 最後加入傳統懸臂樑能量採集器數據做比較,實驗結果顯示,本研究設計的採集器與懸臂樑採集器相比,最大方均根電壓提高了2.1倍,且頻寬也提升了2.73倍,在13 MΩ的外接阻抗下,最大輸出功率可達1.8 mW。 | zh_TW |
| dc.description.abstract | Piezoelectric energy harvesters convert ambient vibrations into electricity, but traditional cantilever designs have narrow bandwidth and uneven strain. This study introduces a stretch-mode nonlinear harvester with a curved surface and axial pre-tension to enhance strain uniformity and broaden frequency response through nonlinear hardening.
The device consists of a rigid curved structure linked by a shaft and clamped PVDF beam, whose low mass and stiffness make its dynamic impact negligible. Performance under varying pre-tension, acceleration, curvature, and proof mass was validated via simulations and experiments. Compared to a cantilever design, it showed 2.1 times RMS voltage increase, 2.73 times bandwidth expansion, and 1.8 mW peak power under a 13 MΩ load. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:51:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:51:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 vii 表次 ix 符號表 x 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與方法 9 1.4 論文架構 10 第二章 壓電能量擷取理論 11 2.1 壓電效應 11 2.2 壓電本構方程式 13 第三章 能量採集器模型 16 3.1 採集器之力學模型 17 3.1.1 加速度造成之慣性力矩 18 3.1.2 彈性桿件拉力造成之力矩 19 3.2 採集器之電學模型 22 第四章 實驗設計 24 4.1 原型設計 24 4.2 實驗設備 27 4.3 實驗流程 30 第五章 結果驗證與討論 31 5.1 模型驗證與參數對系統之影響 32 5.1.1預拉力的影響 33 5.1.2加速度的影響 37 5.1.3弧形曲面的影響 41 5.1.4質量塊重量的影響 45 5.2 與懸臂樑採集器之比較 49 5.3 系統功率與最佳阻抗 53 第六章 結論與未來展望 55 6.1 結論 55 6.2 未來展望 56 參考文獻 58 附錄A 弧形曲面分離點位置推導 60 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 非線性系統 | zh_TW |
| dc.subject | 壓電能量採集器 | zh_TW |
| dc.subject | 弧形曲面 | zh_TW |
| dc.subject | 軸向預拉力 | zh_TW |
| dc.subject | 拉伸式 | zh_TW |
| dc.subject | stretch-mode | en |
| dc.subject | axial pre-tension | en |
| dc.subject | curved surface | en |
| dc.subject | nonlinear system | en |
| dc.subject | Piezoelectric energy harvester | en |
| dc.title | 結合弧形曲面之拉伸式非線性壓電能量採集器設計與分析 | zh_TW |
| dc.title | Design and Analysis of a Stretch-Mode Nonlinear Piezoelectric Energy Harvester with Curved Surfaces | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;陳任之 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;Yum-Ji Chan | en |
| dc.subject.keyword | 壓電能量採集器,非線性系統,拉伸式,軸向預拉力,弧形曲面, | zh_TW |
| dc.subject.keyword | Piezoelectric energy harvester,nonlinear system,stretch-mode,axial pre-tension,curved surface, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202503527 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
